जोन्स कैलकुलस: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|System for describing optical polarization}} प्रकाशिकी में, जोन्स कैलकुलस का उपयोग कर...")
 
No edit summary
Line 193: Line 193:


== अक्षीय रूप से घुमाए गए तत्व ==
== अक्षीय रूप से घुमाए गए तत्व ==
मान लें कि एक ऑप्टिकल तत्व का अपना ऑप्टिक अक्ष है{{clarify|reason=Does this mean (1) the "optic axis" of a (presumably uniaxial) birefringent material, or (2) the "optic axis" (also known as optical axis) of a rotationally symmetric lens system?|date=May 2015}} घटना के विमान के लिए सतह वेक्टर के लंबवत{{clarify|reason=What is the "surface vector for the plane of incidence"? Is it the normal vector? This would then be tangent to the surface of the refracting material, right?|date=May 2015}} और इस सतह वेक्टर के बारे में कोण θ/2 (यानी, कार्डिनल_पॉइंट_(ऑप्टिक्स)#प्रिंसिपल_प्लेन्स_एंड_पॉइंट्स के माध्यम से घुमाया जाता है, जिसके माध्यम से ऑप्टिक अक्ष गुजरता है,{{clarify|reason=What is the geometric relation between a vector and a plane expressed by "passes through"?|date=May 2015}} विद्युत क्षेत्र के ध्रुवीकरण के तल के संबंध में θ/2 कोण बनाता है{{clarify|reason=What is "the plane of polarization" of the electric field? I thought polarization was expressed by a vector. Does it mean the plane orthogonal to the direction of propagation, in which E can take its values?|date=May 2015}} घटना की TE तरंग)। याद रखें कि एक अर्ध-तरंग प्लेट ध्रुवीकरण को घटना ध्रुवीकरण और ऑप्टिक अक्ष (प्रमुख तल) के बीच दो बार कोण के रूप में घुमाती है। इसलिए, घुमाए गए ध्रुवीकरण राज्य, एम (θ) के लिए जोन्स मैट्रिक्स है
मान लें कि एक ऑप्टिकल तत्व का अपना ऑप्टिक अक्ष है घटना के विमान के लिए सतह वेक्टर के लंबवत और इस सतह वेक्टर के बारे में कोण θ/2 (यानी, कार्डिनल_पॉइंट_(ऑप्टिक्स)#प्रिंसिपल_प्लेन्स_एंड_पॉइंट्स के माध्यम से घुमाया जाता है, जिसके माध्यम से ऑप्टिक अक्ष गुजरता है, विद्युत क्षेत्र के ध्रुवीकरण के तल के संबंध में θ/2 कोण बनाता है घटना की TE तरंग)। याद रखें कि एक अर्ध-तरंग प्लेट ध्रुवीकरण को घटना ध्रुवीकरण और ऑप्टिक अक्ष (प्रमुख तल) के बीच दो बार कोण के रूप में घुमाती है। इसलिए, घुमाए गए ध्रुवीकरण राज्य, एम (θ) के लिए जोन्स मैट्रिक्स है
:<math>M(\theta )=R(-\theta )\,M\,R(\theta ),</math>
:<math>M(\theta )=R(-\theta )\,M\,R(\theta ),</math>
: कहाँ <math>R(\theta ) =  
: कहाँ <math>R(\theta ) =  
Line 215: Line 215:


