इलेक्ट्रॉनिक स्पेकल पैटर्न इंटरफेरोमेट्री: Difference between revisions
(Created page with "{{Redirect|ESPI|Intel's eSPI Interface Specification|Serial Peripheral Interface#Intel Enhanced Serial Peripheral Interface Bus}} {{refimprove|date=June 2013}} Image:Fring...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Redirect|ESPI|Intel's eSPI Interface Specification|Serial Peripheral Interface#Intel Enhanced Serial Peripheral Interface Bus}} | {{Redirect|ESPI|Intel's eSPI Interface Specification|Serial Peripheral Interface#Intel Enhanced Serial Peripheral Interface Bus}} | ||
[[Image:Fringe created by electronic speckle pattern interferometry .jpg|thumb|right|200px|ईएसपीआई फ्रिन्जेस - फ्लैट प्लेट ऊर्ध्वाधर अक्ष के बारे में घूमती है - फ्रिंज देखने की दिशा में विस्थापन का प्रतिनिधित्व करते हैं; फ्रिजों के बीच विस्थापन का अंतर लगभग 0.3μm है।]]इलेक्ट्रॉनिक धब्बेदार पैटर्न इंटरफेरोमेट्री (ESPI),<ref>Jones R., Wykes C., Holographic and Speckle Interferometry, 1989, Cambridge University Press.</ref> टीवी होलोग्राफी के रूप में भी जाना जाता है, ऐसी तकनीक है जो वैकल्पिक रूप से खुरदरी सतहों वाले घटकों के स्थिर और गतिशील विस्थापन की कल्पना करने के लिए वीडियो पहचान, रिकॉर्डिंग और प्रसंस्करण के साथ-साथ लेजर प्रकाश का उपयोग करती है। विज़ुअलाइज़ेशन छवि पर फ्रिंज के रूप में होता है, जहां प्रत्येक फ्रिंज सामान्य रूप से उपयोग किए गए प्रकाश के आधे तरंग दैर्ध्य के विस्थापन का प्रतिनिधित्व करता है (यानी माइक्रोमीटर का चौथाई या तो)। | |||
[[Image:Fringe created by electronic speckle pattern interferometry .jpg|thumb|right|200px|ईएसपीआई फ्रिन्जेस - फ्लैट प्लेट | |||
ईएसपीआई का उपयोग [[तनाव (भौतिकी)]] और [[तनाव (सामग्री विज्ञान)]] मापन, [[कंपन मोड]] विश्लेषण और गैर-विनाशकारी परीक्षण के लिए किया जा सकता है।<ref>{{cite journal |last1=Shabestari |first1=N. P. |title=एक सरल और आसानी से बनने वाले पीजोइलेक्ट्रिक एक्चुएटर का निर्माण और डिजिटल धब्बेदार पैटर्न इंटरफेरोमेट्री में फेज शिफ्टर के रूप में इसका उपयोग|journal=Journal of Optics |date=2019 |volume=48 |issue=2 |pages=272–282 |doi=10.1007/s12596-019-00522-4 |s2cid=155531221 }}</ref> | ईएसपीआई का उपयोग [[तनाव (भौतिकी)]] और [[तनाव (सामग्री विज्ञान)]] मापन, [[कंपन मोड]] विश्लेषण और गैर-विनाशकारी परीक्षण के लिए किया जा सकता है।<ref>{{cite journal |last1=Shabestari |first1=N. P. |title=एक सरल और आसानी से बनने वाले पीजोइलेक्ट्रिक एक्चुएटर का निर्माण और डिजिटल धब्बेदार पैटर्न इंटरफेरोमेट्री में फेज शिफ्टर के रूप में इसका उपयोग|journal=Journal of Optics |date=2019 |volume=48 |issue=2 |pages=272–282 |doi=10.1007/s12596-019-00522-4 |s2cid=155531221 }}</ref> | ||
