टोर फ़ैक्टर्: Difference between revisions
(Created page with "{{Short description|Construction in homological algebra}} गणित में, टोर फ़ैक्टर्स एक अंगूठी (गणित) पर ...") |
m (Abhishek moved page टोर काम करता है to टोर फ़ैक्टर् without leaving a redirect) |
(No difference)
|
Revision as of 18:04, 28 April 2023
गणित में, टोर फ़ैक्टर्स एक अंगूठी (गणित) पर मॉड्यूल के टेंसर उत्पाद के व्युत्पन्न फ़ैक्टर हैं। एक्सट ऑपरेटर के साथ, टोर होमोलॉजिकल बीजगणित की केंद्रीय अवधारणाओं में से एक है, जिसमें बीजगणितीय टोपोलॉजी के विचारों का उपयोग बीजगणितीय संरचनाओं के आक्रमणकारियों के निर्माण के लिए किया जाता है। ग्रुप कोहोलॉजी#ग्रुप होमोलॉजी, ले बीजगणित होमोलॉजी, और होशचाइल्ड समरूपता सभी को टोर के संदर्भ में परिभाषित किया जा सकता है। यह नाम पहले टोर समूह टोर के बीच संबंध से आता है1 और एबेलियन समूह का मरोड़ उपसमूह।
एबेलियन समूहों के विशेष मामले में, टोर को एडुआर्ड सीच (1935) द्वारा पेश किया गया था और 1950 के आसपास सैमुअल एलेनबर्ग द्वारा नामित किया गया था।[1] यह पहली बार टोपोलॉजी में कुनेथ प्रमेय और सार्वभौमिक गुणांक प्रमेय पर लागू किया गया था। किसी भी अंगूठी पर मॉड्यूल के लिए, टोर को हेनरी कर्तन और ईलेनबर्ग द्वारा उनकी 1956 की पुस्तक होमोलॉजिकल बीजगणित में परिभाषित किया गया था।[2]
परिभाषा
माना R एक वलय (गणित) है। मॉड्यूल (गणित) के श्रेणी सिद्धांत के लिए आर-मॉड लिखें | बाएं आर-मॉड्यूल और मॉड-आर दाएं आर-मॉड्यूल की श्रेणी के लिए। (यदि R क्रमविनिमेय वलय है, तो दो श्रेणियों की पहचान की जा सकती है।) एक निश्चित बाएँ R-मॉड्यूल B के लिए, मान लीजिए मॉड-आर में ए के लिए। यह मॉड-आर से एबेलियन समूह एबी की श्रेणी के लिए एक सही सटीक फ़ंक्टर है, और इसलिए इसने फ़ंक्टर्स को छोड़ दिया है . टोर समूह एबेलियन समूह हैं जिनके द्वारा परिभाषित किया गया है
वैकल्पिक रूप से, ए को फिक्स करके और सही सटीक फ़ैक्टर जी (बी) = ए ⊗ के बाएं व्युत्पन्न फ़ैक्टरों को ले कर टोर को परिभाषित किया जा सकता हैR बी। यानी, टेंसर ए बी के प्रोजेक्टिव रेजोल्यूशन के साथ और होमोलॉजी लें। कार्टन और ईलेनबर्ग ने दिखाया कि ये निर्माण प्रक्षेपी संकल्प की पसंद से स्वतंत्र हैं, और दोनों निर्माण समान टोर समूह उत्पन्न करते हैं।[3] इसके अलावा, एक निश्चित रिंग आर के लिए, टोर प्रत्येक चर (आर-मॉड्यूल से एबेलियन समूहों तक) में एक मज़ेदार है।
एक कम्यूटेटिव रिंग आर और आर-मॉड्यूल ए और बी, टोर के लिएR
i(ए, बी) एक आर-मॉड्यूल है (उस ए ⊗ का उपयोग करकेR बी इस मामले में एक आर-मॉड्यूल है)। एक गैर-कम्यूटेटिव रिंग R, Tor के लिएR
i(ए, बी) सामान्य तौर पर केवल एक एबेलियन समूह है। यदि R एक वलय S पर एक बीजगणित है (जिसका विशेष रूप से अर्थ है कि S क्रमविनिमेय है), तो TorR
i(ए, बी) कम से कम एक एस-मॉड्यूल है।
गुण
यहाँ कुछ बुनियादी गुण और टोर समूहों की संगणनाएँ दी गई हैं।[4]
- तोरR
0(ए, बी) ≅ ए ⊗R बी किसी भी सही आर-मॉड्यूल ए और बाएं आर-मॉड्यूल बी के लिए। - तोरR
