डेसार्गेस प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 112: Line 112:
* [http://planetmath.org/?op=getobj&from=objects&id=4514 Proof of डेसार्गेस's प्रमेय] at [[PlanetMath]]
* [http://planetmath.org/?op=getobj&from=objects&id=4514 Proof of डेसार्गेस's प्रमेय] at [[PlanetMath]]
* [https://web.archive.org/web/20110928154549/http://math.kennesaw.edu/~mdevilli/desargues.html डेसार्गेस's प्रमेय] at [https://web.archive.org/web/20090321024112/http://math.kennesaw.edu/~mdevilli/JavaGSPLinks.htm Dynamic Geometry Sketches]
* [https://web.archive.org/web/20110928154549/http://math.kennesaw.edu/~mdevilli/desargues.html डेसार्गेस's प्रमेय] at [https://web.archive.org/web/20090321024112/http://math.kennesaw.edu/~mdevilli/JavaGSPLinks.htm Dynamic Geometry Sketches]
[[Category: प्रक्षेप्य ज्यामिति में प्रमेय]] [[Category: बिना शब्दों के प्रमाण]] [[Category: त्रिकोण के बारे में प्रमेय]] [[Category: यूक्लिडियन समतल ज्यामिति]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:त्रिकोण के बारे में प्रमेय]]
[[Category:प्रक्षेप्य ज्यामिति में प्रमेय]]
[[Category:बिना शब्दों के प्रमाण]]
[[Category:यूक्लिडियन समतल ज्यामिति]]

Latest revision as of 16:26, 16 May 2023

परिप्रेक्ष्य त्रिकोण। त्रिभुजों की संगत भुजाएँ, बढ़ाए जाने पर, एक रेखा पर बिंदुओं पर मिलती हैं जिसे परिप्रेक्ष्य का अक्ष कहा जाता है। त्रिभुजों पर संगत शीर्षों से होकर जाने वाली रेखाएँ एक बिंदु पर मिलती हैं जिसे परिप्रेक्ष्य का केंद्र कहा जाता है। डेसार्गेस के प्रमेय में कहा गया है कि पहली स्थिति की सच्चाई दूसरी की सच्चाई के लिए आवश्यक और पर्याप्त है।

प्रक्षेपीय ज्यामिति में, डेसार्गस के प्रमेय, जिसका नाम गिरार्ड देसार्गेस के नाम पर रखा गया है:

दो त्रिकोण परिप्रेक्ष्य (ज्यामिति) हैं, अक्षीय यदि और केवल यदि वे परिप्रेक्ष्य में केंद्रीय रूप से हैं।

एक त्रिभुज के तीन शीर्षों a, b और c (ज्यामिति) को निरूपित करें, और दूसरे के शीर्षों को A, B और C से निरूपित करें। अक्षीय परिप्रेक्ष्य का अर्थ है कि रेखाएँ ab और AB एक बिंदु, रेखाओं में मिलते हैं, ac और AC दूसरे बिंदु और रेखाओं में मिलते हैं, bc और BC एक तीसरे बिंदु पर मिलते हैं, और यह कि ये तीनों बिंदु एक सामान्य रेखा पर स्थित हैं जिसे परिप्रेक्ष्य की धुरी कहा जाता है। केंद्रीय परिप्रेक्ष्य का अर्थ है कि तीन रेखाएँ Aa, Bb और Cc समवर्ती हैं, एक बिंदु पर जिसे परिप्रेक्ष्य का केंद्र कहा जाता है।

यह प्रतिच्छेदन प्रमेय सामान्य यूक्लिडियन तल में सत्य है, लेकिन असाधारण स्तिथियों में विशेष देखभाल की आवश्यकता होती है, जैसे कि जब भुजाओं की एक जोड़ी समानांतर होती है, ताकि उनका प्रतिच्छेदन बिंदु अनंत तक पीछे हट जाए। सामान्यतः, इन अपवादों को हटाने के लिए, गणितज्ञ जीन-विक्टर पोंसेलेट के बाद अनंत पर बिंदु जोड़कर यूक्लिडियन तल को पूरा करते हैं। इसका परिणाम एक प्रक्षेपी तल में होता है।

