टोर फ़ैक्टर्: Difference between revisions

From Vigyanwiki
m (Abhishek moved page टोर काम करता है to टोर फ़ैक्टर् without leaving a redirect)
No edit summary
Line 1: Line 1:
{{Short description|Construction in homological algebra}}
{{Short description|Construction in homological algebra}}
गणित में, टोर फ़ैक्टर्स एक [[अंगूठी (गणित)]] पर [[मॉड्यूल के टेंसर उत्पाद]] के व्युत्पन्न फ़ैक्टर हैं। [[एक्सट ऑपरेटर]] के साथ, टोर होमोलॉजिकल बीजगणित की केंद्रीय अवधारणाओं में से एक है, जिसमें [[बीजगणितीय टोपोलॉजी]] के विचारों का उपयोग बीजगणितीय संरचनाओं के आक्रमणकारियों के निर्माण के लिए किया जाता है। ग्रुप कोहोलॉजी#ग्रुप होमोलॉजी, ले बीजगणित होमोलॉजी, और [[होशचाइल्ड समरूपता]] सभी को टोर के संदर्भ में परिभाषित किया जा सकता है। यह नाम पहले टोर समूह टोर के बीच संबंध से आता है<sub>1</sub> और [[एबेलियन समूह]] का [[मरोड़ उपसमूह]]
गणित में, टोर फ़ैक्टर्स [[अंगूठी (गणित)|वलय (गणित)]] पर [[मॉड्यूल के टेंसर उत्पाद]] के व्युत्पन्न फ़ैक्टर हैं। [[एक्सट ऑपरेटर|्सट ऑपरेटर]] के साथ, टोर होमोलॉजिकल बीजगणित की केंद्रीय अवधारणाओं में से है, जिसमें [[बीजगणितीय टोपोलॉजी]] के विचारों का उपयोग बीजगणितीय संरचनाओं के आक्रमणकारियों के निर्माण के लिए किया जाता है। समूहों की समरूपता, बीजगणित और [[होशचाइल्ड समरूपता|साहचर्य बीजगणित]] सभी को टोर के संदर्भ में परिभाषित किया जा सकता है। यह नाम पूर्व टोर समूह टोर और [[एबेलियन समूह]] के [[मरोड़ उपसमूह|टोरसन उपसमूह]] के मध्य संबंध से आता है।


एबेलियन समूहों के विशेष मामले में, टोर को एडुआर्ड सीच (1935) द्वारा पेश किया गया था और 1950 के आसपास [[सैमुअल एलेनबर्ग]] द्वारा नामित किया गया था।<ref>Weibel (1999).</ref> यह पहली बार टोपोलॉजी में कुनेथ प्रमेय और [[सार्वभौमिक गुणांक प्रमेय]] पर लागू किया गया था। किसी भी अंगूठी पर मॉड्यूल के लिए, टोर को [[ हेनरी कर्तन ]] और ईलेनबर्ग द्वारा उनकी 1956 की पुस्तक होमोलॉजिकल बीजगणित में परिभाषित किया गया था।<ref>Cartan & Eilenberg (1956), section VI.1.</ref>
एबेलियन समूहों के विशेष स्तिथियों  में, टोर को एडुआर्ड सीच (1935) द्वारा प्रस्तुत किया गया था और 1950 के निकट [[सैमुअल एलेनबर्ग]] द्वारा नामित किया गया था।<ref>Weibel (1999).</ref> यह प्रथम बार टोपोलॉजी में कुनेथ प्रमेय और [[सार्वभौमिक गुणांक प्रमेय]] पर प्रारम्भ किया गया था। किसी भी वलय पर मॉड्यूल के लिए, टोर को [[ हेनरी कर्तन ]] और ईलेनबर्ग द्वारा उनकी 1956 की पुस्तक होमोलॉजिकल बीजगणित में परिभाषित किया गया था।<ref>Cartan & Eilenberg (1956), section VI.1.</ref>