i(ए, बी) = 0 सभी i > 0 के लिए यदि या तो ए या बी आर-मॉड्यूल के रूप में फ्लैट मॉड्यूल (उदाहरण के लिए, मुफ्त मॉड्यूल) है। वास्तव में, ए या बी के फ्लैट रिज़ॉल्यूशन का उपयोग करके टोर की गणना की जा सकती है; यह प्रक्षेपी (या मुक्त) संकल्प से अधिक सामान्य है।[5] - पिछले कथन के विपरीत हैं:
- अगर तोरR
1(ए, बी) = 0 सभी बी के लिए, फिर ए फ्लैट है (और इसलिए टोरR
i(ए, बी) = 0 सभी के लिए i> 0)। - अगर तोरR
1(ए, बी) = 0 सभी ए के लिए, फिर बी फ्लैट है (और इसलिए टोरR
i(ए, बी) = 0 सभी के लिए i> 0)।
- अगर तोरR
- व्युत्पन्न फ़ैक्टरों के सामान्य गुणों के अनुसार, सही आर-मॉड्यूल का हर छोटा सटीक अनुक्रम 0 → K → L → M → 0 फॉर्म का एक लंबा सटीक अनुक्रम उत्पन्न करता है[6] किसी भी बाएं आर-मॉड्यूल बी के लिए। समान सटीक अनुक्रम दूसरे चर के संबंध में टोर के लिए भी है।
- समरूपता: क्रमविनिमेय वलय R के लिए, एक प्राकृतिक तुल्याकारिता Tor हैR
i(ए, बी) ≅ टोरR
i(बी ० ए)।[7] (आर कम्यूटेटिव के लिए, बाएं और दाएं आर-मॉड्यूल के बीच अंतर करने की कोई आवश्यकता नहीं है।) - यदि R एक क्रमविनिमेय वलय है और u in R एक शून्य विभाजक नहीं है, तो किसी भी R-मॉड्यूल B के लिए, कहाँबी का यू-टॉर्शन उपसमूह है। यह टोर नाम की व्याख्या है। R को अंगूठी मान लेना पूर्णांकों की, इस गणना का उपयोग गणना करने के लिए किया जा सकता है किसी भी अंतिम रूप से उत्पन्न एबेलियन समूह ए के लिए।
- पिछले उदाहरण को सामान्य करते हुए, जटिल शर्ट का उपयोग करके, किसी भी नियमित अनुक्रम द्वारा एक कम्यूटेटिव रिंग के भागफल को शामिल करने वाले टोर समूहों की गणना कर सकते हैं।[8] उदाहरण के लिए, यदि R बहुपद वलय k[x1, ..., एक्सn] एक फ़ील्ड के ऊपर, फिर टोर में एन जेनरेटर पर के पर बाहरी बीजगणित है1.
- सभी के लिए i ≥ 2। कारण: प्रत्येक एबेलियन समूह ए में लंबाई 1 का एक मुक्त संकल्प है, क्योंकि एक मुक्त एबेलियन समूह का प्रत्येक उपसमूह मुक्त एबेलियन है।
- किसी भी रिंग आर के लिए, टोर प्रत्येक चर में मॉड्यूल (संभवतः अनंत) और फ़िल्टर किए गए कोलिमिट्स के प्रत्यक्ष योग को संरक्षित करता है।[9] उदाहरण के लिए, पहले चर में, यह कहता है कि
- सपाट आधार परिवर्तन: क्रमविनिमेय फ्लैट आर-बीजगणित टी, आर-मॉड्यूल ए और बी, और एक पूर्णांक i के लिए,[10] यह इस प्रकार है कि टो रिंग के स्थानीयकरण के साथ संचार करता है। अर्थात्, R में गुणनात्मक रूप से बंद समुच्चय S के लिए,
- एक क्रमविनिमेय वलय R और क्रमविनिमेय R-बीजगणित A और B, Tor के लिएR
*(ए, बी) में आर के ऊपर वर्गीकृत-कम्यूटेटिव बीजगणित की संरचना है। इसके अलावा, टोर बीजगणित में विषम डिग्री के तत्वों का वर्ग शून्य है, और सकारात्मक डिग्री के तत्वों पर विभाजित शक्ति संचालन हैं।[11]
महत्वपूर्ण विशेष मामले
- समूह समरूपता द्वारा परिभाषित किया गया है जहाँ G एक समूह है, M पूर्णांकों पर G का एक समूह प्रतिनिधित्व है, और G का समूह की अंगूठी है।
- फील्ड ए पर बीजगणित के लिए फील्ड के ऊपर ए और ए-बिमॉड्यूल एम, होशचाइल्ड होमोलॉजी द्वारा परिभाषित किया गया है
- झूठ बीजगणित समरूपता द्वारा परिभाषित किया गया है , कहाँ क्रमविनिमेय वलय R पर एक झूठा बीजगणित है, M एक है -मॉड्यूल, और सार्वभौमिक लिफाफा बीजगणित है।
