टोर फ़ैक्टर्: Difference between revisions

From Vigyanwiki
Line 75: Line 75:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/04/2023]]
[[Category:Created On 25/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 08:08, 16 May 2023

गणित में, टोर फ़ैक्टर्स वलय (गणित) पर मॉड्यूल के टेंसर उत्पाद के व्युत्पन्न फ़ैक्टर हैं। एक्सट ऑपरेटर के साथ, टोर होमोलॉजिकल बीजगणित की केंद्रीय अवधारणाओं में से है, जिसमें बीजगणितीय टोपोलॉजी के विचारों का उपयोग बीजगणितीय संरचनाओं के आक्रमणकारियों के निर्माण के लिए किया जाता है। समूहों की समरूपता, बीजगणित और साहचर्य बीजगणित सभी को टोर के संदर्भ में परिभाषित किया जा सकता है। यह नाम पूर्व टोर समूह और एबेलियन समूह के टोरसन उपसमूह के मध्य संबंध से आता है।

एबेलियन समूहों के विशेष स्तिथियों में, टोर को एडुआर्ड सीच (1935) द्वारा प्रस्तुत किया गया था और 1950 के निकट सैमुअल एलेनबर्ग द्वारा नामित किया गया था।[1] यह प्रथम बार टोपोलॉजी में कुनेथ प्रमेय और सार्वभौमिक गुणांक प्रमेय पर प्रारम्भ किया गया था। किसी भी वलय पर मॉड्यूल के लिए, टोर को हेनरी कर्तन और ईलेनबर्ग द्वारा उनकी 1956 की पुस्तक होमोलॉजिकल बीजगणित में परिभाषित किया गया था।[2]


परिभाषा

माना R वलय (गणित) है। बाएं R- मॉड्यूल की श्रेणी के लिए R-मॉड और दाएं R- मॉड्यूल की श्रेणी के लिए मॉड -R लिखें | (यदि R क्रमविनिमेय है, तो दो श्रेणियों की पहचान की जा सकती है।) निश्चित बाएँ R-मॉड्यूल B के लिए, मान लीजिए मॉड- R में A के लिए। यह मॉड-R से एबेलियन समूह Ab की श्रेणी के लिए फ़ंक्टर है, और इसलिए इसने फ़ंक्टर्स को छोड़ दिया है . टोर समूह एबेलियन समूह हैं जिनके द्वारा परिभाषित किया गया है

पूर्णांक i के लिए परिभाषा के अनुसार, इसका अर्थ है:
और A को निषेध दें, और चेन कॉम्प्लेक्स बनाएं:
प्रत्येक पूर्णांक i के लिए, समूह स्थिति i पर इस कॉम्प्लेक्स की समरूपता है। यह i ऋणात्मक के लिए शून्य है। इसके अतिरिक्त, मानचित्र का कोकर्नेल है , जो आइसोमोर्फिक है।

वैकल्पिक रूप से, A को स्थिर करके और फ़ैक्टर G(B) =AR B के बाएं व्युत्पन्न फ़ैक्टरों को ले कर टोर को परिभाषित किया जा सकता है। अर्थात , B के प्रक्षेपी संकल्प के साथ टेंसर A और होमोलॉजी लें। कार्टन और ईलेनबर्ग ने दिखाया कि ये निर्माण प्रक्षेपी संकल्प की रुचि से स्वतंत्र हैं, और दोनों निर्माण समान टोर समूह उत्पन्न करते हैं।[3] इसके अतिरिक्त, निश्चित वलय R के लिए, टोर प्रत्येक चर ( R-मॉड्यूल से एबेलियन समूहों तक) में है।

कम्यूटेटिव वलय R और R-मॉड्यूल Aऔर B, टोर R
i
के लिए (A, B) R-मॉड्यूल है (इस स्तिथियों में AR B R-मॉड्यूल है)। गैर-कम्यूटेटिव वलय R, टोरR
i
के लिए (A, B) सामान्यतः रूप से एकमात्र एबेलियन समूह है। यदि R वलय S पर बीजगणित है (जिसका विशेष रूप से अर्थ है कि S क्रमविनिमेय है), तो टोरR
i
(A, B) S-मॉड्यूल है।

गुण

यहाँ टोर समूहों के कुछ बुनियादी गुण और संगणनाएँ दी गई हैं।[4]