Line 10: | Line 8: | ||
== यह कैसे काम करता है == | == यह कैसे काम करता है == | ||
जांच के तहत घटक में | जांच के तहत घटक में वैकल्पिक रूप से खुरदरी सतह होनी चाहिए ताकि जब यह विस्तारित लेजर बीम द्वारा प्रकाशित हो, तो बनने वाली छवि [[धब्बेदार पैटर्न]] हो। धब्बेदार छवि में बिंदु पर पहुंचने वाला प्रकाश वस्तु के परिमित क्षेत्र से बिखरा हुआ है, और इसके चरण (तरंगें), [[आयाम]] और [[तीव्रता (भौतिकी)]], जो सभी यादृच्छिक हैं, सीधे उस क्षेत्र की सूक्ष्म संरचना से संबंधित हैं वस्तु। | ||
एक दूसरा प्रकाश क्षेत्र, जिसे रेफरेंस बीम के रूप में जाना जाता है, | एक दूसरा प्रकाश क्षेत्र, जिसे रेफरेंस बीम के रूप में जाना जाता है, ही लेजर बीम से प्राप्त होता है और वीडियो कैमरा इमेज पर आरोपित होता है (अलग-अलग कॉन्फ़िगरेशन अलग-अलग मापों को सक्षम बनाता है)। दो प्रकाश क्षेत्र [[हस्तक्षेप (प्रकाशिकी)]] और परिणामी प्रकाश क्षेत्र में यादृच्छिक आयाम, चरण और तीव्रता होती है, और इसलिए यह धब्बेदार पैटर्न भी है। यदि वस्तु विस्थापित या विकृत है, तो वस्तु और छवि के बीच की दूरी बदल जाएगी, और इसलिए छवि स्पेकल पैटर्न का चरण बदल जाएगा। संदर्भ और ऑब्जेक्ट बीम के सापेक्ष चरण बदलते हैं, और इसलिए संयुक्त प्रकाश क्षेत्र की तीव्रता में परिवर्तन होता है। हालाँकि, यदि वस्तु प्रकाश क्षेत्र का चरण परिवर्तन 2π का गुणक है, तो दो प्रकाश क्षेत्रों के सापेक्ष चरण अपरिवर्तित रहेंगे, और समग्र छवि की तीव्रता भी अपरिवर्तित रहेगी। | ||
इस प्रभाव की कल्पना करने के लिए, छवि और संदर्भ बीम को | इस प्रभाव की कल्पना करने के लिए, छवि और संदर्भ बीम को वीडियो कैमरे पर संयोजित किया जाता है और रिकॉर्ड किया जाता है। जब वस्तु विस्थापित/विकृत हो जाती है, तो नई छवि को पहली छवि से बिंदु दर बिंदु घटाया जाता है। परिणामी छवि काले 'फ्रिंज' के साथ धब्बेदार पैटर्न है जो निरंतर 2nπ के समोच्चों का प्रतिनिधित्व करती है। | ||
== कॉन्फ़िगरेशन == | == कॉन्फ़िगरेशन == | ||
Line 20: | Line 18: | ||
===आउट-ऑफ़-प्लेन विस्थापन माप=== | ===आउट-ऑफ़-प्लेन विस्थापन माप=== | ||
[[File:ESPI out-of-plane.svg|thumb|right|200px|आउट-ऑफ-प्लेन ईएसपीआई फ्रिंज प्राप्त करने के लिए ऑप्टिकल व्यवस्था]]संदर्भ बीम लेजर बीम से प्राप्त | [[File:ESPI out-of-plane.svg|thumb|right|200px|आउट-ऑफ-प्लेन ईएसपीआई फ्रिंज प्राप्त करने के लिए ऑप्टिकल व्यवस्था]]संदर्भ बीम लेजर बीम से प्राप्त विस्तारित बीम है, और वीडियो कैमरे पर बनने वाली वस्तु की छवि में जोड़ा जाता है। | ||