== मनमाने ढंग से घुमाए गए तत्व ==
== मनमाने ढंग से घुमाए गए तत्व ==
{{expand section|date=July 2014}}
इसमें त्रि-आयामी [[रोटेशन मैट्रिक्स]] शामिल होगा। इस पर किए गए कार्य के लिए रसेल ए. चिपमैन और गरम युन देखें।<ref>{{cite journal |first=Russell A. |last=Chipman |year=1995 |title=ध्रुवीकरण किरण अनुरेखण के यांत्रिकी|journal=Opt. Eng. |volume=34 |issue=6 |pages=1636–1645 |doi=10.1117/12.202061 }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus I: definition and diattenuation |journal=[[Applied Optics (journal)|Applied Optics]] |first1=Garam |last1=Yun |first2=Karlton |last2=Crabtree |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2855–2865 |year=2011 |doi=10.1364/AO.50.002855 |pmid=21691348 }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus II: retardance |journal=Applied Optics |first1=Garam |last1=Yun |first2=Stephen C. |last2=McClain |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2866–2874 |year=2011 |doi=10.1364/AO.50.002866 |pmid=21691349 }}</ref><ref>{{cite thesis |hdl=10150/202979 |first=Garam |last=Yun |title=ध्रुवीकरण रे अनुरेखण|type=PhD thesis |date=2011 |publisher=University of Arizona }}</ref>
इसमें त्रि-आयामी [[रोटेशन मैट्रिक्स]] शामिल होगा। इस पर किए गए कार्य के लिए रसेल ए. चिपमैन और गरम युन देखें।<ref>{{cite journal |first=Russell A. |last=Chipman |year=1995 |title=ध्रुवीकरण किरण अनुरेखण के यांत्रिकी|journal=Opt. Eng. |volume=34 |issue=6 |pages=1636–1645 |doi=10.1117/12.202061 }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus I: definition and diattenuation |journal=[[Applied Optics (journal)|Applied Optics]] |first1=Garam |last1=Yun |first2=Karlton |last2=Crabtree |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2855–2865 |year=2011 |doi=10.1364/AO.50.002855 |pmid=21691348 }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus II: retardance |journal=Applied Optics |first1=Garam |last1=Yun |first2=Stephen C. |last2=McClain |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2866–2874 |year=2011 |doi=10.1364/AO.50.002866 |pmid=21691349 }}</ref><ref>{{cite thesis |hdl=10150/202979 |first=Garam |last=Yun |title=ध्रुवीकरण रे अनुरेखण|type=PhD thesis |date=2011 |publisher=University of Arizona }}</ref>


Line 235: Line 234:


==अग्रिम पठन==
==अग्रिम पठन==
{{more footnotes|date=July 2014}}
* E. Collett, ''Field Guide to Polarization'', SPIE Field Guides vol. '''FG05''', SPIE (2005). {{ISBN|0-8194-5868-6}}.
* E. Collett, ''Field Guide to Polarization'', SPIE Field Guides vol. '''FG05''', SPIE (2005). {{ISBN|0-8194-5868-6}}.
* D. Goldstein and E. Collett, ''Polarized Light'', 2nd ed., CRC Press (2003). {{ISBN|0-8247-4053-X}}.
* D. Goldstein and E. Collett, ''Polarized Light'', 2nd ed., CRC Press (2003). {{ISBN|0-8247-4053-X}}.

Revision as of 17:40, 13 April 2023

प्रकाशिकी में, जोन्स कैलकुलस का उपयोग करके ध्रुवीकृत प्रकाश का वर्णन किया जा सकता है,[1] रॉबर्ट क्लार्क जोन्स द्वारा खोजा गया|आर. 1941 में सी. जोन्स। ध्रुवीकृत प्रकाश को जोन्स वेक्टर द्वारा दर्शाया गया है, और रैखिक ऑप्टिकल तत्वों को जोन्स मैट्रिक्स (गणित) द्वारा दर्शाया गया है। जब प्रकाश एक ऑप्टिकल तत्व को पार करता है तो ऑप्टिकल तत्व के जोन्स मैट्रिक्स और घटना प्रकाश के जोन्स वेक्टर के उत्पाद को लेकर उभरती हुई रोशनी का परिणामी ध्रुवीकरण पाया जाता है। ध्यान दें कि जोन्स कैलकुस केवल उस प्रकाश पर लागू होता है जो पहले से ही पूरी तरह से ध्रुवीकृत है। प्रकाश जो बेतरतीब ढंग से ध्रुवीकृत है, आंशिक रूप से ध्रुवीकृत है, या असंगत है, उसे मुलर कैलकुलस का उपयोग करके व्यवहार किया जाना चाहिए।

जोन्स वेक्टर

जोन्स वेक्टर मुक्त स्थान में प्रकाश के ध्रुवीकरण या अन्य एकरूपता (भौतिकी) समदैशिक क्षीणन | गैर-क्षीणन माध्यम का वर्णन करता है, जहां प्रकाश को अनुप्रस्थ तरंगों के रूप में ठीक से वर्णित किया जा सकता है। मान लीजिए कि प्रकाश की एक एकवर्णीय समतल तरंग कोणीय आवृत्ति ω और तरंग सदिश 'k' = (0,0,k) के साथ धनात्मक z-दिशा में यात्रा कर रही है, जहाँ तरंग संख्या k = ω/c है। फिर विद्युत और चुंबकीय क्षेत्र 'ई' और 'एच' प्रत्येक बिंदु पर 'के' के लिए ओर्थोगोनल हैं; वे दोनों गति की दिशा के अनुप्रस्थ तल में स्थित हैं। इसके अलावा, 'H' को 'E' से 90-डिग्री रोटेशन और माध्यम के तरंग प्रतिबाधा के आधार पर एक निश्चित गुणक द्वारा निर्धारित किया जाता है। अतः 'E' का अध्ययन करके प्रकाश के ध्रुवण का निर्धारण किया जा सकता है। 'E' का जटिल आयाम लिखा है

ध्यान दें कि भौतिक E क्षेत्र इस सदिश का वास्तविक भाग है; जटिल गुणक चरण सूचना का कार्य करता है। यहाँ के साथ काल्पनिक इकाई है .

