अनुरूप गुरुत्वाकर्षण: Difference between revisions

From Vigyanwiki
No edit summary
Line 40: Line 40:
\Phi(r)= 1 - \frac{2m}{r} +ar +br^2
\Phi(r)= 1 - \frac{2m}{r} +ar +br^2
</math>
</math>
प्रथम दो पद सामान्य तरंग समीकरण के समान हैं। चूंकि यह समीकरण अनुरूप गुरुत्वाकर्षण m के लिए सरलतम सन्निकटन है, जो केंद्रीय स्रोत के द्रव्यमान के तदनुरूपी है। अंतिम दो पद 4-व्युत्पादित तरंग समीकरणों के लिए अद्वितीय हैं। यह प्रस्तावित किया गया है कि गांगेय त्वरण स्थिरांक (आन्ध्र पदार्थ या डार्क मैटर के रूप में भी जाना जाता है) और आन्ध्र ऊर्जा या डार्क एनर्जी स्थिरांक के स्पष्टीकरण के लिए उन्हें निम्न मान निर्दिष्ट की जाएं।<ref name='56 (2006) 340-445'>{{cite journal|title=डार्क मैटर और डार्क एनर्जी के विकल्प|journal=Prog. Part. Nucl. Phys.|year=2006|first=Philip D.|last=Mannheim|volume=56|issue=2|pages=340–445|doi= 10.1016/j.ppnp.2005.08.001|arxiv=astro-ph/0505266|bibcode = 2006PrPNP..56..340M |s2cid=14024934}}</ref> अनुरूप गुरुत्वाकर्षण के लिए एक गोलाकार स्रोत के [[सामान्य सापेक्षता]] में [[श्वार्जस्चिल्ड मीट्रिक]] हल के समतुल्य समाधान के साथ मीटरी है:
प्रथम दो पद सामान्य तरंग समीकरण के समान हैं। चूंकि यह समीकरण अनुरूप गुरुत्वाकर्षण m के लिए सरलतम सन्निकटन है, जो केंद्रीय स्रोत के द्रव्यमान के तदनुरूपी है। अंतिम दो पद 4-व्युत्पादित तरंग समीकरणों के लिए अद्वितीय हैं। यह प्रस्तावित किया गया है कि गांगेय त्वरण स्थिरांक (डार्क मैटर के रूप में भी जाना जाता है) और डार्क एनर्जी स्थिरांक के स्पष्टीकरण के लिए उन्हें निम्न मान निर्दिष्ट की जाएं।<ref name='56 (2006) 340-445'>{{cite journal|title=डार्क मैटर और डार्क एनर्जी के विकल्प|journal=Prog. Part. Nucl. Phys.|year=2006|first=Philip D.|last=Mannheim|volume=56|issue=2|pages=340–445|doi= 10.1016/j.ppnp.2005.08.001|arxiv=astro-ph/0505266|bibcode = 2006PrPNP..56..340M |s2cid=14024934}}</ref> अनुरूप गुरुत्वाकर्षण के लिए एक गोलाकार स्रोत के [[सामान्य सापेक्षता]] में [[श्वार्जस्चिल्ड मीट्रिक]] हल के समतुल्य समाधान के साथ मीटरी है:


:<math>
:<math>
Line 47: Line 47:
जो सामान्य सापेक्षता के मध्य अंतर दिखाने के लिए हैं। 6bc अत्यंत क्षुद्र है इसलिए इसे उपेक्षित किया जा सकता है। समस्या यह है कि अब c स्रोत की कुल द्रव्यमान-ऊर्जा है और b स्रोत से वर्ग की दूरी के घनत्व का अभिन्न अंग है। इसलिए यह सामान्य सापेक्षता से संपूर्णतया विभिन्न क्षमता है और केवल एक छोटा संशोधन नहीं है।
जो सामान्य सापेक्षता के मध्य अंतर दिखाने के लिए हैं। 6bc अत्यंत क्षुद्र है इसलिए इसे उपेक्षित किया जा सकता है। समस्या यह है कि अब c स्रोत की कुल द्रव्यमान-ऊर्जा है और b स्रोत से वर्ग की दूरी के घनत्व का अभिन्न अंग है। इसलिए यह सामान्य सापेक्षता से संपूर्णतया विभिन्न क्षमता है और केवल एक छोटा संशोधन नहीं है।