छवि में किसी भी बिंदु पर प्रकाश का आयाम वस्तु (ऑब्जेक्ट बीम) और दूसरी बीम (संदर्भ बीम) से प्रकाश का योग है। यदि वस्तु देखने की दिशा में चलती है, तो वस्तु बीम द्वारा तय की गई दूरी बदल जाती है, इसका चरण बदल जाता है, और इसलिए संयुक्त बीम का आयाम बदल जाता है। जब दूसरे स्पेकल पैटर्न को पहले से घटाया जाता है, तो फ्रिंज प्राप्त होते हैं जो देखने की दिशा के साथ-साथ विस्थापन की रूपरेखाओं का प्रतिनिधित्व करते हैं (विमान के बाहर विस्थापन)। ये हस्तक्षेप फ्रिंज नहीं हैं, और कभी-कभी 'सहसंबंध' फ्रिंज के रूप में संदर्भित होते हैं क्योंकि वे स्पेकल पैटर्न के क्षेत्रों को मैप करते हैं जो कमोबेश सहसंबद्ध होते हैं। सख्ती से कहा जाए तो, फ्रिंज पूरी तरह से विमान के बाहर के विस्थापन का प्रतिनिधित्व करते हैं, अगर सतह सामान्य रूप से प्रकाशित होती है (इसके लिए वस्तु को रोशन करने के लिए बीम स्प्लिटर की आवश्यकता होती है), लेकिन इन-प्लेन मूवमेंट पर निर्भरता अपेक्षाकृत कम होती है जब तक कि वस्तु रोशनी न हो। सामान्य दिशा से काफी दूर है। | छवि में किसी भी बिंदु पर प्रकाश का आयाम वस्तु (ऑब्जेक्ट बीम) और दूसरी बीम (संदर्भ बीम) से प्रकाश का योग है। यदि वस्तु देखने की दिशा में चलती है, तो वस्तु बीम द्वारा तय की गई दूरी बदल जाती है, इसका चरण बदल जाता है, और इसलिए संयुक्त बीम का आयाम बदल जाता है। जब दूसरे स्पेकल पैटर्न को पहले से घटाया जाता है, तो फ्रिंज प्राप्त होते हैं जो देखने की दिशा के साथ-साथ विस्थापन की रूपरेखाओं का प्रतिनिधित्व करते हैं (विमान के बाहर विस्थापन)। ये हस्तक्षेप फ्रिंज नहीं हैं, और कभी-कभी 'सहसंबंध' फ्रिंज के रूप में संदर्भित होते हैं क्योंकि वे स्पेकल पैटर्न के क्षेत्रों को मैप करते हैं जो कमोबेश सहसंबद्ध होते हैं। सख्ती से कहा जाए तो, फ्रिंज पूरी तरह से विमान के बाहर के विस्थापन का प्रतिनिधित्व करते हैं, अगर सतह सामान्य रूप से प्रकाशित होती है (इसके लिए वस्तु को रोशन करने के लिए बीम स्प्लिटर की आवश्यकता होती है), लेकिन इन-प्लेन मूवमेंट पर निर्भरता अपेक्षाकृत कम होती है जब तक कि वस्तु रोशनी न हो। सामान्य दिशा से काफी दूर है। | ||
ऊपर की छवि में फ्रिंज आउट-ऑफ़-प्लेन फ्रिंज हैं। प्लेट को | ऊपर की छवि में फ्रिंज आउट-ऑफ़-प्लेन फ्रिंज हैं। प्लेट को ऊर्ध्वाधर अक्ष के चारों ओर घुमाया गया है और फ्रिज निरंतर विस्थापन की रूपरेखाओं का प्रतिनिधित्व करते हैं। समोच्च अंतराल लगभग 0.3μm है क्योंकि सिस्टम में He-Ne लेसर का उपयोग किया गया था। कई इंटरफेरोमेट्रिक तकनीकों की तरह, सिस्टम से अतिरिक्त जानकारी के बिना शून्य-क्रम फ्रिंज की पहचान करना संभव नहीं है। इसका मतलब है कि कैमरे की ओर आधे वेवलेंथ (0.3μm) की कठोर बॉडी मोशन फ्रिंज पैटर्न को नहीं बदलती है। | ||
होलोग्राफिक इंटरफेरोमेट्री, आउट-ऑफ-प्लेन ईएसपीआई फ्रिंज के समान जानकारी प्रदान करती है। | होलोग्राफिक इंटरफेरोमेट्री, आउट-ऑफ-प्लेन ईएसपीआई फ्रिंज के समान जानकारी प्रदान करती है। | ||
Line 30: | Line 28: | ||
=== आउट-ऑफ-प्लेन कंपन माप === | === आउट-ऑफ-प्लेन कंपन माप === | ||
