मेनेलॉस प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Relates line segments formed when a line cuts through a triangle}}
{{short description|Relates line segments formed when a line cuts through a triangle}}
[[File:Menelaus' theorem 1.svg|right|thumb|मेनेलॉस प्रमेय, स्थिति 1: रेखा DEF त्रिभुज ABC के अंदर से गुजरती है]]मेनेलॉस प्रमेय जिसका नाम [[अलेक्जेंड्रिया के मेनेलॉस]] के नाम पर रखा गया है [[समतल ज्यामिति]] में त्रिभुजों के विषय में एक प्रस्ताव है। मान लीजिए कि हमारे पास एक त्रिभुज ''एबीसी'' है और एक तिर्यक (ज्यामिति) रेखा है जो ''बीसी'', ''एसी'' और ''एबी'' को बिंदु ''डी'', ''ई'' पर काटती है और 'एफ' क्रमशः, 'डी', 'ई' और 'F' के साथ 'A', 'B' और 'C' से भिन्न हैं। प्रमेय का यह निर्बल संस्करण बताता है कि
[[File:Menelaus' theorem 1.svg|right|thumb|मेनेलॉस प्रमेय स्थिति 1: रेखा DEF त्रिभुज ABC के अंदर से निकलती है]]मेनेलॉस प्रमेय जिसका नाम [[अलेक्जेंड्रिया के मेनेलॉस]] के नाम पर रखा गया है [[समतल ज्यामिति]] में त्रिभुजों के विषय में एक प्रस्ताव है। मान लीजिए कि हमारे पास एक त्रिभुज ''एबीसी'' है और एक तिर्यक (ज्यामिति) रेखा है जो ''बीसी'', ''एसी'' और ''एबी'' को बिंदु ''डी'', ''ई'' पर काटती है और 'एफ' क्रमशः, 'डी', 'ई' और 'F' के साथ 'A', 'B' और 'C' से भिन्न हैं। प्रमेय का यह निर्बल संस्करण बताता है कि


: <math>\frac{|AF|}{|FB|} \times \frac{|BD|}{|DC|} \times \frac{|CE|}{|EA|} = 1,</math>
: <math>\frac{|AF|}{|FB|} \times \frac{|BD|}{|DC|} \times \frac{|CE|}{|EA|} = 1,</math>
Line 23: Line 23:
== प्रमाण ==
== प्रमाण ==
[[File:Menelaos' theorem 2.svg|right|thumb|मेनेलॉस प्रमेय स्थिति 2: रेखा DEF पूरी तरह से त्रिभुज ABC के बाहर है]]मानक प्रमाण इस प्रकार है:<ref>Follows Russel</ref>
[[File:Menelaos' theorem 2.svg|right|thumb|मेनेलॉस प्रमेय स्थिति 2: रेखा DEF पूरी तरह से त्रिभुज ABC के बाहर है]]मानक प्रमाण इस प्रकार है:<ref>Follows Russel</ref>
सर्वप्रथम बायीं ओर का चिह्न ऋणात्मक होगा क्योंकि या तो तीनों अनुपात ऋणात्मक हैं, वह स्थिति जहां रेखा DEF त्रिभुज (निचला आरेख) को को छोड़ती है या एक ऋणात्मक है और अन्य दो धनात्मक हैं, वह स्थिति जहाँ DEF त्रिभुज की दो भुजाओं को काटता है। (पास्च का स्वयंसिद्ध देखें।)
सर्वप्रथम बायीं ओर का चिह्न ऋणात्मक होगा क्योंकि या तो तीनों अनुपात ऋणात्मक हैं (वह स्थिति जहां रेखा DEF त्रिभुज (निचला आरेख) को को छोड़ती है) या एक ऋणात्मक है और अन्य दो धनात्मक हैं (वह स्थिति जहाँ DEF त्रिभुज की दो भुजाओं को काटता है)। (पास्च का स्वयंसिद्ध देखें।)