== परिभाषा ==
== परिभाषा ==
माना R एक वलय (गणित) है। मॉड्यूल (गणित) के [[श्रेणी सिद्धांत]] के लिए आर-मॉड लिखें | बाएं आर-मॉड्यूल और मॉड-आर दाएं आर-मॉड्यूल की श्रेणी के लिए। (यदि R क्रमविनिमेय वलय है, तो दो श्रेणियों की पहचान की जा सकती है।) एक निश्चित बाएँ R-मॉड्यूल B के लिए, मान लीजिए <math>T(A) = A\otimes_R B</math> मॉड-आर में के लिए। यह मॉड-आर से एबेलियन समूह एबी की श्रेणी के लिए एक सही सटीक फ़ंक्टर है, और इसलिए इसने फ़ंक्टर्स को छोड़ दिया है <math>L_i T</math>. टोर समूह एबेलियन समूह हैं जिनके द्वारा परिभाषित किया गया है
माना R वलय (गणित) है। बाएं ''R''- मॉड्यूल की [[श्रेणी सिद्धांत|श्रेणी]] के लिए ''R''-मॉड और दाएं ''R''- मॉड्यूल की श्रेणी के लिए मॉड -''R'' लिखें | (यदि R क्रमविनिमेय है, तो दो श्रेणियों की पहचान की जा सकती है।) निश्चित बाएँ R-मॉड्यूल B के लिए, मान लीजिए <math>T(A) = A\otimes_R B</math> मॉड- ''R'' में ''A'' के लिए। यह मॉड-''R'' से एबेलियन समूह Ab की श्रेणी के लिए फ़ंक्टर है, और इसलिए इसने फ़ंक्टर्स को छोड़ दिया है <math>L_i T</math>. टोर समूह एबेलियन समूह हैं जिनके द्वारा परिभाषित किया गया है
<math display="block">\operatorname{Tor}_i^R(A,B) = (L_iT)(A),</math>
<math display="block">\operatorname{Tor}_i^R(A,B) = (L_iT)(A),</math>
एक [[पूर्णांक]] i के लिए परिभाषा के अनुसार, इसका अर्थ है: कोई भी प्रोजेक्टिव मॉड्यूल # प्रोजेक्टिव रेजोल्यूशन लें
[[पूर्णांक]] i के लिए परिभाषा के अनुसार, इसका अर्थ है: कोई अनुमानित संकल्प लें
<math display="block">\cdots\to P_2 \to P_1 \to P_0 \to A\to 0,</math>
<math display="block">\cdots\to P_2 \to P_1 \to P_0 \to A\to 0,</math>
और A को हटा दें, और [[चेन कॉम्प्लेक्स]] बनाएं:
और A को निषेध दें, और [[चेन कॉम्प्लेक्स]] बनाएं:
<math display="block">\cdots \to P_2\otimes_R B \to P_1\otimes_R B \to P_0\otimes_R B \to 0</math>
<math display="block">\cdots \to P_2\otimes_R B \to P_1\otimes_R B \to P_0\otimes_R B \to 0</math>
प्रत्येक पूर्णांक i के लिए, group <math>\operatorname{Tor}_i^R(A,B)</math> स्थिति i पर इस कॉम्प्लेक्स का चेन कॉम्प्लेक्स है। यह i ऋणात्मक के लिए शून्य है। इसके अतिरिक्त, <math>\operatorname{Tor}_0^R(A,B)</math> मानचित्र का [[cokernel]] है <math>P_1\otimes_R B \to P_0\otimes_R B</math>, जो कि [[ समरूप ]] है <math>A \otimes_R B</math>.
प्रत्येक पूर्णांक i के लिए, समूह <math>\operatorname{Tor}_i^R(A,B)</math> स्थिति i पर इस कॉम्प्लेक्स का चेन कॉम्प्लेक्स है। यह i ऋणात्मक के लिए शून्य है। इसके अतिरिक्त, <math>\operatorname{Tor}_0^R(A,B)</math> मानचित्र का [[cokernel|कोकर्नेल]] है <math>P_1\otimes_R B \to P_0\otimes_R B</math>, जो[[ समरूप | आइसोमोर्फिक]] <math>A \otimes_R B</math> है।


वैकल्पिक रूप से, को फिक्स करके और सही सटीक फ़ैक्टर जी (बी) = ⊗ के बाएं व्युत्पन्न फ़ैक्टरों को ले कर टोर को परिभाषित किया जा सकता है<sub>''R''</sub> बी। यानी, टेंसर ए बी के प्रोजेक्टिव रेजोल्यूशन के साथ और होमोलॉजी लें। कार्टन और ईलेनबर्ग ने दिखाया कि ये निर्माण प्रक्षेपी संकल्प की पसंद से स्वतंत्र हैं, और दोनों निर्माण समान टोर समूह उत्पन्न करते हैं।<ref>Weibel (1994), section 2.4 and Theorem 2.7.2.</ref> इसके अलावा, एक निश्चित रिंग आर के लिए, टोर प्रत्येक चर (आर-मॉड्यूल से एबेलियन समूहों तक) में एक मज़ेदार है।
वैकल्पिक रूप से, ''A'' को स्थिर करके और फ़ैक्टर ''G''(''B'') =''A'' <sub>''R''</sub> ''B'' के बाएं व्युत्पन्न फ़ैक्टरों को ले कर टोर को परिभाषित किया जा सकता है। अर्थात , ''B'' के प्रक्षेपी संकल्प के साथ टेंसर  ''A'' और होमोलॉजी लें। कार्टन और ईलेनबर्ग ने दिखाया कि ये निर्माण प्रक्षेपी संकल्प की रुचि से स्वतंत्र हैं, और दोनों निर्माण समान टोर समूह उत्पन्न करते हैं।<ref>Weibel (1994), section 2.4 and Theorem 2.7.2.</ref> इसके अतिरिक्त, निश्चित वलय ''R'' के लिए, टोर प्रत्येक चर ( ''R''-मॉड्यूल से एबेलियन समूहों तक) में है।