[[Image:ESPIvibration.jpg|thumb|right|200px|ईएसपीआई | [[Image:ESPIvibration.jpg|thumb|right|200px|ईएसपीआई क्लैम्प्ड स्क्वायर प्लेट के कंपन मोड में से को दर्शाता है]]ऑप्टिकल व्यवस्था ऊपर के विमान विस्थापन के समान ही है। वस्तु विशिष्ट आवृत्ति पर कंपन करती है। वस्तु के वे भाग जो हिलते नहीं हैं, धब्बेदार बने रहेंगे। यह दिखाया जा सकता है कि वस्तु के भाग जो nλ/4 के आयाम के साथ कंपन करते हैं, उन भागों की तुलना में अधिक धब्बेदार कंट्रास्ट होते हैं जो (n+½)λ/4 पर कंपन करते हैं। | ||
यह प्रणाली किसी भी विस्थापन मापन प्रणाली की तुलना में संचालित करने के लिए सरल है, क्योंकि बिना किसी रिकॉर्डिंग की आवश्यकता के फ्रिंज प्राप्त किए जाते हैं। कंपन मोड को कैमरे से छवि में तीव्रता में भिन्नता के बजाय धब्बेदार कंट्रास्ट में भिन्नता के रूप में देखा जा सकता है लेकिन इसे पहचानना काफी कठिन है। जब छवि उच्च-पास फ़िल्टर की जाती है, तो कंट्रास्ट में भिन्नता तीव्रता में भिन्नता में परिवर्तित हो जाती है, और आरेख में दिखाए गए रूप का फ्रिंज पैटर्न देखा जाता है जहां फ्रिंज स्पष्ट रूप से दिखाई देते हैं। | यह प्रणाली किसी भी विस्थापन मापन प्रणाली की तुलना में संचालित करने के लिए सरल है, क्योंकि बिना किसी रिकॉर्डिंग की आवश्यकता के फ्रिंज प्राप्त किए जाते हैं। कंपन मोड को कैमरे से छवि में तीव्रता में भिन्नता के बजाय धब्बेदार कंट्रास्ट में भिन्नता के रूप में देखा जा सकता है लेकिन इसे पहचानना काफी कठिन है। जब छवि उच्च-पास फ़िल्टर की जाती है, तो कंट्रास्ट में भिन्नता तीव्रता में भिन्नता में परिवर्तित हो जाती है, और आरेख में दिखाए गए रूप का फ्रिंज पैटर्न देखा जाता है जहां फ्रिंज स्पष्ट रूप से दिखाई देते हैं। | ||
Line 40: | Line 38: | ||
=== इन-प्लेन माप === | === इन-प्लेन माप === | ||
ऑब्जेक्ट | ऑब्जेक्ट ही लेजर बीम से प्राप्त दो बीमों द्वारा प्रकाशित होता है जो वस्तु पर विपरीत दिशा से आपतित होते हैं। जब वस्तु को देखने की दिशा के सामान्य दिशा में विस्थापित या विकृत किया जाता है (अर्थात इसके अपने तल में), बीम का चरण बढ़ जाता है, जबकि दूसरे का घट जाता है, जिससे कि दो बीमों के सापेक्ष चरण बदल जाते हैं। जब यह परिवर्तन 2π का गुणक होता है, तो धब्बेदार पैटर्न स्वयं के साथ मेल खाता है (समान रहता है), जबकि अन्यत्र यह बदलता है।<ref>{{cite journal |last1=Shabestari |first1=N. P. |title=एक सरल और आसानी से बनने वाले पीजोइलेक्ट्रिक एक्चुएटर का निर्माण और डिजिटल धब्बेदार पैटर्न इंटरफेरोमेट्री में फेज शिफ्टर के रूप में इसका उपयोग|journal=Journal of Optics |date=2019 |volume=48 |issue=2 |pages=272–282 |doi=10.1007/s12596-019-00522-4 |s2cid=155531221 }}</ref> जब ऊपर वर्णित घटाव तकनीक का उपयोग किया जाता है, तो फ्रिज प्राप्त होते हैं जो इन-प्लेन विस्थापन समोच्चों का प्रतिनिधित्व करते हैं।<ref> Gasvik K J, Optical Metrology, chapter 6.3, 1987, John Wiley & Sons</ref> | ||
=== इन-प्लेन विस्थापन ग्रेडिएंट माप === | === इन-प्लेन विस्थापन ग्रेडिएंट माप === | ||