जोन्स वेक्टर है

इस प्रकार, जोन्स वेक्टर एक्स और वाई दिशाओं में विद्युत क्षेत्र के आयाम और चरण का प्रतिनिधित्व करता है।

जोन्स वैक्टर के दो घटकों के पूर्ण मूल्यों के वर्गों का योग प्रकाश की तीव्रता के समानुपाती होता है। सरलीकरण के लिए गणना के शुरुआती बिंदु पर इसे 1 पर सामान्यीकृत करना आम बात है। जोन्स वैक्टर के पहले घटक को वास्तविक संख्या होने के लिए विवश करना भी आम है। यह अन्य बीम के साथ हस्तक्षेप (तरंग प्रसार) की गणना के लिए आवश्यक समग्र चरण की जानकारी को छोड़ देता है।

ध्यान दें कि इस लेख में सभी जोन्स वैक्टर और मेट्रिसेस उस सम्मेलन को नियोजित करते हैं जिसके द्वारा प्रकाश तरंग का चरण दिया जाता है , हेचट द्वारा उपयोग किया जाने वाला एक सम्मेलन। इस सम्मेलन के तहत, में वृद्धि (या ) चरण में मंदता (विलंब) इंगित करता है, जबकि कमी चरण में आगे बढ़ने का संकेत देती है। उदाहरण के लिए, जोन्स वैक्टर का घटक () द्वारा मंदता को इंगित करता है (या 90 डिग्री) 1 की तुलना में (). जोन्स कन्वेंशन के तहत वर्णित परिपत्र ध्रुवीकरण को कहा जाता है: रिसीवर के दृष्टिकोण से। Collett चरण के लिए विपरीत परिभाषा का उपयोग करता है (). कॉलेट की परिपाटी के अंतर्गत वर्णित वृत्ताकार ध्रुवीकरण कहलाता है : स्रोत की दृष्टि से। जोन्स कैलकुस पर संदर्भों से परामर्श करते समय पाठक को सम्मेलन की पसंद से सावधान रहना चाहिए।

निम्न तालिका सामान्यीकृत जोन्स वैक्टर के 6 सामान्य उदाहरण देती है।

Polarization Jones vector Typical ket notation
Linear polarized in the x direction
Typically called "horizontal"
Linear polarized in the y direction
Typically called "vertical"
Linear polarized at 45° from the x axis
Typically called "diagonal" L+45
Linear polarized at −45° from the x axis
Typically called "anti-diagonal" L−45
Right-hand circular polarized
Typically called "RCP" or "RHCP"
Left-hand circular polarized
Typically called "LCP" or "LHCP"

एक सामान्य वेक्टर जो सतह पर किसी भी स्थान को इंगित करता है उसे ब्रा-केट नोटेशन के रूप में लिखा जाता है . पोंकारे स्फेयर (ऑप्टिक्स) | पोंकारे स्फीयर (जिसे बलोच क्षेत्र के रूप में भी जाना जाता है) को नियोजित करते समय, आधार केट्स ( और ) ऊपर सूचीबद्ध कीट्स के विरोधी (एंटीपोडल अंक ) जोड़े को सौंपा जाना चाहिए। उदाहरण के लिए, कोई असाइन कर सकता है = और = . ये कार्य मनमाना हैं। विरोधी जोड़ियाँ हैं

  • और
  • और
  • और

किसी बिंदु का ध्रुवीकरण के बराबर नहीं या और उस वृत्त पर नहीं जो होकर गुजरता है अण्डाकार ध्रुवीकरण के रूप में जाना जाता है।