परिमाण की जाँच करने के लिए, A, B और C से रेखा DEF पर लंब बनाएँ और उनकी लंबाई क्रमशः a, b और c होने दें। इसके पश्चात समरूपता (ज्यामिति) त्रिभुजों के अनुसार यह |AF/FB| का अनुसरण करता है = |A/B|, |BD/DC| = |B/C| और |CE/EA| = |C/A| इसलिए
परिमाण की जाँच करने के लिए A, B और C से रेखा DEF पर लंब बनाएँ तथा उनकी लंबाई क्रमशः a, b और c होने दें। इसके पश्चात समरूपता (ज्यामिति) त्रिभुजों के अनुसार यह |AF/FB| = |A/B|, |BD/DC| = |B/C| और |CE/EA| = |C/A| का अनुसरण करता है इसलिए,
: <math>\left|\frac{AF}{FB}\right| \cdot \left|\frac{BD}{DC}\right| \cdot \left|\frac{CE}{EA}\right| = \left| \frac{a}{b}  \cdot \frac{b}{c} \cdot \frac{c}{a} \right| = 1. \quad\text{(Magnitude only)}</math>
: <math>\left|\frac{AF}{FB}\right| \cdot \left|\frac{BD}{DC}\right| \cdot \left|\frac{CE}{EA}\right| = \left| \frac{a}{b}  \cdot \frac{b}{c} \cdot \frac{c}{a} \right| = 1. \quad\text{(Magnitude only)}</math>
सरलता हेतु यदि परिमाण की जाँच करने के लिए कम सममित प्रकार है<ref>Follows {{cite book |title=Inductive Plane Geometry|url=https://archive.org/details/inductiveplanege00hopkrich|first=George Irving|last=Hopkins|publisher=D.C. Heath & Co.|year=1902|chapter=Art. 983}}</ref> तब AB के समांतर CK खींचिए जहाँ DEF, CK से K पर मिलता है। उसके पश्चात समरूप त्रिभुजों द्वारा
सरलता हेतु यदि परिमाण की जाँच करने के लिए कम सममित प्रकार है<ref>Follows {{cite book |title=Inductive Plane Geometry|url=https://archive.org/details/inductiveplanege00hopkrich|first=George Irving|last=Hopkins|publisher=D.C. Heath & Co.|year=1902|chapter=Art. 983}}</ref> तब AB के समांतर CK खींचिए जहाँ DEF, CK से K पर मिलता है। उसके पश्चात समरूप त्रिभुजों द्वारा,
: <math>\left|\frac{BD}{DC}\right| = \left|\frac{BF}{CK}\right|,\,\left|\frac{AE}{EC}\right| = \left|\frac{AF}{CK}\right|</math>
: <math>\left|\frac{BD}{DC}\right| = \left|\frac{BF}{CK}\right|,\,\left|\frac{AE}{EC}\right| = \left|\frac{AF}{CK}\right|</math>
और परिणाम इन समीकरणों से CK को हटाकर प्राप्त होता है।
और परिणाम इन समीकरणों से CK को हटाकर प्राप्त होता है।
Line 38: Line 38:
निम्नलिखित प्रमाण<ref>See Michèle Audin, Géométrie, éditions BELIN, Paris 1998: indication for exercise 1.37, p. 273</ref> [[ affine ज्यामिति |एफिन ज्यामिति]] की केवल धारणाओं का उपयोग करता है विशेष रूप से [[ होमोथेटिक परिवर्तन | होमोथेटिक परिवर्तन]]।
निम्नलिखित प्रमाण<ref>See Michèle Audin, Géométrie, éditions BELIN, Paris 1998: indication for exercise 1.37, p. 273</ref> [[ affine ज्यामिति |एफिन ज्यामिति]] की केवल धारणाओं का उपयोग करता है विशेष रूप से [[ होमोथेटिक परिवर्तन | होमोथेटिक परिवर्तन]]।