एक कम्यूटेटिव रिंग आर और आर-मॉड्यूल ए और बी, टोर के लिए{{supsub|''R''|''i''}}(, बी) एक आर-मॉड्यूल है (उस ए का उपयोग करके<sub>''R''</sub> बी इस मामले में एक आर-मॉड्यूल है)। एक गैर-कम्यूटेटिव रिंग R, Tor के लिए{{supsub|''R''|''i''}}(, बी) सामान्य तौर पर केवल एक एबेलियन समूह है। यदि R एक वलय S पर एक बीजगणित है (जिसका विशेष रूप से अर्थ है कि S क्रमविनिमेय है), तो Tor{{supsub|''R''|''i''}}(, बी) कम से कम एक एस-मॉड्यूल है।
कम्यूटेटिव वलय R और R-मॉड्यूल Aऔर B, टोर {{supsub|''R''|''i''}} के लिए (''A'', ''B'') ''R''-मॉड्यूल है (इस स्तिथियों  में ''A'' ⊗<sub>''R''</sub> ''B  R''-मॉड्यूल है)। गैर-कम्यूटेटिव वलय R, Tor{{supsub|''R''|''i''}} के लिए (A, B) सामान्यतः रूप से  एकमात्र एबेलियन समूह है। यदि R वलय S पर बीजगणित है (जिसका विशेष रूप से अर्थ है कि S क्रमविनिमेय है), तो Tor{{supsub|''R''|''i''}}(A, B) ''S''-मॉड्यूल है।