- क्षेत्र k पर समाकारिता के साथ क्रमविनिमेय वलय R के लिए, k के ऊपर एक ग्रेडेड-कम्यूटेटिव हॉफ बीजगणित है।[12] (यदि R अवशेष क्षेत्र k के साथ एक नोथेरियन स्थानीय वलय है, तो दोहरी हॉफ बीजगणित to Ext functor#महत्वपूर्ण विशेष मामले हैं*
R(के, के).) एक बीजगणित के रूप में, ग्रेडेड वेक्टर स्पेस π पर फ्री ग्रेडेड-कम्यूटेटिव डिवाइडेड पावर बीजगणित है*(आर)।[13] जब k में शून्य क्षेत्र की विशेषता होती है, π*(आर) की पहचान आंद्रे-क्विलेन होमोलॉजी डी से की जा सकती है*(के / आर, के)।[14]
यह भी देखें
- फ्लैट आकारिकी
- सेरे का प्रतिच्छेदन सूत्र
- व्युत्पन्न टेंसर उत्पाद
- इलेनबर्ग-मूर वर्णक्रमीय अनुक्रम
टिप्पणियाँ
- ↑ Weibel (1999).
- ↑ Cartan & Eilenberg (1956), section VI.1.
- ↑ Weibel (1994), section 2.4 and Theorem 2.7.2.
- ↑ Weibel (1994), Chapters 2 and 3.
- ↑ Weibel (1994), Lemma 3.2.8.
- ↑ Weibel (1994), Definition 2.1.1.
- ↑ Weibel (1994), Remark in section 3.1.
- ↑ Weibel (1994), section 4.5.
- ↑ Weibel (1994), Corollary 2.6.17.
- ↑ Weibel (1994), Corollary 3.2.10.
- ↑ Avramov & Halperin (1986), section 2.16; Stacks Project, Tag 09PQ.
- ↑ Avramov & Halperin (1986), section 4.7.
- ↑ Gulliksen & Levin (1969), Theorem 2.3.5; Sjödin (1980), Theorem 1.
- ↑ Quillen (1970), section 7.
संदर्भ
- Avramov, Luchezar; Halperin, Stephen (1986), "Through the looking glass: a dictionary between rational homotopy theory and local algebra", in J.-E. Roos (ed.), Algebra, algebraic topology, and their interactions (Stockholm, 1983), Lecture Notes in Mathematics, vol. 1183, Springer Nature, pp. 1–27, doi:10.1007/BFb0075446, ISBN 978-3-540-16453-1, MR 0846435
- Cartan, Henri; Eilenberg, Samuel (1999) [1956], Homological algebra, Princeton: Princeton University Press, ISBN 0-691-04991-2, MR 0077480
- Čech, Eduard (1935), "Les groupes de Betti d'un complexe infini" (PDF), Fundamenta Mathematicae, 25: 33–44, doi:10.4064/fm-25-1-33-44, JFM 61.0609.02
- Gulliksen, Tor; Levin, Gerson (1969), Homology of local rings, Queen's Papers in Pure and Applied Mathematics, vol. 20, Queen's University, MR 0262227
- Quillen, Daniel (1970), "On the (co-)homology of commutative rings", Applications of categorical algebra, Proc. Symp. Pure Mat., vol. 17, American Mathematical Society, pp. 65–87, MR 0257068
- Sjödin, Gunnar (1980), "Hopf algebras and derivations", Journal of Algebra, 64: 218–229, doi:10.1016/0021-8693(80)90143-X, MR 0575792
- Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.
- Weibel, Charles (1999), "History of homological algebra", History of topology (PDF), Amsterdam: North-Holland, pp. 797–836, MR 1721123
बाहरी संबंध
- The Stacks Project Authors, The Stacks Project