D, E और F समरेख हैं या नहीं, केंद्र D, E, F के साथ तीन समरूपताएं होती हैं जो क्रमशः B को C, C को A, और A को B भेजती हैं। तीनों की संरचना तब का एक तत्व है समरूपता-अनुवाद का समूह जो बी को ठीक करता है, इसलिए यह केंद्र बी के साथ एक समरूपता है, संभवतः अनुपात 1 के साथ (जिस मामले में यह पहचान है)। यह रचना रेखा DE को ठीक करती है यदि और केवल यदि F, D और E के साथ समरेख है (चूंकि पहले दो समरूपताएं निश्चित रूप से DE को ठीक करती हैं, और तीसरा ऐसा केवल तभी करता है जब F DE पर स्थित हो)। इसलिए D, E, और F समरेख हैं यदि और केवल यदि यह संरचना पहचान है, जिसका अर्थ है कि तीन अनुपातों के उत्पाद का परिमाण 1 है:
D, E और F समरेख हैं या नहीं, केंद्र D, E, F के साथ तीन समरूपताएं होती हैं जो क्रमशः B को C, C को A, और A को B भेजती हैं। तीनों की संरचना तब का एक तत्व है समरूपता-अनुवाद का समूह जो बी को ठीक करता है, इसलिए यह केंद्र बी के साथ एक समरूपता है, संभवतः अनुपात 1 के साथ (जिस मामले में यह पहचान है)। यह रचना रेखा DE को ठीक करती है यदि और केवल यदि F, D और E के साथ समरेख है (चूंकि पहले दो समरूपताएं निश्चित रूप से DE को ठीक करती हैं और तीसरा ऐसा केवल तभी करता है जब F, DE पर स्थित हो)। इसलिए D, E, और F समरेख हैं यदि और केवल यदि यह संरचना पहचान है जिसका अर्थ है कि तीन अनुपातों के उत्पाद का परिमाण 1 है:
: <math>\frac{\overrightarrow{DC}}{\overrightarrow{DB}}  \times  
: <math>\frac{\overrightarrow{DC}}{\overrightarrow{DB}}  \times  
         \frac{\overrightarrow{EA}}{\overrightarrow{EC}} \times
         \frac{\overrightarrow{EA}}{\overrightarrow{EC}} \times

Revision as of 22:43, 9 May 2023

मेनेलॉस प्रमेय स्थिति 1: रेखा DEF त्रिभुज ABC के अंदर से निकलती है

मेनेलॉस प्रमेय जिसका नाम अलेक्जेंड्रिया के मेनेलॉस के नाम पर रखा गया है समतल ज्यामिति में त्रिभुजों के विषय में एक प्रस्ताव है। मान लीजिए कि हमारे पास एक त्रिभुज एबीसी है और एक तिर्यक (ज्यामिति) रेखा है जो बीसी, एसी और एबी को बिंदु डी, पर काटती है और 'एफ' क्रमशः, 'डी', 'ई' और 'F' के साथ 'A', 'B' और 'C' से भिन्न हैं। प्रमेय का यह निर्बल संस्करण बताता है कि

जहां |AB| खंड AB की सामान्य लंबाई के रूप में लिया जाता है: यह एक धनात्मक मान है।

प्रमेय को खंडों की दी गयी लंबाई के बारे में एक कथन के लिए प्रेरित किया जा सकता है जो समरेख बिंदुओं के सापेक्ष क्रम के बारे में कुछ अतिरिक्त जानकारी प्रदान करता है। यहाँ रेखा के कुछ निश्चित अभिविन्यास में A, B के बायीं या दायीं ओर है या नहीं तथा इसके अनुसार लंबाई AB को धनात्मक या ऋणात्मक माना जाता है; उदाहरण के लिए AF/FB को धनात्मक मान के रूप में परिभाषित किया जाता है जब F, A और B के मध्य होता है और अन्यथा ऋणात्मक होता है। मेनेलॉस प्रमेय का हस्ताक्षरित संस्करण बताता है

समान रूप से,

[1]

कुछ लेखक कारकों को भिन्न प्रकार से व्यवस्थित करते हैं और प्रतीत होता है कि भिन्न संबंध प्राप्त करते हैं[2]

परन्तु जैसा कि इनमें से प्रत्येक कारक उपरोक्त संबंधित कारक का नकारात्मक है जो संबंध समान दिखता है।

यह प्रमेय भी सत्य है यदि बिंदु D, E और F क्रमशः BC, AC और AB पर चुने जाते हैं जिससे

तब D, E और F समरेख हैं। इस संपर्क को अधिकतर प्रमेय के भाग के रूप में सम्मिलित किया जाता है। (ध्यान दें कि निर्बल, अहस्ताक्षरित कथन का विलोम आवश्यक रूप से सत्य नहीं है।)