डेसार्गेस का प्रमेय वास्तविक प्रक्षेपी तल के लिए सही है और किसी क्षेत्र (गणित) या विभाजन वृत से अंकगणितीय रूप से परिभाषित किसी भी प्रक्षेपीय स्थल के लिए; इसमें दो से अधिक आयाम का कोई प्रक्षेप्य स्थान सम्मिलित है या जिसमें पप्पस का षट्भुज प्रमेय सम्मिलित है। हालांकि, ऐसे कई गैर-डेसरग्यूसियन तल हैं, जिनमें डेसार्गेस का प्रमेय भ्रामक है।

इतिहास

डेसार्गेस ने कभी भी इस प्रमेय को प्रकाशित नहीं किया, लेकिन यह 1648 में प्रकाशित परिप्रेक्ष्य के उपयोग पर एक व्यावहारिक पुस्तक के लिए परिप्रेक्ष्य का उपयोग करने के लिए एम. डेसार्गेस की सार्वभौमिक विधि नामक परिशिष्ट में उनके मित्र और शिष्य अब्राहम बोस (1602-1676) द्वारा दिखाई दिया।[1][2]


समन्वय

अमूर्त प्रक्षेपीय ज्यामिति में डेसार्ग्स के प्रमेय का महत्व विशेष रूप से इस तथ्य के कारण है कि एक प्रक्षेपीय स्थल उस प्रमेय को संतुष्ट करता है यदि और केवल यदि यह एक क्षेत्र या विभाजन वलय पर परिभाषित प्रक्षेपीय स्थल के लिए समरूपी है।

प्रक्षेपीय बनाम सजातीय स्थल

यूक्लिडियन तल जैसे एक सदृश स्थान में एक समान कथन सत्य है, लेकिन केवल तभी जब कोई समानांतर रेखाओं से जुड़े विभिन्न अपवादों को सूचीबद्ध करता है। डेसार्गेस की प्रमेय इसलिए सबसे सरल ज्यामितीय प्रमेयों में से एक है जिसका प्राकृतिक घर प्रक्षेपी स्थान के स्थान पर प्रक्षेपण में है।

आत्मद्विविधता

परिभाषा के अनुसार, दो त्रिभुज परिप्रेक्ष्य (ज्यामिति) हैं यदि और केवल यदि वे परिप्रेक्ष्य में केंद्र में हैं (या, समतुल्य रूप से इस प्रमेय के अनुसार, अक्षीय परिप्रेक्ष्य में)। ध्यान दें कि परिप्रेक्ष्य त्रिकोणों को समानता (ज्यामिति) होने की आवश्यकता नहीं है।

मानक द्वैत (प्रक्षेपीय रेखागणित) के अंतर्गत (जहां अंक रेखाओं के अनुरूप होते हैं और बिंदुओं की संरेखता रेखाओं की संगामिति से मेल खाती है), डेसार्ग्स के प्रमेय का कथन स्व-द्वैत है: अक्षीय परिप्रेक्ष्य को केंद्रीय परिप्रेक्ष्य में अनुवादित किया जाता है और इसके विपरीत होता है। डेसार्गेस संरूपण (नीचे) एक स्व-दोहरी संरूपण है।[3]

कथन में यह आत्म-द्वैत प्रमेय लिखने के सामान्य आधुनिक तरीके के कारण है। ऐतिहासिक रूप से, प्रमेय केवल पढ़ता है, "एक प्रक्षेपीय समष्टि में, केंद्रीय परिप्रेक्ष्य त्रिकोणों की एक जोड़ी अक्षीय रूप से परिप्रेक्ष्य है" और इस कथन के दोहरे को देसार्गेस के प्रमेय का विलोम कहा जाता था और हमेशा उसी नाम से जाना जाता था।[4]


डेसार्गेस के प्रमेय का साक्ष्य

डेसार्गेस का प्रमेय किसी भी क्षेत्र या विभाजन वलय पर किसी भी आयाम के प्रक्षेपी स्थान के लिए है, और कम से कम 3 आयामों के सार प्रक्षेपी रिक्त स्थान के लिए भी है। आयाम 2 में जिन तलों के लिए इसे धारण किया जाता है, उन्हें डेसार्गेसियन तल कहा जाता है और ये उन तलों के समान होते हैं जो एक विभाजन वलय पर निर्देशांक दिए जा सकते हैं। ऐसे कई गैर-डेसार्गेसियन तल भी हैं जहां डेसार्गस प्रमेय लागू नहीं होता है।