== गुण ==
== गुण ==
यहाँ कुछ बुनियादी गुण और टोर समूहों की संगणनाएँ दी गई हैं।<ref>Weibel (1994), Chapters 2 and 3.</ref>
यहाँ टोर समूहों के कुछ बुनियादी गुण और संगणनाएँ दी गई हैं।<ref>Weibel (1994), Chapters 2 and 3.</ref>
*तोर{{supsub|''R''|0}}(, बी) ≅ ⊗<sub>''R''</sub> बी किसी भी सही आर-मॉड्यूल और बाएं आर-मॉड्यूल बी के लिए।
*तोर{{supsub|''R''|0}}(A, B) ≅ ''A'' ⊗<sub>''R''</sub> ''B'' किसी भी सही ''R''-मॉड्यूल ''A'' और बाएं ''R''-मॉड्यूल ''B'' के लिए है।
*तोर{{su|b=''i''|p=''R''}}(, बी) = 0 सभी i > 0 के लिए यदि या तो या बी आर-मॉड्यूल के रूप में [[फ्लैट मॉड्यूल]] (उदाहरण के लिए, [[मुफ्त मॉड्यूल]]) है। वास्तव में, या बी के फ्लैट रिज़ॉल्यूशन का उपयोग करके टोर की गणना की जा सकती है; यह प्रक्षेपी (या मुक्त) संकल्प से अधिक सामान्य है।<ref>Weibel (1994), Lemma 3.2.8.</ref>
*तोर{{su|b=''i''|p=''R''}}(A, B) = 0 सभी i > 0 के लिए यदि या तो ''A'' या ''B'' [[फ्लैट मॉड्यूल|समतल है]] (उदाहरण के लिए, [[मुफ्त मॉड्यूल]]) ''R''-[[फ्लैट मॉड्यूल|मॉड्यूल]] के रूप में है। वास्तव में, ''A'' या ''B''  के समतल रिज़ॉल्यूशन का उपयोग करके टोर की गणना की जा सकती है; यह प्रक्षेपी संकल्प से अधिक सामान्य है।<ref>Weibel (1994), Lemma 3.2.8.</ref>
* पिछले कथन के विपरीत हैं:
* पिछले कथन के विपरीत हैं:
** अगर तोर{{su|b=1|p=''R''}}(, बी) = 0 सभी बी के लिए, फिर ए फ्लैट है (और इसलिए टोर{{su|b=''i''|p=''R''}}(, बी) = 0 सभी के लिए i> 0)।
** यदि  तोर{{su|b=1|p=''R''}}(''A'', ''B'') = 0 सभी ''B'' के लिए, ''A'' समतल है (और इसलिए टोर{{su|b=''i''|p=''R''}}(''A'', ''B'') = 0 सभी के लिए i> 0)।
** अगर तोर{{su|b=1|p=''R''}}(, बी) = 0 सभी के लिए, फिर बी फ्लैट है (और इसलिए टोर{{su|b=''i''|p=''R''}}(, बी) = 0 सभी के लिए i> 0)।
** यदि  तोर{{su|b=1|p=''R''}}(''A'', ''B'') = 0 सभी ''A'' के लिए, ''B'' समतल है (और इसलिए टोर{{su|b=''i''|p=''R''}}(''A'', ''B'') = 0 सभी के लिए i> 0)।
*व्युत्पन्न फ़ैक्टरों के सामान्य गुणों के अनुसार, सही आर-मॉड्यूल का हर छोटा सटीक अनुक्रम 0 → K → L → M → 0 फॉर्म का एक लंबा सटीक अनुक्रम उत्पन्न करता है<ref>Weibel (1994), Definition 2.1.1.</ref> <math display="block">\cdots \to \operatorname{Tor}_2^R(M,B) \to \operatorname{Tor}_1^R(K,B) \to \operatorname{Tor}_1^R(L,B) \to \operatorname{Tor}_1^R (M,B) \to K\otimes_R B\to L\otimes_R B\to M\otimes_R B\to 0,</math> किसी भी बाएं आर-मॉड्यूल बी के लिए। समान सटीक अनुक्रम दूसरे चर के संबंध में टोर के लिए भी है।
*व्युत्पन्न फ़ैक्टरों के सामान्य गुणों के अनुसार, सही ''R''-मॉड्यूल का अनुक्रम 0 → K → L → M → 0 फॉर्म का अनुक्रम उत्पन्न करता है<ref>Weibel (1994), Definition 2.1.1.</ref> <math display="block">\cdots \to \operatorname{Tor}_2^R(M,B) \to \operatorname{Tor}_1^R(K,B) \to \operatorname{Tor}_1^R(L,B) \to \operatorname{Tor}_1^R (M,B) \to K\otimes_R B\to L\otimes_R B\to M\otimes_R B\to 0,</math> किसी भी बाएं ''R''-मॉड्यूल ''B'' के लिए है। समान त्रुटिहीन अनुक्रम दूसरे चर के संबंध में टोर के लिए भी है।
*समरूपता: क्रमविनिमेय वलय R के लिए, एक प्राकृतिक तुल्याकारिता Tor है{{su|b=''i''|p=''R''}}(, बी) ≅ टोर{{su|b=''i''|p=''R''}}(बी ० ए)<ref>Weibel (1994), Remark in section 3.1.</ref> (आर कम्यूटेटिव के लिए, बाएं और दाएं आर-मॉड्यूल के बीच अंतर करने की कोई आवश्यकता नहीं है।)
*समरूपता: क्रम विनिमेय वलय R के लिए, प्राकृतिक समरूपता Tor{{su|b=''i''|p=''R''}} (''A'', ''B'') ≅ Tor''Ri'' (''B'', ''A'') है। (''R'' कम्यूटेटिव के लिए, बाएं और दाएं ''R''-मॉड्यूल के मध्य अंतर करने की कोई आवश्यकता नहीं है।)<ref>Weibel (1994), Remark in section 3.1.</ref>
*यदि R एक क्रमविनिमेय वलय है और u in R एक शून्य विभाजक नहीं है, तो किसी भी R-मॉड्यूल B के लिए, <math display="block">\operatorname{Tor}^R_i(R/(u),B)\cong\begin{cases} B/uB & i=0\\ B[u] & i=1\\ 0 &\text{otherwise}\end{cases}</math> कहाँ <math display="block">B[u] = \{x \in B : ux =0 \}</math> बी का यू-टॉर्शन उपसमूह है। यह टोर नाम की व्याख्या है। R को अंगूठी मान लेना <math>\Z</math> पूर्णांकों की, इस गणना का उपयोग गणना करने के लिए किया जा सकता है <math>\operatorname{Tor}^{\Z}_1(A,B)</math> किसी भी [[अंतिम रूप से उत्पन्न एबेलियन समूह]] के लिए।
*यदि R क्रम विनिमेय वलय है और u में R शून्य विभाजक नहीं है, तो किसी भी R-मॉड्यूल B के लिए, <math display="block">\operatorname{Tor}^R_i(R/(u),B)\cong\begin{cases} B/uB & i=0\\ B[u] & i=1\\ 0 &\text{otherwise}\end{cases}</math> कहाँ <math display="block">B[u] = \{x \in B : ux =0 \}</math> ''B'' का ''u''-टॉर्शन उपसमूह है। यह टोर नाम की व्याख्या है। R को वलय मान लेना पूर्णांकों के <math>\Z</math> इस परिकलन का उपयोग परिकलन के लिए किया जा सकता है <math>\operatorname{Tor}^{\Z}_1(A,B)</math> किसी भी [[अंतिम रूप से उत्पन्न एबेलियन समूह]] ''A'' के लिए है।