वह प्रमेय केवा प्रमेय के समान है जिसमें उनके समीकरण केवल संकेत में भिन्न होते हैं। क्रॉस-अनुपात के संदर्भ में प्रत्येक को पुनः लिखकर दो प्रमेयों को द्वैत (प्रक्षेपी ज्यामिति) के रूप में देखा जा सकता है।[3]

प्रमाण

मेनेलॉस प्रमेय स्थिति 2: रेखा DEF पूरी तरह से त्रिभुज ABC के बाहर है

मानक प्रमाण इस प्रकार है:[4]

सर्वप्रथम बायीं ओर का चिह्न ऋणात्मक होगा क्योंकि या तो तीनों अनुपात ऋणात्मक हैं (वह स्थिति जहां रेखा DEF त्रिभुज (निचला आरेख) को को छोड़ती है) या एक ऋणात्मक है और अन्य दो धनात्मक हैं (वह स्थिति जहाँ DEF त्रिभुज की दो भुजाओं को काटता है)। (पास्च का स्वयंसिद्ध देखें।)

परिमाण की जाँच करने के लिए A, B और C से रेखा DEF पर लंब बनाएँ तथा उनकी लंबाई क्रमशः a, b और c होने दें। इसके पश्चात समरूपता (ज्यामिति) त्रिभुजों के अनुसार यह |AF/FB| = |A/B|, |BD/DC| = |B/C| और |CE/EA| = |C/A| का अनुसरण करता है इसलिए,

सरलता हेतु यदि परिमाण की जाँच करने के लिए कम सममित प्रकार है[5] तब AB के समांतर CK खींचिए जहाँ DEF, CK से K पर मिलता है। उसके पश्चात समरूप त्रिभुजों द्वारा,

और परिणाम इन समीकरणों से CK को हटाकर प्राप्त होता है।

इसका विलोम परिणाम के रूप में अनुसरण करता है।[6] मान लीजिए D, E और F को रेखा BC, AC, और AB पर दिया गया है ताकि समीकरण बना रहे। मान लीजिए कि F' वह बिंदु है जहां DE, AB को पार करता है। इसके पश्चात प्रमेय के अनुसार समीकरण D, E, और F' के लिए भी लागू होता है। दोनों की तुलना,

परन्तु अधिक से अधिक एक बिंदु दिए गए अनुपात में एक खंड काट सकता है इसलिए, F=F′

समरूपता का प्रयोग करते हुए उपपत्ति

निम्नलिखित प्रमाण[7] एफिन ज्यामिति की केवल धारणाओं का उपयोग करता है विशेष रूप से होमोथेटिक परिवर्तन

D, E और F समरेख हैं या नहीं, केंद्र D, E, F के साथ तीन समरूपताएं होती हैं जो क्रमशः B को C, C को A, और A को B भेजती हैं। तीनों की संरचना तब का एक तत्व है समरूपता-अनुवाद का समूह जो बी को ठीक करता है, इसलिए यह केंद्र बी के साथ एक समरूपता है, संभवतः अनुपात 1 के साथ (जिस मामले में यह पहचान है)। यह रचना रेखा DE को ठीक करती है यदि और केवल यदि F, D और E के साथ समरेख है (चूंकि पहले दो समरूपताएं निश्चित रूप से DE को ठीक करती हैं और तीसरा ऐसा केवल तभी करता है जब F, DE पर स्थित हो)। इसलिए D, E, और F समरेख हैं यदि और केवल यदि यह संरचना पहचान है जिसका अर्थ है कि तीन अनुपातों के उत्पाद का परिमाण 1 है:

जो दिए गए समीकरण के बराबर है।

इतिहास

यह अनिश्चित है कि वास्तव में प्रमेय की खोज किसने की थी जबकि सबसे पुराना उपलब्ध विवरण मेनेलॉस द्वारा स्फेरिक्स में दिखाई देता है। इस पुस्तक में प्रमेय के समतल संस्करण को प्रमेयिका के रूप में प्रयोग किया जाता है ताकि प्रमेय के वृत्तीय संस्करण को सिद्ध किया जा सके।[8]