त्रि-आयामी प्रमाण

डेसार्गेस का प्रमेय कम से कम 3 आयाम के किसी भी प्रक्षेपी स्थान के लिए सत्य है, और सामान्यतः किसी भी प्रक्षेपी स्थान के लिए सत्य है जिसे कम से कम 3 आयाम के स्थान में सन्निहित किया जा सकता है।

डेसार्गेस के प्रमेय को निम्नानुसार कहा जा सकता है:

यदि रेखाएँ Aa, Bb और Cc समवर्ती हैं (एक बिंदु पर मिलते हैं), फिर
बिन्दु ABab, ACac और BCbc संरेख हैं।

बिन्दु A, B, a और b समतलीय हैं (समान समतल में स्थित हैं) क्योंकि कल्पित संगामिति है Aa और Bb. इसलिए रेखाएँ AB और ab एक ही तल के हैं और उन्हें प्रतिच्छेद करना चाहिए। इसके अतिरिक्त, यदि दो त्रिभुज अलग-अलग तलों पर स्थित हैं, तो बिंदु ABab दोनों तलों से संबंधित है। एक सममित तर्क द्वारा, अंक ACac और BCbc भी उपस्थित हैं और दोनों त्रिकोणों के तलों से संबंधित हैं। चूँकि ये दो तल एक से अधिक बिंदुओं पर प्रतिच्छेद करते हैं, उनका प्रतिच्छेदन एक ऐसी रेखा है जिसमें तीनों बिंदु होते हैं।

यह डेसार्गेस के प्रमेय को सिद्ध करता है यदि दो त्रिभुज एक ही तल में समाहित नहीं हैं। यदि वे एक ही तल में हैं, तो डेसार्गेस के प्रमेय को एक ऐसे बिंदु को चुनकर सिद्ध किया जा सकता है जो समतल में नहीं है, इसका उपयोग करके त्रिभुजों को तल से बाहर उठाएं ताकि ऊपर दिया गया तर्क काम करे, और फिर वापस तल में प्रक्षेपित हो। प्रमाण का अंतिम चरण विफल हो जाता है यदि प्रक्षेप्य स्थान का आयाम 3 से कम है, क्योंकि इस स्तिथि में तल में नहीं एक बिंदु को खोजना संभव नहीं है।

मोंज के प्रमेय में यह भी दावा किया गया है कि तीन बिंदु एक रेखा पर स्थित हैं, और दो आयामों के स्थान पर तीन में विचार करने और दो तलों के प्रतिच्छेदन के रूप में रेखा लिखने के समान विचार का उपयोग करके एक साक्ष्य है।

द्वि-आयामी प्रमाण

जैसा कि गैर-डेसार्गेसियन प्रक्षेपी तल हैं जिनमें डेसार्गेस का प्रमेय सत्य नहीं है,[5] इसे सिद्ध करने के लिए कुछ अतिरिक्त स्तिथियों को पूरा करने की आवश्यकता है। ये स्थितियाँ सामान्यतः एक निश्चित प्रकार के पर्याप्त रूप से कई संयोजनों के अस्तित्व को मानने का रूप लेती हैं, जो बदले में यह दर्शाता है कि अंतर्निहित बीजगणितीय समन्वय प्रणाली एक विभाजन वलय (तिरछा क्षेत्र) होना चाहिए।[6]


पप्पस के प्रमेय से संबंध

पप्पस के षट्भुज प्रमेय में कहा गया है कि, यदि एक षट्भुज AbCaBc इस तरह से खींचा जाता है कि शीर्ष a, b और c एक रेखा पर स्थित होते हैं और शीर्ष A, B और C दूसरी पंक्ति पर स्थित होते हैं, तो षट्भुज के प्रत्येक दो विपरीत भाग दो रेखाओं पर स्थित होते हैं जो a में मिलते हैं। बिंदु और इस तरह से निर्मित तीन बिंदु समरेख हैं। एक तल जिसमें पप्पस का प्रमेय सार्वभौमिक रूप से सत्य है, पप्पियन कहलाता है। हेसनबर्ग (1905)[7] ने दिखाया कि पेपस के प्रमेय के तीन अनुप्रयोगों से डेसार्गेस के प्रमेय को घटाया जा सकता है।[8] इस परिणाम का विपरीत सत्य नहीं है, अर्थात सभी डेसार्गेसियन तल पप्पियन नहीं हैं। पप्पस के प्रमेय को सार्वभौमिक रूप से संतुष्ट करना अंतर्निहित समन्वय प्रणाली कोविनिमेय होने के बराबर है। एक गैर- क्रम विनिमय विभाजन वलय (एक विभाजन वलय जो एक क्षेत्र नहीं है) पर परिभाषित एक तल इसलिए डेसार्गेसियन होगा लेकिन पप्पियन नहीं होगा। हालांकि, वेडरबर्न के छोटे प्रमेय के कारण, जिसमें कहा गया है कि सभी परिमित विभाजन वलय क्षेत्र हैं, सभी परिमित डेसार्गेसियन तल पप्पियन हैं। हालांकि, इस तथ्य का कोई पूरी तरह से ज्यामितीय प्रमाण ज्ञात नहीं है बामबर्ग & पेंटिला (2015) ने एक प्रमाण दिया जो केवल प्रारंभिक बीजगणितीय तथ्यों का उपयोग करता है (वेडरबर्न के छोटे प्रमेय की पूरी ताकत के स्थान पर)।

