सामान्यीकृत बहुभुज: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 168: Line 168:
  | title = Moufang polygons
  | title = Moufang polygons
  | year = 2002}}.
  | year = 2002}}.
[[Category: समूह सिद्धांत]] [[Category: घटना ज्यामिति]]


[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:घटना ज्यामिति]]
[[Category:समूह सिद्धांत]]

Latest revision as of 20:32, 16 May 2023

क्रम 2 का विभाजित केली षट्भुज

गणित में, सामान्यीकृत बहुभुज सन्न 1959 में जैक्स टिट्स द्वारा प्रस्तुत की गई घटना संरचना है। सामान्यीकृत एन-गॉन विशेष स्थितियों के प्रक्षेपी विमानों (सामान्यीकृत त्रिकोण, एन = 3) और सामान्यीकृत चतुष्कोणों (एन = 4) के रूप में सम्मिलित हैं। अनेक सामान्यीकृत बहुभुज असत्य प्रकार के समूहों से उत्पन्न होते हैं, किन्तु ऐसे भी हैं जो इस प्रकार से प्राप्त नहीं किए जा सकते हैं। 'रूथ मौफांग संपत्ति' के रूप में जानी जाने वाली विधिक स्थिति को संतुष्ट करने वाले सामान्यीकृत बहुभुजों को पूर्ण प्रकार से टिट्स और वीस द्वारा वर्गीकृत किया गया है। इस प्रकार एन सम के साथ प्रत्येक सामान्यीकृत एन-गॉन भी निकट बहुभुज है।

परिभाषा

सामान्यीकृत 2-गॉन (या डिगोन) कम से कम 2 बिंदुओं और 2 रेखाओं के साथ घटना संरचना है जहां प्रत्येक बिंदु प्रत्येक रेखा के लिए घटना है।

इसके लिए सामान्यीकृत एन-गॉन आपतन संरचना है (), जहाँ बिंदुओं का समुच्चय है, रेखाओ का समूह है और घटना संबंध है, जैसे कि:

  • यह आंशिक रैखिक स्थान है।
  • इसके लिए उपज्यामिति के रूप में कोई सामान्य एन-गॉन नहीं है .
  • इसमें उप-ज्यामिति के रूप में साधारण एन-गॉन है।
  • किसी के लिए उपज्यामिति उपस्तिथ है () साधारण एन-गॉन के लिए समरूपी है जैसे कि .

इन स्थितियों को व्यक्त करने का समतुल्य किन्तु कभी-कभी सरल विधि है अतः शीर्ष समूह के साथ द्विदलीय घटना ग्राफ पर विचार करते है और बिंदुओं और रेखाओं के घटना युग्मों को जोड़ने वाले किनारे होते है।

इससे यह स्पष्ट होना चाहिए कि सामान्यीकृत बहुभुजों के आपतन ग्राफ मूर ग्राफ हैं।

सामान्यीकृत बहुभुज कोटि (एस, टी) का होता है यदि:

  • इसके तत्वों के अनुरूप घटना ग्राफ के सभी कोने के समीप कुछ प्राकृतिक संख्या एस के लिए समान डिग्री एस + 1 होता है। अतः दूसरे शब्दों में, प्रत्येक पंक्ति में बिल्कुल एस + 1 अंक होते हैं।
  • इसके तत्वों के अनुरूप घटना ग्राफ के सभी कोने के समीप समान डिग्री टी + 1 किसी प्राकृत संख्या टी के लिए होता है अतः दूसरे शब्दों में, प्रत्येक बिंदु उचित टी + 1 रेखा पर स्थित हो]ती है।

हम कहते हैं कि सामान्यीकृत बहुभुज मोटा होता है यदि प्रत्येक बिंदु (रेखा) कम से कम तीन रेखाओं (बिंदुओं) के साथ आपतित होता है। तब सभी मोटे सामान्यीकृत बहुभुजों का क्रम होता है।

सामान्यीकृत एन-गॉन का दोहरा (), घटना संरचना है जिसमें बिंदुओं और रेखाओं की धारणा विपरीत होती है और घटना संबंध को इसके विपरीत संबंध के रूप में लिया जाता है। इस प्रकार यह सरलता से दिखाया जा सकता है कि यह फिर से सामान्यीकृत एन-गॉन है।