जोन्स मेट्रिसेस

जोन्स मेट्रिसेस ऑपरेटर हैं जो ऊपर परिभाषित जोन्स वैक्टर पर कार्य करते हैं। ये मैट्रिसेस विभिन्न ऑप्टिकल तत्वों जैसे लेंस, बीम स्प्लिटर्स, मिरर आदि द्वारा कार्यान्वित किए जाते हैं। प्रत्येक मैट्रिक्स जोन्स वैक्टर के एक-आयामी जटिल उप-स्थान पर प्रक्षेपण का प्रतिनिधित्व करता है। निम्न तालिका पोलराइज़र के लिए जोन्स मेट्रिसेस का उदाहरण देती है:

Optical element Jones matrix
Linear polarizer with axis of transmission horizontal[2]

Linear polarizer with axis of transmission vertical[2]

Linear polarizer with axis of transmission at ±45° with the horizontal[2]

Linear polarizer with axis of transmission angle from the horizontal[2]

Right circular polarizer[2]

Left circular polarizer[2]


चरण मंदक

एक चरण मंदक एक ऑप्टिकल तत्व है जो प्रकाश के एक मोनोक्रोमैटिक ध्रुवीकृत बीम के दो ऑर्थोगोनल ध्रुवीकरण घटकों के बीच एक चरण अंतर पैदा करता है।[3] गणितीय रूप से, जोन्स वैक्टर का प्रतिनिधित्व करने के लिए ब्रा-केट नोटेशन का उपयोग करते हुए, इसका मतलब है कि एक चरण मंदक की क्रिया प्रकाश को ध्रुवीकरण के साथ बदलना है

को
कहाँ ओर्थोगोनल ध्रुवीकरण घटक हैं (अर्थात ) जो चरण मंदक की भौतिक प्रकृति द्वारा निर्धारित होते हैं। सामान्य तौर पर, ऑर्थोगोनल घटक कोई भी दो आधार वैक्टर हो सकते हैं। उदाहरण के लिए, सर्कुलर फेज रिटार्डर की क्रिया ऐसी होती है कि

हालांकि, रैखिक चरण मंदक, जिसके लिए रैखिक ध्रुवीकरण हैं, आमतौर पर चर्चा और व्यवहार में अधिक पाए जाते हैं। वास्तव में, कभी-कभी शब्द चरण मंदक का उपयोग विशेष रूप से रैखिक चरण मंदक को संदर्भित करने के लिए किया जाता है।

रैखिक चरण मंदक आमतौर पर केल्साइट, एमजीएफ जैसे द्विअक्षीय एक अक्षीय क्रिस्टल से बने होते हैं2 या क्वार्ट्ज। इस प्रयोजन के लिए इन सामग्रियों से बनी प्लेटों को वेवप्लेट कहा जाता है। एक अक्षीय क्रिस्टल में एक क्रिस्टल अक्ष होता है जो अन्य दो क्रिस्टल अक्षों से भिन्न होता है (अर्थात्, ni≠ एनj= एनk). इस अनूठी धुरी को असाधारण धुरी कहा जाता है और इसे क्रिस्टल के ऑप्टिक अक्ष के रूप में भी जाना जाता है। हाथ में क्रिस्टल के आधार पर एक ऑप्टिक अक्ष क्रिस्टल के लिए तेज़ या धीमी धुरी हो सकती है। प्रकाश एक उच्च चरण वेग के साथ एक अक्ष के साथ यात्रा करता है जिसमें सबसे छोटा अपवर्तक सूचकांक होता है और इस अक्ष को तेज अक्ष कहा जाता है। इसी प्रकार, जिस अक्ष का अपवर्तक सूचकांक सबसे बड़ा होता है उसे धीमी धुरी कहा जाता है क्योंकि इस अक्ष के साथ प्रकाश का चरण वेग सबसे कम होता है। नकारात्मक एक अक्षीय क्रिस्टल (जैसे, केल्साइट CaCO3, नीलम अल2O3) एन हैe<एनoअतः इन क्रिस्टलों के लिए, असाधारण अक्ष (ऑप्टिक अक्ष) तीव्र अक्ष है, जबकि धनात्मक एकअक्षीय क्रिस्टलों के लिए (जैसे, क्वार्टज़ SiO2)2, मैग्नीशियम फ्लोराइड MgF2, रूटाइल TiO2), एनe> एनoऔर इस प्रकार असाधारण अक्ष (ऑप्टिक अक्ष) धीमी धुरी है। अन्य व्यावसायिक रूप से उपलब्ध रैखिक चरण मंदक मौजूद हैं और अधिक विशिष्ट अनुप्रयोगों में उपयोग किए जाते हैं। फ्रेस्नेल समचतुर्भुज ऐसा ही एक विकल्प है।