वस्तु को | वस्तु को ही लेज़र से प्राप्त दो बीमों द्वारा प्रकाशित किया जाता है जो वस्तु पर ही तरफ से लेकिन अलग-अलग कोणों से आपतित होते हैं। जब वस्तु अपने स्वयं के तल के भीतर विस्थापित या विकृत होती है, तो दो बीमों के सापेक्ष चरण ढाल के अनुपात में बदल जाते हैं<ref> Gasvik K J, Optical Metrology, chapter 6.3, 1987, John Wiley & Sons</ref> इन-प्लेन विस्थापन का। फिर से, दो छवियों के घटाव का उपयोग फ्रिन्जों को प्रदर्शित करने के लिए किया जाता है। | ||
होलोग्राफिक इंटरफेरोमेट्री में इन-प्लेन मापने के बराबर नहीं है<ref>Kreis T, Handbook of Holographic Interferometry, 2004, Wiley-VCH</ref> ईएसपीआई। ध्वनिक इंटरफेरोमेट्री, विद्युत चुम्बकीय ध्वनिक ट्रांसड्यूसर के बीच, इन-प्लेन कंपन के दो ध्रुवीकरणों को मापने में सक्षम है।<ref>In-plane vibrations of a rectangular plate: Plane wave expansion modelling and experiment, A.Arreola-Lucas, J.A.Franco-Villafañe, G.Báez, and R.A.Méndez-Sánchez, Journal of Sound and Vibration | होलोग्राफिक इंटरफेरोमेट्री में इन-प्लेन मापने के बराबर नहीं है<ref>Kreis T, Handbook of Holographic Interferometry, 2004, Wiley-VCH</ref> ईएसपीआई। ध्वनिक इंटरफेरोमेट्री, विद्युत चुम्बकीय ध्वनिक ट्रांसड्यूसर के बीच, इन-प्लेन कंपन के दो ध्रुवीकरणों को मापने में सक्षम है।<ref>In-plane vibrations of a rectangular plate: Plane wave expansion modelling and experiment, A.Arreola-Lucas, J.A.Franco-Villafañe, G.Báez, and R.A.Méndez-Sánchez, Journal of Sound and Vibration | ||
Line 64: | Line 62: | ||
*[http://www.videsignline.com/showArticle.jhtml?articleID=192200500 Tech On-line ESPI] | *[http://www.videsignline.com/showArticle.jhtml?articleID=192200500 Tech On-line ESPI] | ||
*[http://www.isi-sys.com isi-sys] | *[http://www.isi-sys.com isi-sys] | ||
*[http://www.optonor.com optonor | *[http://www.optonor.com optonor – optical testing and metrology] | ||
*[https://web.archive.org/web/20130313214849/http://www.stresstechgroup.com/content/en/1034/1460/Hole-drilling%20residual%20stress%20testing%20equipment.html Residual stress measurement based on hole-drilling and ESPI (stresstech group)] | *[https://web.archive.org/web/20130313214849/http://www.stresstechgroup.com/content/en/1034/1460/Hole-drilling%20residual%20stress%20testing%20equipment.html Residual stress measurement based on hole-drilling and ESPI (stresstech group)] | ||
*[http://laseroptical.co.uk/shearography/ Shearing ESPI for composites inspection][[Category: इंटरफेरोमेट्री]] | *[http://laseroptical.co.uk/shearography/ Shearing ESPI for composites inspection][[Category: इंटरफेरोमेट्री]] |