उदाहरण

  • सामान्यीकृत डिगोन का आपतन ग्राफ पूर्ण द्विदलीय ग्राफ Kएस+1,टी+1 है।
  • किसी भी प्राकृतिक एन ≥ 3 के लिए, एन भुजाओं वाले साधारण बहुभुज की सीमा पर विचार करते है। इस प्रकार घटना संबंध के रूप में समूह समावेशन के साथ, बहुभुज के शीर्षों को बिंदु और भुजाओं को रेखाएँ घोषित करते है। इसका परिणाम सामान्यीकृत एन-गॉन में एस = टी = 1 के साथ होता है।
  • श्रेणी 2 के ली प्रकार जी के साथ प्रत्येक समूह के लिए संबद्ध सामान्यीकृत एन-गॉन एक्स है जिसमें एन समान्तर 3, 4, 6 या 8 है जैसे कि जी, एक्स के झंडे के समूह पर सकर्मक रूप से कार्य करता है। परिमित स्थिति में, एन=6, कोई जी2(क्यू) के लिए क्रमांक (क्यू, क्यू) का स्प्लिट केली षट्भुज प्राप्त करता है और 3डी4(क्यू3) के लिए क्रमांक (क्यू3, क्यू) का ट्विस्टेड ट्रायलिटी षट्भुज प्राप्त करता है और एन = 8 के लिए री-टिट्स प्राप्त करता है। 2एफ4(क्यू) के लिए क्यू = 22एन+1 के साथ क्रम (क्यू, क्यू2) के स्तन अष्टकोना द्वैत तक, यह केवल ज्ञात मोटे परिमित सामान्यीकृत षट्भुज या अष्टकोना हैं।

मापदंडों पर प्रतिबंध

वाल्टर फीट और ग्राहम हिगमैन ने सिद्ध किया कि एस ≥ 2, टी ≥ 2 के साथ क्रम (एस, टी) के परिमित सामान्यीकृत एन-गॉन्स केवल एन के निम्नलिखित मानों के लिए उपस्तिथ हो सकता है।

2, 3, 4, 6 या 8. फिट-हिगमैन परिणाम का अन्य प्रमाण किल्मॉयर और सोलोमन द्वारा दिया गया था।

इन मूल्यों के लिए सामान्यीकृत एन-गोंन्स को सामान्यीकृत डिगोन, त्रिकोण, चतुष्कोण, षट्कोण और अष्टकोण के रूप में संदर्भित किया जाता है।

जब फीट-हिगमैन प्रमेय को हेमर्स-रूस असमानताओं के साथ जोड़ा जाता है, तब हमें निम्नलिखित प्रतिबंध मिलते हैं।

  • यदि एन = 2, आपतन ग्राफ पूर्ण द्विदलीय ग्राफ है और इस प्रकार "एस", "टी" स्वेच्छ पूर्णांक हो सकते हैं।
  • यदि एन = 3, संरचना परिमित प्रक्षेपी तल है और एस = टी होता है।
  • यदि एन = 4, संरचना परिमित सामान्यीकृत चतुर्भुज है और टी1/2एसटी2 होता है।
  • यदि एन = 6, तब एस, टी वर्ग संख्या है और टी1/3एसटी3 होता है।
  • यदि एन = 8, तब दूसरा वर्ग है और टी1/2एसटी2 होता है।
  • यदि एस या टी को 1 होने की अनुमति है और संरचना सामान्य एन-गॉन नहीं है तब पहले से सूचीबद्ध एन के मूल्यों के अतिरिक्त, केवल एन = 12 संभव हो सकता है।

एस, टी> 1 के लिए क्रम (एस, टी) के प्रत्येक ज्ञात परिमित सामान्यीकृत षट्भुज में क्रम होता है।

  • (क्यू, क्यू): विभाजित केली षट्भुज और उनके दोहरे,
  • (क्यू3, क्यू): ट्विस्टेड ट्रायलिटी षट्भुज, या
  • (क्यू, क्यू3): दोहरी ट्विस्टेड ट्रायलिटी षट्भुज,

जहाँ क्यू प्रधान शक्ति है।

एस, टी> 1 के लिए क्रम (एस, टी) के प्रत्येक ज्ञात परिमित सामान्यीकृत अष्टकोण में क्रम है।