अनुरूप गुरुत्वाकर्षण सिद्धांतों और उच्च व्युत्पादित वाले किसी भी सिद्धांत के साथ मुख्य विषय आवांछित प्रतिबिम्ब(घोस्ट) की विशिष्ट उपस्थिति है, जो सिद्धांत के क्वांटम संस्करण की अस्थिरता को इंगित करता है, यद्यपि आवांछित प्रतिबिम्ब की समस्या का समाधान हो सकता है।<ref name='37:532–571,2007'>{{cite journal|title=चौथे क्रम के व्युत्पन्न सिद्धांतों में भूत समस्या का समाधान|journal=Found. Phys.|year=2007|first=Philip D.|last=Mannheim|volume=37|issue=4–5|pages=532–571|arxiv=hep-th/0608154|bibcode = 2007FoPh...37..532M |doi = 10.1007/s10701-007-9119-7 |s2cid=44031727}}</ref>
अनुरूप गुरुत्वाकर्षण सिद्धांतों और उच्च व्युत्पादित वाले किसी भी सिद्धांत के साथ मुख्य विषय आवांछित प्रतिबिम्ब(घोस्ट) की विशिष्ट उपस्थिति है, जो सिद्धांत के क्वांटम संस्करण की अस्थिरता की ओर इंगित करता है, यद्यपि आवांछित प्रतिबिम्ब की समस्या का समाधान हो सकता है।<ref name='37:532–571,2007'>{{cite journal|title=चौथे क्रम के व्युत्पन्न सिद्धांतों में भूत समस्या का समाधान|journal=Found. Phys.|year=2007|first=Philip D.|last=Mannheim|volume=37|issue=4–5|pages=532–571|arxiv=hep-th/0608154|bibcode = 2007FoPh...37..532M |doi = 10.1007/s10701-007-9119-7 |s2cid=44031727}}</ref>


एक वैकल्पिक दृष्टिकोण यह है कि गुरुत्वीय स्थिरांक को खंडित सममिति अदिश क्षेत्र के रूप में माना जाए, जिस स्थिति में न्यूटनी गुरुत्वाकर्षण में इस प्रकार के सूक्ष्म संशोधन पर विचार किया जा सकता है (जहां <math>\varepsilon</math> को हम सूक्ष्म संशोधन मानेंगे):
एक वैकल्पिक दृष्टिकोण यह है कि गुरुत्वीय स्थिरांक को समिति भंग अदिश क्षेत्र के रूप में माना जाए, जिस स्थिति में न्यूटनी गुरुत्वाकर्षण में इस प्रकार के सूक्ष्म संशोधन पर विचार किया जा सकता है (जहां <math>\varepsilon</math> को हम सूक्ष्म संशोधन मानेंगे):


:<math>
:<math>
Line 59: Line 59:
\Phi = 1 - \frac{2m}{r} \left( 1 + \alpha \sin\left(\frac r \varepsilon +\beta\right) \right)
\Phi = 1 - \frac{2m}{r} \left( 1 + \alpha \sin\left(\frac r \varepsilon +\beta\right) \right)
</math>
</math>
जहां एक अतिरिक्त घटक है जो समष्टि पर [[साइन लहर|ज्यावक्रतः]] परिवर्ती होती है। इस भिन्नता की तरंग दैर्ध्य परमाणु पृथुता जैसे विशाल हो सकती है। इस प्रकार इस मॉडल(निदर्श) में गुरुत्वाकर्षण बल के ओर विविध स्थिर विभव उपस्थित होती हैं।
जहां एक अतिरिक्त घटक है जो समष्टि पर [[साइन लहर|ज्यावक्रतः]] परिवर्ती होती है। इस भिन्नता की तरंग दैर्ध्य आणविक चौड़ाई जैसे विशाल हो सकती है। इस प्रकार इस मॉडल(निदर्श) में गुरुत्वाकर्षण बल के ओर अनेक स्थिर क्षमताएँ दिखाई देती हैं।