Revision as of 09:57, 11 May 2023
इलेक्ट्रॉनिक धब्बेदार पैटर्न इंटरफेरोमेट्री (ESPI),[1] टीवी होलोग्राफी के रूप में भी जाना जाता है, ऐसी तकनीक है जो वैकल्पिक रूप से खुरदरी सतहों वाले घटकों के स्थिर और गतिशील विस्थापन की कल्पना करने के लिए वीडियो पहचान, रिकॉर्डिंग और प्रसंस्करण के साथ-साथ लेजर प्रकाश का उपयोग करती है। विज़ुअलाइज़ेशन छवि पर फ्रिंज के रूप में होता है, जहां प्रत्येक फ्रिंज सामान्य रूप से उपयोग किए गए प्रकाश के आधे तरंग दैर्ध्य के विस्थापन का प्रतिनिधित्व करता है (यानी माइक्रोमीटर का चौथाई या तो)।
ईएसपीआई का उपयोग तनाव (भौतिकी) और तनाव (सामग्री विज्ञान) मापन, कंपन मोड विश्लेषण और गैर-विनाशकारी परीक्षण के लिए किया जा सकता है।[2] ईएसपीआई कई तरह से होलोग्राफिक इंटरफेरोमेट्री के समान है, लेकिन इसमें महत्वपूर्ण अंतर भी हैं[3] दो तकनीकों के बीच।
यह कैसे काम करता है
जांच के तहत घटक में वैकल्पिक रूप से खुरदरी सतह होनी चाहिए ताकि जब यह विस्तारित लेजर बीम द्वारा प्रकाशित हो, तो बनने वाली छवि धब्बेदार पैटर्न हो। धब्बेदार छवि में बिंदु पर पहुंचने वाला प्रकाश वस्तु के परिमित क्षेत्र से बिखरा हुआ है, और इसके चरण (तरंगें), आयाम और तीव्रता (भौतिकी), जो सभी यादृच्छिक हैं, सीधे उस क्षेत्र की सूक्ष्म संरचना से संबंधित हैं वस्तु।
एक दूसरा प्रकाश क्षेत्र, जिसे रेफरेंस बीम के रूप में जाना जाता है, ही लेजर बीम से प्राप्त होता है और वीडियो कैमरा इमेज पर आरोपित होता है (अलग-अलग कॉन्फ़िगरेशन अलग-अलग मापों को सक्षम बनाता है)। दो प्रकाश क्षेत्र हस्तक्षेप (प्रकाशिकी) और परिणामी प्रकाश क्षेत्र में यादृच्छिक आयाम, चरण और तीव्रता होती है, और इसलिए यह धब्बेदार पैटर्न भी है। यदि वस्तु विस्थापित या विकृत है, तो वस्तु और छवि के बीच की दूरी बदल जाएगी, और इसलिए छवि स्पेकल पैटर्न का चरण बदल जाएगा। संदर्भ और ऑब्जेक्ट बीम के सापेक्ष चरण बदलते हैं, और इसलिए संयुक्त प्रकाश क्षेत्र की तीव्रता में परिवर्तन होता है। हालाँकि, यदि वस्तु प्रकाश क्षेत्र का चरण परिवर्तन 2π का गुणक है, तो दो प्रकाश क्षेत्रों के सापेक्ष चरण अपरिवर्तित रहेंगे, और समग्र छवि की तीव्रता भी अपरिवर्तित रहेगी।
इस प्रभाव की कल्पना करने के लिए, छवि और संदर्भ बीम को वीडियो कैमरे पर संयोजित किया जाता है और रिकॉर्ड किया जाता है। जब वस्तु विस्थापित/विकृत हो जाती है, तो नई छवि को पहली छवि से बिंदु दर बिंदु घटाया जाता है। परिणामी छवि काले 'फ्रिंज' के साथ धब्बेदार पैटर्न है जो निरंतर 2nπ के समोच्चों का प्रतिनिधित्व करती है।
कॉन्फ़िगरेशन
आउट-ऑफ़-प्लेन विस्थापन माप
संदर्भ बीम लेजर बीम से प्राप्त विस्तारित बीम है, और वीडियो कैमरे पर बनने वाली वस्तु की छवि में जोड़ा जाता है।