* पिछले उदाहरण को सामान्य करते हुए, [[जटिल शर्ट]] का उपयोग करके, किसी भी [[नियमित अनुक्रम]] द्वारा एक कम्यूटेटिव रिंग के भागफल को शामिल करने वाले टोर समूहों की गणना कर सकते हैं।<ref>Weibel (1994), section 4.5.</ref> उदाहरण के लिए, यदि R बहुपद वलय k[x<sub>1</sub>, ..., एक्स<sub>''n''</sub>] एक फ़ील्ड के ऊपर, फिर <math>\operatorname{Tor}_*^R(k,k)</math> टोर में एन जेनरेटर पर के पर [[बाहरी बीजगणित]] है<sub>1</sub>.
* पिछले उदाहरण को सामान्य करते हुए, [[जटिल शर्ट]] का उपयोग करके, किसी भी [[नियमित अनुक्रम]] द्वारा कम्यूटेटिव वलय के भागफल को शामिल करने वाले टोर समूहों की गणना कर सकते हैं।<ref>Weibel (1994), section 4.5.</ref> उदाहरण के लिए, यदि R बहुपद वलय k[x<sub>1</sub>, ..., ्स<sub>''n''</sub>] फ़ील्ड के ऊपर, फिर <math>\operatorname{Tor}_*^R(k,k)</math> टोर में एन जेनरेटर पर के पर [[बाहरी बीजगणित]] है<sub>1</sub>.
* <math>\operatorname{Tor}^{\Z}_i(A,B)=0</math> सभी के लिए i ≥ 2। कारण: प्रत्येक एबेलियन समूह ए में लंबाई 1 का एक मुक्त संकल्प है, क्योंकि एक [[मुक्त एबेलियन समूह]] का प्रत्येक उपसमूह मुक्त एबेलियन है।
* <math>\operatorname{Tor}^{\Z}_i(A,B)=0</math> सभी के लिए i ≥ 2। कारण: प्रत्येक एबेलियन समूह ए में लंबाई 1 का मुक्त संकल्प है, क्योंकि [[मुक्त एबेलियन समूह]] का प्रत्येक उपसमूह मुक्त एबेलियन है।
*किसी भी रिंग आर के लिए, टोर प्रत्येक चर में मॉड्यूल (संभवतः अनंत) और फ़िल्टर किए गए कोलिमिट्स के प्रत्यक्ष योग को संरक्षित करता है।<ref>Weibel (1994), Corollary 2.6.17.</ref> उदाहरण के लिए, पहले चर में, यह कहता है कि <math display="block">\begin{align}
*किसी भी वलय आर के लिए, टोर प्रत्येक चर में मॉड्यूल (संभवतः अनंत) और फ़िल्टर किए गए कोलिमिट्स के प्रत्यक्ष योग को संरक्षित करता है।<ref>Weibel (1994), Corollary 2.6.17.</ref> उदाहरण के लिए, पूर्व चर में, यह कहता है कि <math display="block">\begin{align}
\operatorname{Tor}_i^R \left (\bigoplus_{\alpha} M_{\alpha}, N \right ) &\cong \bigoplus_{\alpha} \operatorname{Tor}_i^R(M_{\alpha},N) \\
\operatorname{Tor}_i^R \left (\bigoplus_{\alpha} M_{\alpha}, N \right ) &\cong \bigoplus_{\alpha} \operatorname{Tor}_i^R(M_{\alpha},N) \\
\operatorname{Tor}_i^R \left (\varinjlim_{\alpha} M_{\alpha}, N \right ) &\cong \varinjlim_{\alpha} \operatorname{Tor}_i^R(M_{\alpha},N)
\operatorname{Tor}_i^R \left (\varinjlim_{\alpha} M_{\alpha}, N \right ) &\cong \varinjlim_{\alpha} \operatorname{Tor}_i^R(M_{\alpha},N)
\end{align}</math>
\end{align}</math>
*सपाट आधार परिवर्तन: क्रमविनिमेय फ्लैट आर-बीजगणित टी, आर-मॉड्यूल ए और बी, और एक पूर्णांक i के लिए,<ref>Weibel (1994), Corollary 3.2.10.</ref> <math display="block">\mathrm{Tor}_i^R(A,B)\otimes_R T \cong \mathrm{Tor}_i^T(A\otimes_R T,B\otimes_R T).</math> यह इस प्रकार है कि टो रिंग के स्थानीयकरण के साथ संचार करता है। अर्थात्, R में गुणनात्मक रूप से बंद समुच्चय S के लिए, <math display="block">S^{-1} \operatorname{Tor}_i^R(A, B) \cong \operatorname{Tor}_i^{S^{-1} R} \left (S^{-1} A, S^{-1} B \right ).</math>
*सपाट आधार परिवर्तन: क्रमविनिमेय फ्लैट आर-बीजगणित टी, आर-मॉड्यूल ए और बी, और पूर्णांक i के लिए,<ref>Weibel (1994), Corollary 3.2.10.</ref> <math display="block">\mathrm{Tor}_i^R(A,B)\otimes_R T \cong \mathrm{Tor}_i^T(A\otimes_R T,B\otimes_R T).</math> यह इस प्रकार है कि टो वलय के स्थानीयकरण के साथ संचार करता है। अर्थात्, R में गुणनात्मक रूप से बंद समुच्चय S के लिए, <math display="block">S^{-1} \operatorname{Tor}_i^R(A, B) \cong \operatorname{Tor}_i^{S^{-1} R} \left (S^{-1} A, S^{-1} B \right ).</math>
*एक क्रमविनिमेय वलय R और क्रमविनिमेय R-बीजगणित A और B, Tor के लिए{{supsub|''R''|*}}(ए, बी) में आर के ऊपर [[ वर्गीकृत-कम्यूटेटिव ]] बीजगणित की संरचना है। इसके अलावा, टोर बीजगणित में विषम डिग्री के तत्वों का वर्ग शून्य है, और सकारात्मक डिग्री के तत्वों पर [[विभाजित शक्ति]] संचालन हैं।<ref>Avramov & Halperin (1986), section 2.16; {{Citation | title=Stacks Project, Tag 09PQ | url=http://stacks.math.columbia.edu/tag/09PQ}}.</ref>
*क्रमविनिमेय वलय R और क्रमविनिमेय R-बीजगणित A और B, Tor के लिए{{supsub|''R''|*}}(ए, बी) में आर के ऊपर [[ वर्गीकृत-कम्यूटेटिव ]] बीजगणित की संरचना है। इसके अलावा, टोर बीजगणित में विषम डिग्री के तत्वों का वर्ग शून्य है, और सकारात्मक डिग्री के तत्वों पर [[विभाजित शक्ति]] संचालन हैं।<ref>Avramov & Halperin (1986), section 2.16; {{Citation | title=Stacks Project, Tag 09PQ | url=http://stacks.math.columbia.edu/tag/09PQ}}.</ref>