एक्स- या वाई-अक्ष के रूप में परिभाषित अपनी तेज धुरी के साथ कोई रैखिक चरण मंदक शून्य ऑफ-विकर्ण शब्द है और इस प्रकार इसे आसानी से व्यक्त किया जा सकता है

कहाँ और में विद्युत क्षेत्रों के चरण ऑफ़सेट हैं और निर्देश क्रमशः। चरण सम्मेलन में , दो तरंगों के बीच सापेक्ष चरण को परिभाषित करें . फिर एक सकारात्मक (अर्थात। > ) मतलब कि के समान मूल्य प्राप्त नहीं करता है बाद के समय तक, यानी नेतृत्व . इसी प्रकार यदि , तब नेतृत्व .

उदाहरण के लिए, यदि एक चौथाई वेवप्लेट का तेज अक्ष क्षैतिज है, तो क्षैतिज दिशा के साथ चरण वेग ऊर्ध्वाधर दिशा से आगे है, अर्थात। नेतृत्व . इस प्रकार, जो एक चौथाई वेवप्लेट के लिए पैदावार देता है .

विपरीत परिपाटी में , सापेक्ष चरण को परिभाषित करें . तब मतलब कि के समान मूल्य प्राप्त नहीं करता है बाद के समय तक, यानी नेतृत्व .

Phase retarders Corresponding Jones matrix
Quarter-wave plate with fast axis vertical[4][note 1]
Quarter-wave plate with fast axis horizontal[4]
Quarter-wave plate with fast axis at angle w.r.t the horizontal axis
Half-wave plate with fast axis at angle w.r.t the horizontal axis[5]
General Waveplate (Linear Phase Retarder)[3]
Arbitrary birefringent material (Elliptical phase retarder)[3][6]

जोन्स मैट्रिक्स जोन्स कैलकुस में ध्रुवीकरण परिवर्तन का सबसे सामान्य रूप है; यह किसी भी ध्रुवीकरण परिवर्तन का प्रतिनिधित्व कर सकता है। इसे देखने के लिए कोई दिखा सकता है

उपरोक्त मैट्रिक्स सम्मेलन का उपयोग करके विशेष एकात्मक समूह | एसयू (2) के तत्वों के लिए एक सामान्य पैरामीट्रिजेशन है

जहां ओवरलाइन जटिल संयुग्म को दर्शाता है।

अंत में, यह स्वीकार करते हुए कि एकात्मक परिवर्तन का सेट चालू है के रूप में व्यक्त किया जा सकता है

यह स्पष्ट हो जाता है कि एक मनमाने ढंग से द्विअर्थी सामग्री के लिए जोन्स मैट्रिक्स एक चरण कारक तक किसी भी एकात्मक परिवर्तन का प्रतिनिधित्व करता है . इसलिए, के उचित विकल्प के लिए , , और , किसी भी दो जोन्स वैक्टर के बीच एक परिवर्तन पाया जा सकता है, एक चरण कारक तक . हालांकि, जोन्स कैलकुलस में, ऐसे चरण कारक जोन्स वेक्टर के प्रतिनिधित्व वाले ध्रुवीकरण को नहीं बदलते हैं, इसलिए या तो मनमाना माना जाता है या एक निर्धारित सम्मेलन के अनुरूप तदर्थ लगाया जाता है।

एक द्विअर्थी सामग्री के लिए सामान्य अभिव्यक्ति में उपयुक्त पैरामीटर मान लेकर चरण मंदक के लिए विशेष अभिव्यक्ति प्राप्त की जा सकती है।[6]सामान्य अभिव्यक्ति में:

  • तेज अक्ष और धीमी धुरी के बीच प्रेरित सापेक्ष चरण मंदता द्वारा दिया जाता है
  • एक्स-अक्ष के संबंध में तेज़ धुरी का अभिविन्यास है।
  • वर्तुलाकारता है।

ध्यान दें कि रैखिक मंदक के लिए, = 0 और गोलाकार मंदक के लिए, = ± /2, = /4. सामान्य तौर पर अण्डाकार मंदक के लिए, के बीच मान लेता है - /2 और /2.