अल्मागेस्ट में टॉलेमी वृत्तीय खगोल विज्ञान में कई समस्याओं पर प्रमेय लागू करता है।[9] इस्लामिक स्वर्णिम युग के समय मुस्लिम विद्वानों ने मेनेलॉस के प्रमेय के अध्ययन में लगे कई कार्यों को समर्पित किया जिसे उन्होंने सिकेंट्स (शाकल अल-कट्टा) पर प्रस्ताव के रूप में संदर्भित किया। पूर्ण चतुर्भुज को उनकी शब्दावली में छेदकों की आकृति कहा जाता था।[9] अल बिरूनी का कार्य द कीज़ ऑफ़ एस्ट्रोनॉमी उन कार्यों की एक संख्या को सूचीबद्ध करता है जिन्हें टॉलेमी के अल्मागेस्ट पर टिप्पणियों के भाग के रूप में अध्ययन के अंतर्गत वर्गीकृत किया जा सकता है जैसा कि नायरेज़ और भंडारण के कार्यों में है जहां प्रत्येक मेनेलॉस के प्रमेय की प्रमुख स्थितियों का प्रदर्शन करता है। जो साइन नियम की ओर ले जाता है[10] या स्वतंत्र ग्रंथों के रूप में रचित कार्य जैसे:

  • सबित इब्न कुर्रा द्वारा द ट्रीटीज ऑन द फिगर ऑफ सेकेंट्स (रिसाला फी शकल अल-कट्टा')।[9]
  • होसाम एडिन अल-सल्लार की सेकेंट की आकृति के रहस्यों से घूँघट हटाना (काशफ अल-किना 'एक असरार अल-शक्ल अल-कट्टा') जिसे द बुक ऑन द फिगर ऑफ सिकेंट्स (किताब अल शकल अल-कट्टा) के रूप में या यूरोप में पूर्ण चतुर्भुज पर ग्रंथ के रूप में भी जाना जाता है। खोए हुए ग्रंथ को शराफ अल-दीन अल-तुसी और नासिर अल-दीन अल-तुसी द्वारा संदर्भित किया गया था।[9]
  • अलसेगज़ी द्वारा कार्य।[10]
  • अबू नासिर इब्न इराक द्वारा शुद्धिकरण।[10]
  • रुश्दी राशिद और अथानासी पापड़ोपोलोस, मेनेलॉस 'स्फेरिक्स: अर्ली ट्रांसलेशन एंड अल-महानी' / अल-हरावी का संस्करण, डी ग्रुइटर, सीरीज़: साइंटिया ग्रेको- अरेबिका, 21, 2017, 890 पृष्ठ। ISBN 978-3-11-057142-4

संदर्भ

  1. Russell, p. 6.
  2. Johnson, Roger A. (2007) [1927], Advanced Euclidean Geometry, Dover, p. 147, ISBN 978-0-486-46237-0
  3. Benitez, Julio (2007). "प्रोजेक्टिव ज्योमेट्री का उपयोग करते हुए सेवा और मेनेलॉस के प्रमेय का एक एकीकृत प्रमाण" (PDF). Journal for Geometry and Graphics. 11 (1): 39–44.
  4. Follows Russel
  5. Follows Hopkins, George Irving (1902). "Art. 983". Inductive Plane Geometry. D.C. Heath & Co.
  6. Follows Russel with some simplification
  7. See Michèle Audin, Géométrie, éditions BELIN, Paris 1998: indication for exercise 1.37, p. 273
  8. Smith, D.E. (1958). गणित का इतिहास. Vol. II. Courier Dover Publications. p. 607. ISBN 0-486-20430-8.
  9. 9.0 9.1 9.2 9.3 Rashed, Roshdi (1996). अरबी विज्ञान के इतिहास का विश्वकोश. Vol. 2. London: Routledge. p. 483. ISBN 0-415-02063-8.
  10. 10.0 10.1 10.2 Moussa, Ali (2011). "Mathematical Methods in Abū al-Wafāʾ's Almagest and the Qibla Determinations". Arabic Sciences and Philosophy. Cambridge University Press. 21 (1): 1–56. doi:10.1017/S095742391000007X. S2CID 171015175.
  • Russell, John Wellesley (1905). "Ch. 1 §6 "Menelaus' Theorem"". Pure Geometry. Clarendon Press.


बाहरी संबंध