== महत्वपूर्ण विशेष मामले ==
== महत्वपूर्ण विशेष स्तिथियों ==


*[[ समूह समरूपता ]] द्वारा परिभाषित किया गया है <math>H_*(G,M)=\operatorname{Tor}^{\Z[G]}_*(\Z, M),</math> जहाँ G एक समूह है, M पूर्णांकों पर G का एक [[समूह प्रतिनिधित्व]] है, और <math>\Z[G]</math> G का [[ समूह की अंगूठी ]] है।
*[[ समूह समरूपता ]] द्वारा परिभाषित किया गया है <math>H_*(G,M)=\operatorname{Tor}^{\Z[G]}_*(\Z, M),</math> जहाँ G समूह है, M पूर्णांकों पर G का [[समूह प्रतिनिधित्व]] है, और <math>\Z[G]</math> G का [[ समूह की अंगूठी | समूह की वलय]] है।
* फील्ड ए पर बीजगणित के लिए फील्ड के ऊपर ए और ए-बिमॉड्यूल एम, होशचाइल्ड होमोलॉजी द्वारा परिभाषित किया गया है <math display="block">HH_*(A,M)=\operatorname{Tor}_*^{A\otimes_k A^{\text{op}}}(A, M).</math>
* फील्ड ए पर बीजगणित के लिए फील्ड के ऊपर ए और ए-बिमॉड्यूल एम, होशचाइल्ड होमोलॉजी द्वारा परिभाषित किया गया है <math display="block">HH_*(A,M)=\operatorname{Tor}_*^{A\otimes_k A^{\text{op}}}(A, M).</math>
*झूठ बीजगणित समरूपता द्वारा परिभाषित किया गया है <math>H_*(\mathfrak g,M)=\operatorname{Tor}_*^{U\mathfrak g}(R,M)</math>, कहाँ <math>\mathfrak g</math> क्रमविनिमेय वलय R पर एक झूठा बीजगणित है, M एक है <math>\mathfrak g</math>-मॉड्यूल, और <math>U\mathfrak g</math> [[सार्वभौमिक लिफाफा बीजगणित]] है।
*झूठ बीजगणित समरूपता द्वारा परिभाषित किया गया है <math>H_*(\mathfrak g,M)=\operatorname{Tor}_*^{U\mathfrak g}(R,M)</math>, कहाँ <math>\mathfrak g</math> क्रमविनिमेय वलय R पर झूठा बीजगणित है, M है <math>\mathfrak g</math>-मॉड्यूल, और <math>U\mathfrak g</math> [[सार्वभौमिक लिफाफा बीजगणित]] है।
*क्षेत्र k पर समाकारिता के साथ क्रमविनिमेय वलय R के लिए, <math>\operatorname{Tor}_*^R(k,k)</math> k के ऊपर एक ग्रेडेड-कम्यूटेटिव [[हॉफ बीजगणित]] है।<ref>Avramov & Halperin (1986), section 4.7.</ref> (यदि R अवशेष क्षेत्र k के साथ एक नोथेरियन स्थानीय वलय है, तो दोहरी हॉफ बीजगणित to <math>\operatorname{Tor}_*^R(k,k)</math> Ext functor#महत्वपूर्ण विशेष मामले हैं{{supsub|*|''R''}}(के, के).) एक बीजगणित के रूप में, <math>\operatorname{Tor}_*^R(k,k)</math> ग्रेडेड वेक्टर स्पेस π पर फ्री ग्रेडेड-कम्यूटेटिव डिवाइडेड पावर बीजगणित है<sub>*</sub>(आर)।<ref>Gulliksen & Levin (1969), Theorem 2.3.5; Sjödin (1980), Theorem 1.</ref> जब k में शून्य क्षेत्र की विशेषता होती है, π<sub>*</sub>(आर) की पहचान आंद्रे-क्विलेन होमोलॉजी डी से की जा सकती है<sub>*</sub>(के / आर, के)।<ref>Quillen (1970), section 7.</ref>
*क्षेत्र k पर समाकारिता के साथ क्रमविनिमेय वलय R के लिए, <math>\operatorname{Tor}_*^R(k,k)</math> k के ऊपर ग्रेडेड-कम्यूटेटिव [[हॉफ बीजगणित]] है।<ref>Avramov & Halperin (1986), section 4.7.</ref> (यदि R अवशेष क्षेत्र k के साथ नोथेरियन स्थानीय वलय है, तो दोहरी हॉफ बीजगणित to <math>\operatorname{Tor}_*^R(k,k)</math> Ext functor#महत्वपूर्ण विशेष स्तिथियों  हैं{{supsub|*|''R''}}(के, के).) बीजगणित के रूप में, <math>\operatorname{Tor}_*^R(k,k)</math> ग्रेडेड वेक्टर स्पेस π पर फ्री ग्रेडेड-कम्यूटेटिव डिवाइडेड पावर बीजगणित है<sub>*</sub>(आर)।<ref>Gulliksen & Levin (1969), Theorem 2.3.5; Sjödin (1980), Theorem 1.</ref> जब k में शून्य क्षेत्र की विशेषता होती है, π<sub>*</sub>(आर) की पहचान आंद्रे-क्विलेन होमोलॉजी डी से की जा सकती है<sub>*</sub>(के / आर, के)।<ref>Quillen (1970), section 7.</ref>