छवि में किसी भी बिंदु पर प्रकाश का आयाम वस्तु (ऑब्जेक्ट बीम) और दूसरी बीम (संदर्भ बीम) से प्रकाश का योग है। यदि वस्तु देखने की दिशा में चलती है, तो वस्तु बीम द्वारा तय की गई दूरी बदल जाती है, इसका चरण बदल जाता है, और इसलिए संयुक्त बीम का आयाम बदल जाता है। जब दूसरे स्पेकल पैटर्न को पहले से घटाया जाता है, तो फ्रिंज प्राप्त होते हैं जो देखने की दिशा के साथ-साथ विस्थापन की रूपरेखाओं का प्रतिनिधित्व करते हैं (विमान के बाहर विस्थापन)। ये हस्तक्षेप फ्रिंज नहीं हैं, और कभी-कभी 'सहसंबंध' फ्रिंज के रूप में संदर्भित होते हैं क्योंकि वे स्पेकल पैटर्न के क्षेत्रों को मैप करते हैं जो कमोबेश सहसंबद्ध होते हैं। सख्ती से कहा जाए तो, फ्रिंज पूरी तरह से विमान के बाहर के विस्थापन का प्रतिनिधित्व करते हैं, अगर सतह सामान्य रूप से प्रकाशित होती है (इसके लिए वस्तु को रोशन करने के लिए बीम स्प्लिटर की आवश्यकता होती है), लेकिन इन-प्लेन मूवमेंट पर निर्भरता अपेक्षाकृत कम होती है जब तक कि वस्तु रोशनी न हो। सामान्य दिशा से काफी दूर है।
ऊपर की छवि में फ्रिंज आउट-ऑफ़-प्लेन फ्रिंज हैं। प्लेट को ऊर्ध्वाधर अक्ष के चारों ओर घुमाया गया है और फ्रिज निरंतर विस्थापन की रूपरेखाओं का प्रतिनिधित्व करते हैं। समोच्च अंतराल लगभग 0.3μm है क्योंकि सिस्टम में He-Ne लेसर का उपयोग किया गया था। कई इंटरफेरोमेट्रिक तकनीकों की तरह, सिस्टम से अतिरिक्त जानकारी के बिना शून्य-क्रम फ्रिंज की पहचान करना संभव नहीं है। इसका मतलब है कि कैमरे की ओर आधे वेवलेंथ (0.3μm) की कठोर बॉडी मोशन फ्रिंज पैटर्न को नहीं बदलती है।
होलोग्राफिक इंटरफेरोमेट्री, आउट-ऑफ-प्लेन ईएसपीआई फ्रिंज के समान जानकारी प्रदान करती है।
आउट-ऑफ-प्लेन कंपन माप
ऑप्टिकल व्यवस्था ऊपर के विमान विस्थापन के समान ही है। वस्तु विशिष्ट आवृत्ति पर कंपन करती है। वस्तु के वे भाग जो हिलते नहीं हैं, धब्बेदार बने रहेंगे। यह दिखाया जा सकता है कि वस्तु के भाग जो nλ/4 के आयाम के साथ कंपन करते हैं, उन भागों की तुलना में अधिक धब्बेदार कंट्रास्ट होते हैं जो (n+½)λ/4 पर कंपन करते हैं।
यह प्रणाली किसी भी विस्थापन मापन प्रणाली की तुलना में संचालित करने के लिए सरल है, क्योंकि बिना किसी रिकॉर्डिंग की आवश्यकता के फ्रिंज प्राप्त किए जाते हैं। कंपन मोड को कैमरे से छवि में तीव्रता में भिन्नता के बजाय धब्बेदार कंट्रास्ट में भिन्नता के रूप में देखा जा सकता है लेकिन इसे पहचानना काफी कठिन है। जब छवि उच्च-पास फ़िल्टर की जाती है, तो कंट्रास्ट में भिन्नता तीव्रता में भिन्नता में परिवर्तित हो जाती है, और आरेख में दिखाए गए रूप का फ्रिंज पैटर्न देखा जाता है जहां फ्रिंज स्पष्ट रूप से दिखाई देते हैं।
कंपन मोड को मैप करने के लिए होलोग्राफिक इंटरफेरोमेट्री का उपयोग उसी तरह किया जा सकता है।
इन-प्लेन माप
