स्थिर अंतरिक्ष समय: Difference between revisions
(Created page with "{{Short description|Spacetime that admits a Killing vector that is asymptotically timelike}} {{More footnotes|date=April 2021}} सामान्य सापेक्ष...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Spacetime that admits a Killing vector that is asymptotically timelike}} | {{Short description|Spacetime that admits a Killing vector that is asymptotically timelike}}[[सामान्य सापेक्षता]] में, विशेष रूप से आइंस्टीन क्षेत्र समीकरणों में, एक [[ अंतरिक्ष समय ]] को स्थिर कहा जाता है यदि यह एक [[ हत्या वेक्टर | किलिंग वेक्टर]] को स्वीकार करता है जो [[स्पर्शोन्मुख वक्र]] [[ timelike | समयबद्ध]] है।<ref>[https://books.google.com/books?id=YA8rxOn9H1sC&pg=PA123 Ludvigsen, M., ''General Relativity: A Geometric Approach'', Cambridge University Press, 1999] {{ISBN|052163976X}}</ref> | ||
[[सामान्य सापेक्षता]] में, विशेष रूप से आइंस्टीन क्षेत्र समीकरणों में, एक [[ अंतरिक्ष समय ]] को स्थिर कहा जाता है यदि यह एक [[ हत्या वेक्टर ]] को स्वीकार करता है जो [[स्पर्शोन्मुख वक्र]] [[ timelike ]] है।<ref>[https://books.google.com/books?id=YA8rxOn9H1sC&pg=PA123 Ludvigsen, M., ''General Relativity: A Geometric Approach'', Cambridge University Press, 1999] {{ISBN|052163976X}}</ref> | |||
Line 30: | Line 27: | ||
: <math>R^{(3)}_{ij} = 2[\nabla_{i}\Phi_{A}\nabla_{j}\Phi_{A} - (1+ 4 \Phi^{2})^{-1}\nabla_{i}\Phi^{2}\nabla_{j}\Phi^{2}], </math> | : <math>R^{(3)}_{ij} = 2[\nabla_{i}\Phi_{A}\nabla_{j}\Phi_{A} - (1+ 4 \Phi^{2})^{-1}\nabla_{i}\Phi^{2}\nabla_{j}\Phi^{2}], </math> | ||
कहाँ <math>\Phi^{2} = \Phi_{A}\Phi_{A} = (\Phi_{M}^{2} + \Phi_{J}^{2})</math>, और <math>R^{(3)}_{ij}</math> स्थानिक मीट्रिक का रिक्की टेन्सर है और <math>R^{(3)} = h^{ij}R^{(3)}_{ij}</math> संबंधित रिक्की स्केलर। ये समीकरण सटीक स्थिर निर्वात मेट्रिक्स की जांच के लिए प्रारंभिक बिंदु बनाते हैं। | कहाँ <math>\Phi^{2} = \Phi_{A}\Phi_{A} = (\Phi_{M}^{2} + \Phi_{J}^{2})</math>, और <math>R^{(3)}_{ij}</math> स्थानिक मीट्रिक का रिक्की टेन्सर है और <math>R^{(3)} = h^{ij}R^{(3)}_{ij}</math> संबंधित रिक्की स्केलर। ये समीकरण सटीक स्थिर निर्वात मेट्रिक्स की जांच के लिए प्रारंभिक बिंदु बनाते हैं। | ||
'''स्थिर निर्वात मेट्रिक्स की जांच के लिए प्रारंभिक बिंदु बनाते हैं।''' | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 17:02, 14 April 2023
सामान्य सापेक्षता में, विशेष रूप से आइंस्टीन क्षेत्र समीकरणों में, एक अंतरिक्ष समय को स्थिर कहा जाता है यदि यह एक किलिंग वेक्टर को स्वीकार करता है जो स्पर्शोन्मुख वक्र समयबद्ध है।[1]
विवरण और विश्लेषण
एक स्थिर स्पेसटाइम में, मीट्रिक टेन्सर घटक, , चुना जा सकता है ताकि वे सभी समय समन्वय से स्वतंत्र हों। एक स्थिर स्पेसटाइम के लाइन तत्व का रूप होता है