अक्षीय रूप से घुमाए गए तत्व

मान लें कि एक ऑप्टिकल तत्व का अपना ऑप्टिक अक्ष है घटना के विमान के लिए सतह वेक्टर के लंबवत और इस सतह वेक्टर के बारे में कोण θ/2 (यानी, कार्डिनल_पॉइंट_(ऑप्टिक्स)#प्रिंसिपल_प्लेन्स_एंड_पॉइंट्स के माध्यम से घुमाया जाता है, जिसके माध्यम से ऑप्टिक अक्ष गुजरता है, विद्युत क्षेत्र के ध्रुवीकरण के तल के संबंध में θ/2 कोण बनाता है घटना की TE तरंग)। याद रखें कि एक अर्ध-तरंग प्लेट ध्रुवीकरण को घटना ध्रुवीकरण और ऑप्टिक अक्ष (प्रमुख तल) के बीच दो बार कोण के रूप में घुमाती है। इसलिए, घुमाए गए ध्रुवीकरण राज्य, एम (θ) के लिए जोन्स मैट्रिक्स है

कहाँ

यह उपरोक्त तालिका में अर्ध-लहर प्लेट के लिए अभिव्यक्ति से सहमत है। ये घूर्णन द्वारा दिए गए ऑप्टिकल भौतिकी में बीम एकात्मक फाड़नेवाला परिवर्तन के समान हैं

जहां प्राइमेड और अनप्राइमेड गुणांक बीम स्प्लिटर के विपरीत पक्षों से बीम घटना का प्रतिनिधित्व करते हैं। परावर्तित और संचरित घटक एक चरण θ प्राप्त करते हैंrऔर θt, क्रमश। तत्व के वैध प्रतिनिधित्व के लिए आवश्यकताएं हैं [7]

और

ये दोनों अभ्यावेदन एकात्मक मैट्रिक्स हैं जो इन आवश्यकताओं को पूरा करते हैं; और इस तरह, दोनों मान्य हैं।

मनमाने ढंग से घुमाए गए तत्व

इसमें त्रि-आयामी रोटेशन मैट्रिक्स शामिल होगा। इस पर किए गए कार्य के लिए रसेल ए. चिपमैन और गरम युन देखें।[8][9][10][11]


यह भी देखें

टिप्पणियाँ

  1. The prefactor appears only if one defines the phase delays in a symmetric fashion; that is, . This is done in Hecht[4] but not in Fowles.[2] In the latter reference the Jones matrices for a quarter-wave plate have no prefactor.


संदर्भ

  1. "जोन्स कैलकुलस". spie.org. Retrieved 2022-08-07.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Fowles, G. (1989). Introduction to Modern Optics (2nd ed.). Dover. p. 35.
  3. 3.0 3.1 3.2 P.S. Theocaris; E.E. Gdoutos (1979). Photoelasticity का मैट्रिक्स सिद्धांत. Springer Series in Optical Sciences. Vol. 11 (1st ed.). Springer-Verlag. doi:10.1007/978-3-540-35789-6. ISBN 978-3-662-15807-4.
  4. 4.0 4.1 4.2 Eugene Hecht (2001). Optics (4th ed.). p. 378. ISBN 978-0805385663.
  5. Gerald, A.; Burch, J.M. (1975). Introduction to Matrix Methods in Optics (1st ed.). John Wiley & Sons. p. 212. ISBN 978-0471296850.
  6. 6.0 6.1 Gill, Jose Jorge; Bernabeu, Eusebio (1987). "Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix". Optik. 76 (2): 67–71. ISSN 0030-4026.
  7. Ou, Z. Y.; Mandel, L. (1989). "ऊर्जा संतुलन से बीम स्प्लिटर के लिए पारस्परिक संबंधों की व्युत्पत्ति". Am. J. Phys. 57 (1): 66. doi:10.1119/1.15873.
  8. Chipman, Russell A. (1995). "ध्रुवीकरण किरण अनुरेखण के यांत्रिकी". Opt. Eng. 34 (6): 1636–1645. doi:10.1117/12.202061.
  9. Yun, Garam; Crabtree, Karlton; Chipman, Russell A. (2011). "Three-dimensional polarization ray-tracing calculus I: definition and diattenuation". Applied Optics. 50 (18): 2855–2865. doi:10.1364/AO.50.002855. PMID 21691348.
  10. Yun, Garam; McClain, Stephen C.; Chipman, Russell A. (2011). "Three-dimensional polarization ray-tracing calculus II: retardance". Applied Optics. 50 (18): 2866–2874. doi:10.1364/AO.50.002866. PMID 21691349.
  11. Yun, Garam (2011). ध्रुवीकरण रे अनुरेखण (PhD thesis). University of Arizona. hdl:10150/202979.


अग्रिम पठन


बाहरी संबंध