Revision as of 11:27, 29 April 2023

गणित में, टोर फ़ैक्टर्स वलय (गणित) पर मॉड्यूल के टेंसर उत्पाद के व्युत्पन्न फ़ैक्टर हैं। ्सट ऑपरेटर के साथ, टोर होमोलॉजिकल बीजगणित की केंद्रीय अवधारणाओं में से है, जिसमें बीजगणितीय टोपोलॉजी के विचारों का उपयोग बीजगणितीय संरचनाओं के आक्रमणकारियों के निर्माण के लिए किया जाता है। समूहों की समरूपता, बीजगणित और साहचर्य बीजगणित सभी को टोर के संदर्भ में परिभाषित किया जा सकता है। यह नाम पूर्व टोर समूह टोर और एबेलियन समूह के टोरसन उपसमूह के मध्य संबंध से आता है।

एबेलियन समूहों के विशेष स्तिथियों में, टोर को एडुआर्ड सीच (1935) द्वारा प्रस्तुत किया गया था और 1950 के निकट सैमुअल एलेनबर्ग द्वारा नामित किया गया था।[1] यह प्रथम बार टोपोलॉजी में कुनेथ प्रमेय और सार्वभौमिक गुणांक प्रमेय पर प्रारम्भ किया गया था। किसी भी वलय पर मॉड्यूल के लिए, टोर को हेनरी कर्तन और ईलेनबर्ग द्वारा उनकी 1956 की पुस्तक होमोलॉजिकल बीजगणित में परिभाषित किया गया था।[2]


परिभाषा

माना R वलय (गणित) है। बाएं R- मॉड्यूल की श्रेणी के लिए R-मॉड और दाएं R- मॉड्यूल की श्रेणी के लिए मॉड -R लिखें | (यदि R क्रमविनिमेय है, तो दो श्रेणियों की पहचान की जा सकती है।) निश्चित बाएँ R-मॉड्यूल B के लिए, मान लीजिए मॉड- R में A के लिए। यह मॉड-R से एबेलियन समूह Ab की श्रेणी के लिए फ़ंक्टर है, और इसलिए इसने फ़ंक्टर्स को छोड़ दिया है . टोर समूह एबेलियन समूह हैं जिनके द्वारा परिभाषित किया गया है

पूर्णांक i के लिए परिभाषा के अनुसार, इसका अर्थ है: कोई अनुमानित संकल्प लें
और A को निषेध दें, और चेन कॉम्प्लेक्स बनाएं:
प्रत्येक पूर्णांक i के लिए, समूह स्थिति i पर इस कॉम्प्लेक्स का चेन कॉम्प्लेक्स है। यह i ऋणात्मक के लिए शून्य है। इसके अतिरिक्त, मानचित्र का कोकर्नेल है , जो आइसोमोर्फिक है।

वैकल्पिक रूप से, A को स्थिर करके और फ़ैक्टर G(B) =AR B के बाएं व्युत्पन्न फ़ैक्टरों को ले कर टोर को परिभाषित किया जा सकता है। अर्थात , B के प्रक्षेपी संकल्प के साथ टेंसर A और होमोलॉजी लें। कार्टन और ईलेनबर्ग ने दिखाया कि ये निर्माण प्रक्षेपी संकल्प की रुचि से स्वतंत्र हैं, और दोनों निर्माण समान टोर समूह उत्पन्न करते हैं।[3] इसके अतिरिक्त, निश्चित वलय R के लिए, टोर प्रत्येक चर ( R-मॉड्यूल से एबेलियन समूहों तक) में है।

कम्यूटेटिव वलय R और R-मॉड्यूल Aऔर B, टोर R
i
के लिए (A, B) R-मॉड्यूल है (इस स्तिथियों में AR B R-मॉड्यूल है)। गैर-कम्यूटेटिव वलय R, TorR
i
के लिए (A, B) सामान्यतः रूप से एकमात्र एबेलियन समूह है। यदि R वलय S पर बीजगणित है (जिसका विशेष रूप से अर्थ है कि S क्रमविनिमेय है), तो TorR
i
(A, B) S-मॉड्यूल है।

गुण

यहाँ टोर समूहों के कुछ बुनियादी गुण और संगणनाएँ दी गई हैं।[4]