  • (क्यू, क्यू2): री-टिट्स अष्टकोण या
  • (क्यू2, क्यू): दोहरी री-टिट्स अष्टकोना,

जहाँ क्यू 2 की विषम शक्ति है।

अर्ध-परिमित सामान्यीकृत बहुभुज

यदि एस और टी दोनों अनंत हैं तब सामान्यीकृत बहुभुज प्रत्येक एन के लिए अधिक या समान्तर 2 के लिए उपस्तिथ हैं। यह अज्ञात है कि सामान्यीकृत बहुभुज उपस्तिथ हैं या नहीं, जिनमें से पैरामीटर परिमित है (और 1 से बड़ा है) जबकि अन्य अनंत (यह स्थिति में अर्ध-परिमित कहा जाता है)। पीटर कैमरन (गणितज्ञ) ने प्रत्येक पंक्ति पर तीन बिंदुओं के साथ अर्ध-परिमित सामान्यीकृत चतुष्कोणों के गैर-अस्तित्व को सिद्ध करता है जबकि एंड्रयू ब्रेवर और बिल कांटोर ने स्वतंत्र रूप से प्रत्येक पंक्ति पर चार बिंदुओं के स्थिति को सिद्ध किया था। मॉडल सिद्धांत का उपयोग करके जी चेरलिन द्वारा प्रत्येक पंक्ति पर पांच बिंदुओं के लिए गैर-अस्तित्व का परिणाम सिद्ध किया गया था।[1] सामान्यीकृत षट्कोणों या अष्टकोणों के लिए कोई और धारणा बनाए बिना ऐसा कोई परिणाम ज्ञात नहीं है। यहां तक ​​कि प्रत्येक पंक्ति पर तीन बिंदुओं के सबसे छोटी स्थिति के लिए भी प्रयोग किया जाता है।

मिश्रित अनुप्रयोग

जैसा कि पहले उल्लेख किया गया है कि सामान्यीकृत बहुभुजों के आपतन ग्राफ़ में महत्वपूर्ण गुण होते हैं। उदाहरण के लिए, क्रम (एस, एस) का प्रत्येक सामान्यीकृत एन-गॉन (एस+1,2एन) पिंजरा (ग्राफ़ सिद्धांत) है। वह विस्तारक ग्राफ से भी संबंधित हैं जिससे कि उनके समीप उचित विस्तार गुण हैं।[2] सामान्यीकृत बहुभुजों से चरम विस्तारक ग्राफ के अनेक वर्ग प्राप्त किए जाते हैं।[3] रैमसे सिद्धांत में, सामान्यीकृत बहुभुज का उपयोग करके बनाए गए ग्राफ़ हमें विकर्ण रैमसे नंबरों पर सबसे प्रसिद्ध ज्ञात रचनात्मक निचली सीमाएँ प्रदान करते हैं।[4]

यह भी देखें

संदर्भ

  1. Cherlin, Gregory (2005). "प्रति पंक्ति अधिकतम पांच बिंदुओं के साथ स्थानीय रूप से परिमित सामान्यीकृत चतुष्कोण". Discrete Mathematics. 291 (1–3): 73–79. doi:10.1016/j.disc.2004.04.021.
  2. Tanner, R. Michael (1984). "सामान्यीकृत एन-गॉन्स से स्पष्ट संकेंद्रक". SIAM Journal on Algebraic and Discrete Methods. 5 (3): 287–293. doi:10.1137/0605030. hdl:10338.dmlcz/102386.
  3. Nozaki, Hiroshi (2014). "नियमित रेखांकन के लिए रैखिक प्रोग्रामिंग सीमाएँ". arXiv:1407.4562 [math.CO].
  4. Kostochka, Alexandr; Pudlák, Pavel; Rödl, Vojtech (2010). "रैमसे नंबरों पर कुछ रचनात्मक सीमाएँ". Journal of Combinatorial Theory, Series B. 100 (5): 439–445. doi:10.1016/j.jctb.2010.01.003.
  • Haemers, W. H.; Roos, C. (1981), "An inequality for generalized hexagons", Geometriae Dedicata, 10 (1–4): 219–222, doi:10.1007/BF01447425, MR 0608143.