== [[मानक मॉडल]] के अनुरूप एकीकरण ==
== [[मानक मॉडल]] के अनुरूप एकीकरण ==
[[घुमावदार स्थान|वक्र]] दिक्काल में मानक निदर्श क्रिया के लिए उपयुक्त गुरुत्वाकर्षण शब्द जोड़कर, सिद्धांत एक स्थानीय अनुरूप (वेइल) निश्चरता विकसित करता है। गुरुत्वाकर्षण स्थिरांक के आधार पर एक संदर्भ द्रव्यमान मापनी का चयन करके अनुरूप गेज स्थापित किया जाता है। यह दृष्टिकोण पारंपरिक स्वतः सममिति को खंडित किए बिना [[हिग्स तंत्र]] के समान सदिश बोसॉन और पदार्थ क्षेत्रों के लिए द्रव्यमान उत्पन्न करता है।<ref>{{citation |first1=M. |last1=Pawlowski |first2=R. |last2=Raczka |year=1994 |title=A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field |doi=10.1007/BF02148570 |journal=Foundations of Physics |volume=24 |issue=9 |pages=1305–1327 |arxiv=hep-th/9407137|bibcode = 1994FoPh...24.1305P |s2cid=17358627 }}</ref>
[[घुमावदार स्थान|वक्र]] दिक्काल में मानक निदर्श क्रिया के लिए उपयुक्त गुरुत्वाकर्षण शब्द जोड़कर, सिद्धांत एक स्थानीय अनुरूप (वेइल) अप्रसरण विकसित करता है। गुरुत्वाकर्षण स्थिरांक के आधार पर एक संदर्भ द्रव्यमान मापनी का चयन करके अनुरूप प्रमाप स्थापित किया जाता है। यह दृष्टिकोण पारंपरिक स्वतः सममिति को खंडित किए बिना [[हिग्स तंत्र]] के समान सदिश बोसॉन और पदार्थ क्षेत्रों के लिए द्रव्यमान उत्पन्न करता है।<ref>{{citation |first1=M. |last1=Pawlowski |first2=R. |last2=Raczka |year=1994 |title=A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field |doi=10.1007/BF02148570 |journal=Foundations of Physics |volume=24 |issue=9 |pages=1305–1327 |arxiv=hep-th/9407137|bibcode = 1994FoPh...24.1305P |s2cid=17358627 }}</ref>





Revision as of 17:28, 11 May 2023

अनुरूप गुरुत्वाकर्षण उन गुरुत्वाकर्षण सिद्धांतों को संदर्भित करता है जो रिमेंनियन ज्यामिति के अर्थ में अनुरूप रूपांतरण के अंतर्गत अचर हैं; यथार्थतः, वे वेइल रूपांतरण के अंतर्गत अचर हैं, जहाँ मीट्रिक टेन्सर है और समष्टि काल पर एक फलन है।

वेइल-स्क्वायर सिद्धांत

इस श्रेणी के सबसे सरल सिद्धांत में वेइल प्रदिश का वर्ग लग्रांजी (लग्रांगियन) के रूप में है।

जहाँ वेइल प्रदिश है। यह सामान्य आइंस्टीन-हिल्बर्ट क्रिया के विपरीत है, जहाँ लग्रांजी केवल रिक्की अदिश है। मीटरी के परिवर्तन होने पर गति के समीकरण को बाख प्रदिश कहा जाता है,

जहाँरिक्की प्रदिश है। समान रूप से समतल मीटरी इस समीकरण के समाधान हैं।

चूंकि ये सिद्धांत एक निर्धारित पृष्ठभूमि के चारों ओर उच्चावचन के लिए चतुष्कोटि समीकरणों की ओर निर्देशन करते हैं, इसलिए वे स्पष्ट रूप से एकल नहीं हैं। इसलिए सामान्यतः यह माना जाता है कि उन्हें निरंतर क्वान्टित नहीं किया जा सकता है। यह अब विवादित है।[1]


चार-व्युत्पादित सिद्धांत

अनुरूप गुरुत्वाकर्षण 4- व्युत्पादित सिद्धांत का एक उदाहरण है। इसका अर्थ है कि तरंग समीकरण के प्रत्येक पद में अधिकतम चार अवकलज हो सकते हैं। 4-व्युत्पादित सिद्धांतों के पक्ष और विपक्ष हैं। इसका गुण यह है कि सिद्धांत का क्वांटित संस्करण अधिक अभिसारी और पुनः प्रसामान्यीकरण है। इसका दोष यह है कि कार्यकारण भाव संबंधी समस्याएं हो सकती हैं। 4-व्युत्पादित तरंग समीकरण का एक सरलतम उदाहरण अदिश 4-व्युत्पादित तरंग समीकरण है:

बल के एक केंद्रीय क्षेत्र में इसका समाधान है:

प्रथम दो पद सामान्य तरंग समीकरण के समान हैं। चूंकि यह समीकरण अनुरूप गुरुत्वाकर्षण m के लिए सरलतम सन्निकटन है, जो केंद्रीय स्रोत के द्रव्यमान के तदनुरूपी है। अंतिम दो पद 4-व्युत्पादित तरंग समीकरणों के लिए अद्वितीय हैं। यह प्रस्तावित किया गया है कि गांगेय त्वरण स्थिरांक (डार्क मैटर के रूप में भी जाना जाता है) और डार्क एनर्जी स्थिरांक के स्पष्टीकरण के लिए उन्हें निम्न मान निर्दिष्ट की जाएं।[2] अनुरूप गुरुत्वाकर्षण के लिए एक गोलाकार स्रोत के सामान्य सापेक्षता में श्वार्जस्चिल्ड मीट्रिक हल के समतुल्य समाधान के साथ मीटरी है:

