बहुरेखीय मानचित्र: Difference between revisions

From Vigyanwiki
No edit summary
Line 133: Line 133:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/04/2023]]
[[Category:Created On 25/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 08:07, 16 May 2023

रेखीय बीजगणित में, बहुरेखीय मानचित्र कई चरों का फलन (गणित) है जो प्रत्येक चर में पृथक रूप से रेखीय फलन होता है। अधिक त्रुटिहीन रूप से, बहु-रेखीय मानचित्र फलन है

जहाँ और निम्नलिखित संपत्ति के साथ सदिशरिक्त स्थान (या मॉड्यूल (गणित) क्रमविनिमेय रिंग पर) हैं: प्रत्येक के लिए , यदि सभी चर को स्थिर रखा जाता है, तो का रैखिक कार्य है I[1]

चर का बहुरेखीय मानचित्र रेखीय मानचित्र है, और दो चरों का द्विरेखीय मानचित्र होता है। सामान्यतः, k चरों के बहुरेखीय मानचित्र को 'k-रैखिक मानचित्र' कहा जाता है। यदि बहुरेखीय मानचित्र का कोडोमेन अदिशों का क्षेत्र है, तो इसे बहुरेखीय रूप कहा जाता है। बहुरेखीय मानचित्र और रूप बहुरेखीय बीजगणित में अध्ययन की मूलभूत वस्तुएँ हैं।

यदि सभी चर स्थान से संबंधित हैं, तो कोई सममित एंटीसिमेट्रिक, और वैकल्पिक k-रैखिक मानचित्रों पर विचार कर सकता है। उत्तरार्द्ध संयोग करता है यदि अंतर्निहित रिंग (गणित) (या क्षेत्र (गणित)) में दो से भिन्न विशेषता (बीजगणित) है, अन्यथा पूर्व दो संगयुग्मित होते है।

उदाहरण

  • कोई भी द्विरेखीय मानचित्र बहुरेखीय मानचित्र होता है। उदाहरण के लिए, सदिश स्थान पर कोई भी आंतरिक उत्पाद बहुरेखीय मानचित्र है, जैसा कि सदिशों का क्रॉस उत्पाद है।
  • आव्यूह का निर्धारक वर्ग आव्यूह के स्तंभों (या पंक्तियों) का वैकल्पिक रूप बहुरेखीय कार्य है।
  • यदि का Ck फलन है, तो वें का व्युत्पन्न प्रत्येक बिंदु पर डोमेन में सममित के रूप में देखा जा सकता है - का रैखिक फलन है।

समन्वय प्रतिनिधित्व

इस प्रकार है:

परिमित-आयामी सदिशरिक्त स्थान के मध्य बहु-रैखिक मानचित्र बनें, जहां , , और आयाम है यदि हम . आधार चयन करते हैं तो (रैखिक बीजगणित) प्रत्येक के लिए और आधार के लिए (सदिश के लिए बोल्ड का उपयोग करके), अदिश के संग्रह को परिभाषित कर सकते हैं इसके द्वारा

यदि अदिश पूर्ण रूप से बहु-रेखीय कार्य निर्धारित करें . विशेष रूप से है, यदि

के लिए , तब


उदाहरण

ट्रिलिनियर फलन इस प्रकार है:

जहाँ Vi = R2, di = 2, i = 1,2,3, और W = R, d = 1.

प्रत्येक Vi के लिए आधार है:

जहाँ . दूसरे शब्दों में, स्थिर आधार सदिशों के आठ संभावित त्रिगुणों में से फलन का मान है (चूंकि तीन में से प्रत्येक के लिए दो विकल्प हैं ), अर्थात्:

प्रत्येक सदिश को आधार वैक्टर के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है:

तीन सदिशों के मनमाने संग्रह पर फलन मान के रूप में व्यक्त किया जा सकता है

या, विस्तारित रूप में


टेंसर उत्पादों से संबंध

बहुरेखीय मानचित्र के मध्य स्वाभाविक रूप से पत्राचार होता है:

और रैखिक मानचित्र

जहाँ के टेंसर उत्पाद को दर्शाता है कार्यों के मध्य संबंध और सूत्र द्वारा दिया गया है:

n×n आव्यूहों पर बहुरेखीय कार्य

आव्यूह की पंक्तियों (या समतुल्य रूप से स्थान) को फलन के रूप में पहचान के साथ कम्यूटेटिव रिंग K पर n × n आव्यूह पर बहुरेखीय कार्य पर विचार किया जा सकता है, मान लीजिए A ऐसा आव्यूह है और ai, 1 ≤ i ≤ n, A की पंक्तियाँ हैं और फिर बहुरेखीय फलन D के रूप में लिखा जा सकता है:

संतुष्टि देने वाला

यदि पहचान आव्यूह की j पंक्ति का प्रतिनिधित्व करते हैं, हम प्रत्येक पंक्ति ai को योग के रूप में व्यक्त कर सकते हैं:

D की बहुरेखीयता का उपयोग करके हम D(A) को इस रूप में फिर से लिखते हैं जैसा

प्रत्येक ai के लिए इस प्रतिस्थापन को प्रारम्भ रखते हुए, हम प्राप्त कर सकते हैं 1 ≤ in,

इसलिए, D(A) विशिष्ट रूप से निर्धारित होता है कि D कैसे संचालित होता है .

उदाहरण

2×2 आव्यूह की स्थिति में:

जहाँ और यदि प्रतिबंधित करते हैं तब वैकल्पिक कार्य होता है, और . दे हमें 2×2 आव्यूहों पर निर्धारक फलन प्राप्त होता है:


गुण

  • जब भी इसका तर्क शून्य होता है तो बहुरेखीय मानचित्र का मान शून्य होता है |

यह भी देखें

संदर्भ

  1. Lang, Serge (2005) [2002]. "XIII. Matrices and Linear Maps §S Determinants". बीजगणित. Graduate Texts in Mathematics. Vol. 211 (3rd ed.). Springer. pp. 511–. ISBN 978-0-387-95385-4.