डेसार्गेस संरूपण

डेसार्गेस संरूपण को पारस्परिक रूप से अंकित पंचभुज की एक जोड़ी के रूप में देखा जाता है: प्रत्येक पंचभुज शीर्ष् दूसरे पंचभुज के एक पक्ष के माध्यम से रेखा पर स्थित होता है।

डेसार्गेस प्रमेय में सम्मिलित दस पंक्तियाँ (त्रिकोण की छह भुजाएँ, तीन रेखाएँ Aa, Bb और Cc, और परिप्रेक्ष्य की धुरी) और इसमें सम्मिलित दस बिंदु (छह कोने, परिप्रेक्ष्य की धुरी पर प्रतिच्छेदन के तीन बिंदु और परिप्रेक्ष्य का केंद्र) इस तरह से व्यवस्थित हैं कि दस में से प्रत्येक रेखा दस में से तीन अंक से पारित होती है, और दस बिंदुओं में से प्रत्येक दस रेखाओं में से तीन पर स्थित है। वे दस बिंदु और दस रेखाएँ डेसार्गेस संरूपण बनाती हैं, जो प्रक्षेपी विन्यास का एक उदाहरण है। हालांकि डेसार्गस की प्रमेय इन दस रेखाओं और बिंदुओं के लिए अलग-अलग भूमिकाएं चुनती है, डेसार्गस विन्यास अपने आप में अधिक समरूपता है: दस बिंदुओं में से किसी को भी परिप्रेक्ष्य का केंद्र चुना जा सकता है, और यह विकल्प निर्धारित करता है कि कौन से छह बिंदु त्रिकोण के कोने होंगे और कौन सी रेखा परिप्रेक्ष्य की धुरी होगी।

लघु डेसार्गेस प्रमेय

इस प्रतिबंधित संस्करण में कहा गया है कि यदि दो त्रिकोण किसी दिए गए रेखा पर एक बिंदु से परिप्रेक्ष्य हैं, और इसी रेखा पर संगत भुजाओं के दो जोड़े भी मिलते हैं, तो संबंधित पक्षों की तीसरी जोड़ी रेखा पर भी मिलती है। इस प्रकार, यह डेसार्गेस के प्रमेय की विशेषज्ञता केवल उन स्तिथियों में है जिनमें परिप्रेक्ष्य का केंद्र परिप्रेक्ष्य की धुरी पर स्थित है।

एक मौफांग तल एक प्रक्षेपी तल है जिसमें प्रत्येक पंक्ति के लिए थोड़ा डेसार्ग्स प्रमेय मान्य है।

यह भी देखें

  • पास्कल का प्रमेय

टिप्पणियाँ

  1. Smith (1959, p. 307)
  2. Katz (1998, p. 461)
  3. (Coxeter 1964) pp. 26–27.
  4. (Coxeter 1964, pg. 19)
  5. The smallest examples of these can be found in Room & Kirkpatrick 1971.
  6. (Albert & Sandler 2015), (Hughes & Piper 1973), and (Stevenson 1972).
  7. According to (Dembowski 1968, pg. 159, footnote 1), Hessenberg's original proof is not complete; he disregarded the possibility that some additional incidences could occur in the Desargues configuration. A complete proof is provided by Cronheim 1953.
  8. Coxeter 1969, p. 238, section 14.3


संदर्भ


बाहरी संबंध