ऑब्जेक्ट ही लेजर बीम से प्राप्त दो बीमों द्वारा प्रकाशित होता है जो वस्तु पर विपरीत दिशा से आपतित होते हैं। जब वस्तु को देखने की दिशा के सामान्य दिशा में विस्थापित या विकृत किया जाता है (अर्थात इसके अपने तल में), बीम का चरण बढ़ जाता है, जबकि दूसरे का घट जाता है, जिससे कि दो बीमों के सापेक्ष चरण बदल जाते हैं। जब यह परिवर्तन 2π का गुणक होता है, तो धब्बेदार पैटर्न स्वयं के साथ मेल खाता है (समान रहता है), जबकि अन्यत्र यह बदलता है।[4] जब ऊपर वर्णित घटाव तकनीक का उपयोग किया जाता है, तो फ्रिज प्राप्त होते हैं जो इन-प्लेन विस्थापन समोच्चों का प्रतिनिधित्व करते हैं।[5]
इन-प्लेन विस्थापन ग्रेडिएंट माप
वस्तु को ही लेज़र से प्राप्त दो बीमों द्वारा प्रकाशित किया जाता है जो वस्तु पर ही तरफ से लेकिन अलग-अलग कोणों से आपतित होते हैं। जब वस्तु अपने स्वयं के तल के भीतर विस्थापित या विकृत होती है, तो दो बीमों के सापेक्ष चरण ढाल के अनुपात में बदल जाते हैं[6] इन-प्लेन विस्थापन का। फिर से, दो छवियों के घटाव का उपयोग फ्रिन्जों को प्रदर्शित करने के लिए किया जाता है।
होलोग्राफिक इंटरफेरोमेट्री में इन-प्लेन मापने के बराबर नहीं है[7] ईएसपीआई। ध्वनिक इंटरफेरोमेट्री, विद्युत चुम्बकीय ध्वनिक ट्रांसड्यूसर के बीच, इन-प्लेन कंपन के दो ध्रुवीकरणों को मापने में सक्षम है।[8]
यह भी देखें
- होलोग्राफिक इंटरफेरोमेट्री
- इंटरफेरोमेट्री
- धब्बेदार पैटर्न
संदर्भ
<संदर्भ/>
बाहरी संबंध
- 3D-ESPI Systems for material testing
- Tech On-line ESPI
- isi-sys
- optonor – optical testing and metrology
- Residual stress measurement based on hole-drilling and ESPI (stresstech group)
- Shearing ESPI for composites inspection
- ↑ Jones R., Wykes C., Holographic and Speckle Interferometry, 1989, Cambridge University Press.
- ↑ Shabestari, N. P. (2019). "एक सरल और आसानी से बनने वाले पीजोइलेक्ट्रिक एक्चुएटर का निर्माण और डिजिटल धब्बेदार पैटर्न इंटरफेरोमेट्री में फेज शिफ्टर के रूप में इसका उपयोग". Journal of Optics. 48 (2): 272–282. doi:10.1007/s12596-019-00522-4. S2CID 155531221.
- ↑ Schnars U., Falldorf C., Watson J., Jueptner W., Digital Holography and Wavefront Sensing, Chapter 8, second edition, 2014, Springer.
- ↑ Shabestari, N. P. (2019). "एक सरल और आसानी से बनने वाले पीजोइलेक्ट्रिक एक्चुएटर का निर्माण और डिजिटल धब्बेदार पैटर्न इंटरफेरोमेट्री में फेज शिफ्टर के रूप में इसका उपयोग". Journal of Optics. 48 (2): 272–282. doi:10.1007/s12596-019-00522-4. S2CID 155531221.
- ↑ Gasvik K J, Optical Metrology, chapter 6.3, 1987, John Wiley & Sons
- ↑ Gasvik K J, Optical Metrology, chapter 6.3, 1987, John Wiley & Sons
- ↑ Kreis T, Handbook of Holographic Interferometry, 2004, Wiley-VCH
- ↑ In-plane vibrations of a rectangular plate: Plane wave expansion modelling and experiment, A.Arreola-Lucas, J.A.Franco-Villafañe, G.Báez, and R.A.Méndez-Sánchez, Journal of Sound and Vibration Volume 342, (2015), 168–176