जो सामान्य सापेक्षता के मध्य अंतर दिखाने के लिए हैं। 6bc अत्यंत क्षुद्र है इसलिए इसे उपेक्षित किया जा सकता है। समस्या यह है कि अब c स्रोत की कुल द्रव्यमान-ऊर्जा है और b स्रोत से वर्ग की दूरी के घनत्व का अभिन्न अंग है। इसलिए यह सामान्य सापेक्षता से संपूर्णतया विभिन्न क्षमता है और केवल एक छोटा संशोधन नहीं है।

अनुरूप गुरुत्वाकर्षण सिद्धांतों और उच्च व्युत्पादित वाले किसी भी सिद्धांत के साथ मुख्य विषय आवांछित प्रतिबिम्ब(घोस्ट) की विशिष्ट उपस्थिति है, जो सिद्धांत के क्वांटम संस्करण की अस्थिरता की ओर इंगित करता है, यद्यपि आवांछित प्रतिबिम्ब की समस्या का समाधान हो सकता है।[3]

एक वैकल्पिक दृष्टिकोण यह है कि गुरुत्वीय स्थिरांक को समिति भंग अदिश क्षेत्र के रूप में माना जाए, जिस स्थिति में न्यूटनी गुरुत्वाकर्षण में इस प्रकार के सूक्ष्म संशोधन पर विचार किया जा सकता है (जहां को हम सूक्ष्म संशोधन मानेंगे):

जिस स्थिति में सामान्य समाधान न्यूटनी स्थिति के समान है जिसके अलावा एक अतिरिक्त पद हो सकता है:

जहां एक अतिरिक्त घटक है जो समष्टि पर ज्यावक्रतः परिवर्ती होती है। इस भिन्नता की तरंग दैर्ध्य आणविक चौड़ाई जैसे विशाल हो सकती है। इस प्रकार इस मॉडल(निदर्श) में गुरुत्वाकर्षण बल के ओर अनेक स्थिर क्षमताएँ दिखाई देती हैं।

मानक मॉडल के अनुरूप एकीकरण

वक्र दिक्काल में मानक निदर्श क्रिया के लिए उपयुक्त गुरुत्वाकर्षण शब्द जोड़कर, सिद्धांत एक स्थानीय अनुरूप (वेइल) अप्रसरण विकसित करता है। गुरुत्वाकर्षण स्थिरांक के आधार पर एक संदर्भ द्रव्यमान मापनी का चयन करके अनुरूप प्रमाप स्थापित किया जाता है। यह दृष्टिकोण पारंपरिक स्वतः सममिति को खंडित किए बिना हिग्स तंत्र के समान सदिश बोसॉन और पदार्थ क्षेत्रों के लिए द्रव्यमान उत्पन्न करता है।[4]


यह भी देखें

संदर्भ

  1. Mannheim, Philip D. (2007-07-16). "Conformal gravity challenges string theory". In Rajantie, Arttu; Dauncey, Paul; Contaldi, Carlo; Stoica, Horace (eds.). Particles, Strings, and Cosmology. 13th International Symposium on Particles, Strings, and Cosmology, ·PA·S·COS· 2007. Vol. 0707. Imperial College London. p. 2283. arXiv:0707.2283. Bibcode:2007arXiv0707.2283M.
  2. Mannheim, Philip D. (2006). "डार्क मैटर और डार्क एनर्जी के विकल्प". Prog. Part. Nucl. Phys. 56 (2): 340–445. arXiv:astro-ph/0505266. Bibcode:2006PrPNP..56..340M. doi:10.1016/j.ppnp.2005.08.001. S2CID 14024934.
  3. Mannheim, Philip D. (2007). "चौथे क्रम के व्युत्पन्न सिद्धांतों में भूत समस्या का समाधान". Found. Phys. 37 (4–5): 532–571. arXiv:hep-th/0608154. Bibcode:2007FoPh...37..532M. doi:10.1007/s10701-007-9119-7. S2CID 44031727.
  4. Pawlowski, M.; Raczka, R. (1994), "A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field", Foundations of Physics, 24 (9): 1305–1327, arXiv:hep-th/9407137, Bibcode:1994FoPh...24.1305P, doi:10.1007/BF02148570, S2CID 17358627


अग्रिम पठन