  • तोरR
    0
    (A, B) ≅ AR B किसी भी सही R-मॉड्यूल A और बाएं R-मॉड्यूल B के लिए है।
  • तोरR
    i
    (A, B) = 0 सभी i > 0 के लिए यदि या तो A या B समतल है (उदाहरण के लिए, मुफ्त मॉड्यूल) R-मॉड्यूल के रूप में है। वास्तव में, A या B के समतल रिज़ॉल्यूशन का उपयोग करके टोर की गणना की जा सकती है; यह प्रक्षेपी संकल्प से अधिक सामान्य है।[5]
  • पिछले कथन के विपरीत हैं:
    • यदि तोरR
      1
      (A, B) = 0 सभी B के लिए, A समतल है (और इसलिए टोरR
      i
      (A, B) = 0 सभी के लिए i> 0)।
    • यदि तोरR
      1
      (A, B) = 0 सभी A के लिए, B समतल है (और इसलिए टोरR
      i
      (A, B) = 0 सभी के लिए i> 0)।
  • व्युत्पन्न फ़ैक्टरों के सामान्य गुणों के अनुसार, सही R-मॉड्यूल का अनुक्रम 0 → K → L → M → 0 फॉर्म का अनुक्रम उत्पन्न करता है[6]
    किसी भी बाएं R-मॉड्यूल B के लिए है। समान त्रुटिहीन अनुक्रम दूसरे चर के संबंध में टोर के लिए भी है।
  • समरूपता: क्रम विनिमेय वलय R के लिए, प्राकृतिक समरूपता TorR
    i
    (A, B) ≅ TorRi (B, A) है। (R कम्यूटेटिव के लिए, बाएं और दाएं R-मॉड्यूल के मध्य अंतर करने की कोई आवश्यकता नहीं है।)[7]
  • यदि R क्रम विनिमेय वलय है और u में R शून्य विभाजक नहीं है, तो किसी भी R-मॉड्यूल B के लिए,
    कहाँ
    B का u-टॉर्शन उपसमूह है। यह टोर नाम की व्याख्या है। R को वलय मान लेना पूर्णांकों के इस परिकलन का उपयोग परिकलन के लिए किया जा सकता है किसी भी अंतिम रूप से उत्पन्न एबेलियन समूह A के लिए है।
  • पिछले उदाहरण को सामान्य करते हुए, जटिल शर्ट का उपयोग करके, किसी भी नियमित अनुक्रम द्वारा कम्यूटेटिव वलय के भागफल को शामिल करने वाले टोर समूहों की गणना कर सकते हैं।[8] उदाहरण के लिए, यदि R बहुपद वलय k[x1, ..., ्सn] फ़ील्ड के ऊपर, फिर टोर में एन जेनरेटर पर के पर बाहरी बीजगणित है1.
  • सभी के लिए i ≥ 2। कारण: प्रत्येक एबेलियन समूह ए में लंबाई 1 का मुक्त संकल्प है, क्योंकि मुक्त एबेलियन समूह का प्रत्येक उपसमूह मुक्त एबेलियन है।
  • किसी भी वलय आर के लिए, टोर प्रत्येक चर में मॉड्यूल (संभवतः अनंत) और फ़िल्टर किए गए कोलिमिट्स के प्रत्यक्ष योग को संरक्षित करता है।[9] उदाहरण के लिए, पूर्व चर में, यह कहता है कि
  • सपाट आधार परिवर्तन: क्रमविनिमेय फ्लैट आर-बीजगणित टी, आर-मॉड्यूल ए और बी, और पूर्णांक i के लिए,[10]
    यह इस प्रकार है कि टो वलय के स्थानीयकरण के साथ संचार करता है। अर्थात्, R में गुणनात्मक रूप से बंद समुच्चय S के लिए,
  • क्रमविनिमेय वलय R और क्रमविनिमेय R-बीजगणित A और B, Tor के लिएR
    *
    (ए, बी) में आर के ऊपर वर्गीकृत-कम्यूटेटिव बीजगणित की संरचना है। इसके अलावा, टोर बीजगणित में विषम डिग्री के तत्वों का वर्ग शून्य है, और सकारात्मक डिग्री के तत्वों पर विभाजित शक्ति संचालन हैं।[11]


महत्वपूर्ण विशेष स्तिथियों

  • समूह समरूपता द्वारा परिभाषित किया गया है जहाँ G समूह है, M पूर्णांकों पर G का समूह प्रतिनिधित्व है, और G का समूह की वलय है।
  • फील्ड ए पर बीजगणित के लिए फील्ड के ऊपर ए और ए-बिमॉड्यूल एम, होशचाइल्ड होमोलॉजी द्वारा परिभाषित किया गया है
  • झूठ बीजगणित समरूपता द्वारा परिभाषित किया गया है , कहाँ क्रमविनिमेय वलय R पर झूठा बीजगणित है, M है -मॉड्यूल, और सार्वभौमिक लिफाफा बीजगणित है।
  • क्षेत्र k पर समाकारिता के साथ क्रमविनिमेय वलय R के लिए, k के ऊपर ग्रेडेड-कम्यूटेटिव हॉफ बीजगणित है।[12] (यदि R अवशेष क्षेत्र k के साथ नोथेरियन स्थानीय वलय है, तो दोहरी हॉफ बीजगणित to Ext functor#महत्वपूर्ण विशेष स्तिथियों हैं*
    R
    (के, के).) बीजगणित के रूप में, ग्रेडेड वेक्टर स्पेस π पर फ्री ग्रेडेड-कम्यूटेटिव डिवाइडेड पावर बीजगणित है*(आर)।[13] जब k में शून्य क्षेत्र की विशेषता होती है, π*(आर) की पहचान आंद्रे-क्विलेन होमोलॉजी डी से की जा सकती है*(के / आर, के)।[14]


यह भी देखें

टिप्पणियाँ

  1. Weibel (1999).
  2. Cartan & Eilenberg (1956), section VI.1.
  3. Weibel (1994), section 2.4 and Theorem 2.7.2.
  4. Weibel (1994), Chapters 2 and 3.
  5. Weibel (1994), Lemma 3.2.8.
  6. Weibel (1994), Definition 2.1.1.
  7. Weibel (1994), Remark in section 3.1.
  8. Weibel (1994), section 4.5.
  9. Weibel (1994), Corollary 2.6.17.
  10. Weibel (1994), Corollary 3.2.10.
  11. Avramov & Halperin (1986), section 2.16; Stacks Project, Tag 09PQ.
  12. Avramov & Halperin (1986), section 4.7.
  13. Gulliksen & Levin (1969), Theorem 2.3.5; Sjödin (1980), Theorem 1.
  14. Quillen (1970), section 7.


संदर्भ


बाहरी संबंध