  • तोरR
    0
    (A, B) ≅ AR B किसी भी दाएं R-मॉड्यूल A और बाएं R-मॉड्यूल B के लिए है।
  • तोरR
    i
    (A, B) = 0 सभी i > 0 के लिए यदि A या B समतल है (उदाहरण के लिए, मुक्त) R-मॉड्यूल के रूप में है। वास्तव में, A या B के समतल रिज़ॉल्यूशन का उपयोग करके टोर की गणना की जा सकती है; यह प्रक्षेपी संकल्प से अधिक सामान्य है।[5]
  • पिछले कथन के विपरीत हैं:
    • यदि टोरR
      1
      (A, B) = 0 सभी B के लिए, A समतल है (और इसलिए टोरR
      i
      (A, B) = 0 सभी के लिए i> 0)।
    • यदि टोरR
      1
      (A, B) = 0 सभी A के लिए, B समतल है (और इसलिए टोरR
      i
      (A, B) = 0 सभी के लिए i> 0)।
  • व्युत्पन्न फ़ैक्टरों के सामान्य गुणों के अनुसार, सही R-मॉड्यूल का अनुक्रम 0 → K → L → M → 0 फॉर्म का अनुक्रम उत्पन्न करता है[6]
    किसी भी बाएं R-मॉड्यूल B के लिए है। समान त्रुटिहीन अनुक्रम दूसरे चर के संबंध में टोर के लिए भी है।
  • समरूपता: क्रम विनिमेय वलय R के लिए, प्राकृतिक समरूपता टोरR
    i
    (A, B) ≅ टोरRi (B, A) है। (R कम्यूटेटिव के लिए, बाएं और दाएं R-मॉड्यूल के मध्य भिन्नता करने की कोई आवश्यकता नहीं है।)[7]
  • यदि R क्रम विनिमेय वलय है और u में R शून्य विभाजक नहीं है, तो किसी भी R-मॉड्यूल B के लिए,
    कहाँ
    B का u-टॉर्शन उपसमूह है। यह टोर नाम की व्याख्या है। R को वलय मान लेना पूर्णांकों के इस परिकलन का उपयोग परिकलन के लिए किया जा सकता है किसी भी अंतिम रूप से उत्पन्न एबेलियन समूह A के लिए है।
  • पिछले उदाहरण को सामान्य करते हुए, जटिल परिसर का उपयोग करके, किसी भी नियमित अनुक्रम द्वारा टोर समूहों की गणना की जा सकती है, जिसमें क्रमविनिमेय वलय के भागफल को सम्मिलित करता है [8] उदाहरण के लिए, यदि R क्षेत्र k पर बहुपद वलय k[x1, ..., xn] है, टोर1 में n उत्पादक पर k के ऊपर बाहरी बीजगणित है।
  • सभी i ≥ 2 के लिए है। प्रत्येक एबेलियन समूह A में लंबाई 1 का स्वतंत्र संकल्प है, क्योंकि स्वतंत्र एबेलियन समूह का प्रत्येक उपसमूह स्वतंत्र एबेलियन है।
  • किसी भी वलय R के लिए, टोर प्रत्येक चर में प्रत्यक्ष योग (संभवतः अनंत) और फ़िल्टर किए गए कोलिमिट्स को संरक्षित करता है।[9] उदाहरण के लिए, पूर्व चर में, यह कहता है कि
  • समतल आधार परिवर्तन: क्रमविनिमेय समतल R-बीजगणित T, R-मॉड्यूल A और B, और पूर्णांक i के लिए,[10]
    यह इस प्रकार है कि टोर वलय के स्थानीयकरण के साथ संचार करता है। अर्थात्, R में गुणनात्मक रूप से बंद समुच्चय S के लिए,
  • क्रमविनिमेय वलय R और क्रमविनिमेय R-बीजगणित A और B, टोरR
    *
    के लिए (A,B) में R के ऊपर वर्गीकृत-कम्यूटेटिव बीजगणित की संरचना है। इसके अतिरिक्त, टोर बीजगणित में विषम डिग्री के तत्वों का वर्ग शून्य है, और सकारात्मक डिग्री के तत्वों पर विभाजित शक्ति संचालन हैं।[11]


महत्वपूर्ण विशेष स्तिथियों

  • समूह समरूपता द्वारा परिभाषित किया गया है जहाँ G समूह है, M पूर्णांकों पर G का समूह प्रतिनिधित्व है, और G का समूह की वलय है।
  • क्षेत्र k और A-बिमॉड्यूल M पर बीजगणित A के लिए , होशचाइल्ड होमोलॉजी द्वारा परिभाषित किया गया है
  • ले बीजगणित समरूपता द्वारा परिभाषित किया गया है , जहां क्रमविनिमेय वलय R पर ले बीजगणित है, M है -मॉड्यूल, और सार्वभौमिक एनवलप बीजगणित है।
  • क्षेत्र k पर समाकारिता के साथ क्रमविनिमेय वलय R के लिए, k पर ग्रेडेड-कम्यूटेटिव अर्द्ध बीजगणित है।[12] (यदि R अवशेष क्षेत्र k के साथ नोथेरियन स्थानीय वलय है, तो अर्द्ध बीजगणित विस्तार R(k,k) है बीजगणित के रूप में, ग्रेडेड वेक्टर स्पेस π (R) पर मुक्त वर्गीकृत-कम्यूटेटिव विभाजित शक्ति बीजगणित है।[13] जब k का अभिलाक्षणिक शून्य होता है, तो π*(R) की पहचान आंद्रे-क्विलन समरूपता D*(k/R,k) से की जा सकती है।।[14]


यह भी देखें

टिप्पणियाँ

  1. Weibel (1999).
  2. Cartan & Eilenberg (1956), section VI.1.
  3. Weibel (1994), section 2.4 and Theorem 2.7.2.
  4. Weibel (1994), Chapters 2 and 3.
  5. Weibel (1994), Lemma 3.2.8.
  6. Weibel (1994), Definition 2.1.1.
  7. Weibel (1994), Remark in section 3.1.
  8. Weibel (1994), section 4.5.
  9. Weibel (1994), Corollary 2.6.17.
  10. Weibel (1994), Corollary 3.2.10.
  11. Avramov & Halperin (1986), section 2.16; Stacks Project, Tag 09PQ.
  12. Avramov & Halperin (1986), section 4.7.
  13. Gulliksen & Levin (1969), Theorem 2.3.5; Sjödin (1980), Theorem 1.
  14. Quillen (1970), section 7.


संदर्भ


बाहरी संबंध