कहाँ समय समन्वय है, तीन स्थानिक निर्देशांक हैं और 3-आयामी अंतरिक्ष का मीट्रिक टेंसर है। इस समन्वय प्रणाली में किलिंग वेक्टर फ़ील्ड अवयव हैं . किलिंग वेक्टर के मानदंड का प्रतिनिधित्व करने वाला एक सकारात्मक अदिश है, अर्थात, , और एक 3-वेक्टर है, जिसे ट्विस्ट वेक्टर कहा जाता है, जो तब गायब हो जाता है जब किलिंग वेक्टर हाइपरसरफेस ऑर्थोगोनल होता है। उत्तरार्द्ध ट्विस्ट 4-वेक्टर के स्थानिक घटकों के रूप में उत्पन्न होता है (देखें, उदाहरण के लिए,[2] पी। 163) जो कि किलिंग वेक्टर के लिए ऑर्थोगोनल है , अर्थात् संतुष्ट करता है . ट्विस्ट वेक्टर उस सीमा को मापता है जिस तक किलिंग वेक्टर 3-सतहों के परिवार के लिए ऑर्थोगोनल होने में विफल रहता है। एक गैर-शून्य मोड़ अंतरिक्ष-समय ज्यामिति में घूर्णन की उपस्थिति को इंगित करता है।
ऊपर वर्णित समन्वय प्रतिनिधित्व में एक दिलचस्प ज्यामितीय व्याख्या है।[3] समय अनुवाद किलिंग वेक्टर गति का एक-पैरामीटर समूह उत्पन्न करता है अंतरिक्ष समय में . एक विशेष प्रक्षेपवक्र (जिसे कक्षा भी कहा जाता है) पर स्थित स्पेसटाइम बिंदुओं की पहचान करके एक 3-आयामी स्थान प्राप्त होता है (किलिंग ट्रैजेक्टोरियों का कई गुना) भागफल स्थान। का प्रत्येक बिंदु अंतरिक्ष-समय में एक प्रक्षेपवक्र का प्रतिनिधित्व करता है . यह पहचान, जिसे कैनोनिकल प्रोजेक्शन कहा जाता है, एक मानचित्रण है जो प्रत्येक प्रक्षेपवक्र को अंदर भेजता है में एक बिंदु पर और एक मीट्रिक प्रेरित करता है पर पुलबैक के माध्यम से। मात्राएँ , और सभी फ़ील्ड चालू हैं और फलस्वरूप समय से स्वतंत्र हैं। इस प्रकार, एक स्थिर दिक्-काल की ज्यामिति समय के साथ नहीं बदलती है। विशेष मामले में स्पेसटाइम को स्थैतिक अंतरिक्ष समय कहा जाता है। परिभाषा के अनुसार, प्रत्येक स्थिर स्पेसटाइम स्थिर होता है, लेकिन इसका विलोम आम तौर पर सत्य नहीं होता है, क्योंकि केर मीट्रिक एक प्रति उदाहरण प्रदान करता है।
== निर्वात क्षेत्र समीकरण == के लिए प्रारंभिक बिंदु के रूप में उपयोग करें
एक स्थिर अंतरिक्ष-समय में वैक्यूम आइंस्टीन समीकरणों को संतुष्ट करना सूत्रों के बाहर, ट्विस्ट 4-वेक्टर कर्ल-मुक्त है,
और इसलिए स्थानीय रूप से एक अदिश का ढाल है (ट्विस्ट स्केलर कहा जाता है):
स्केलर्स के बजाय और दो हैनसेन क्षमता, द्रव्यमान और कोणीय गति क्षमता का उपयोग करना अधिक सुविधाजनक है, और , के रूप में परिभाषित[4]
सामान्य सापेक्षता में द्रव्यमान क्षमता न्यूटोनियन गुरुत्वाकर्षण क्षमता की भूमिका निभाता है। एक गैर-तुच्छ कोणीय गति क्षमता घूर्णी गतिज ऊर्जा के कारण घूर्णन स्रोतों के लिए उत्पन्न होता है, जो द्रव्यमान-ऊर्जा तुल्यता के कारण गुरुत्वाकर्षण क्षेत्र के स्रोत के रूप में भी कार्य कर सकता है। स्थिति एक स्थिर विद्युत चुम्बकीय क्षेत्र के समान है जहां किसी के पास क्षमता, विद्युत और चुंबकीय के दो सेट होते हैं। सामान्य सापेक्षता में, घूर्णन स्रोत एक गुरुत्वचुम्बकीय क्षेत्र उत्पन्न करते हैं जिसका कोई न्यूटोनियन अनुरूप नहीं होता है।
एक स्थिर निर्वात मीट्रिक इस प्रकार हैनसेन क्षमता के संदर्भ में अभिव्यक्त होती है (, ) और 3-मीट्रिक . इन मात्राओं के संदर्भ में आइंस्टीन के निर्वात क्षेत्र समीकरणों को रूप में रखा जा सकता है[4]
कहाँ , और स्थानिक मीट्रिक का रिक्की टेन्सर है और संबंधित रिक्की स्केलर। ये समीकरण सटीक स्थिर निर्वात मेट्रिक्स की जांच के लिए प्रारंभिक बिंदु बनाते हैं।
स्थिर निर्वात मेट्रिक्स की जांच के लिए प्रारंभिक बिंदु बनाते हैं।
यह भी देखें
- स्टेटिक स्पेसटाइम
- गोलाकार रूप से सममित स्पेसटाइम
संदर्भ
- ↑ Ludvigsen, M., General Relativity: A Geometric Approach, Cambridge University Press, 1999 ISBN 052163976X
- ↑ Wald, R.M., (1984). General Relativity, (U. Chicago Press)
- ↑ Geroch, R., (1971). J. Math. Phys. 12, 918
- ↑ 4.0 4.1 Hansen, R.O. (1974). J. Math. Phys. 15, 46.