मिलनोर संख्या: Difference between revisions
(→3) |
|||
Line 2: | Line 2: | ||
गणित और विशेष रूप से [[विलक्षणता सिद्धांत]] में [[जॉन मिल्नोर]] के नाम पर मिल्नोर संख्या रोगाणु फलन का अचर है। | गणित और विशेष रूप से [[विलक्षणता सिद्धांत]] में [[जॉन मिल्नोर]] के नाम पर मिल्नोर संख्या रोगाणु फलन का अचर है। | ||
यदि f सम्मिश्र- मान पूर्णसममितिक [[रोगाणु (गणित)|रोगाणु फलन (गणित)]] है, तो f की मिल्नोर संख्या | '''यदि f सम्मिश्र- मान पूर्णसममितिक [[रोगाणु (गणित)|रोगाणु फलन (गणित)]] है, तो f की मिल्नोर संख्या को μ(f) से निरूपित किया गया है, या तो ऋणेतर पूर्णांक या अपरिमित है।''' इसे [[ अंतर ज्यामिति |ज्यामितीय अचर]] और बीजगणितीय अचर दोनों माना जा सकता है। इसी कारण यह [[बीजगणितीय ज्यामिति]] और विलक्षणता सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है। | ||
== बीजगणितीय परिभाषा == | == बीजगणितीय परिभाषा == | ||
एक पूर्णसममितिक सम्मिश्र रोगाणु फलन पर विचार करें (गणित) | एक पूर्णसममितिक सम्मिश्र रोगाणु फलन पर विचार करें (गणित) | ||
:<math> f : (\mathbb{C}^n,0) \to (\mathbb{C},0) \ </math> और सभी रोगाणु फलन <math>(\mathbb{C}^n,0) \to (\mathbb{C},0)</math> के वलय को <math>\mathcal{O}_n</math> द्वारा निरूपित करें। फलन के प्रत्येक स्तर <math>\mathbb{C}^n</math>में संकुल | :<math> f : (\mathbb{C}^n,0) \to (\mathbb{C},0) \ </math> और सभी रोगाणु फलन <math>(\mathbb{C}^n,0) \to (\mathbb{C},0)</math> के वलय को <math>\mathcal{O}_n</math> द्वारा निरूपित करें। फलन के प्रत्येक स्तर <math>\mathbb{C}^n</math>में संकुल ऊनविम पृष्ठ है, इसलिए हम <math>f</math> को ऊनविम पृष्ठ विलक्षणता कहेंगे। | ||
मान लें कि यह एक [[पृथक विलक्षणता|विलगित विलक्षणता]] है: पूर्णसममितिक प्रतिचित्रण के स्थिति में कहा जा सकता हैं कि अधिपृष्ठ विलक्षणता <math>f</math>, <math>0 \in \mathbb{C}^n</math> पर एकल है यदि इसकी प्रवणता <math>\nabla f</math>, <math>0 </math> एक विलक्षण बिंदु पृथक है यदि यह पर्याप्ततः निम्न सामीप्य में एकमात्र विलक्षण बिंदु है। विशेष रूप से, प्रवणता की बहुलता | मान लें कि यह एक [[पृथक विलक्षणता|विलगित विलक्षणता]] है: पूर्णसममितिक प्रतिचित्रण के स्थिति में कहा जा सकता हैं कि अधिपृष्ठ विलक्षणता <math>f</math>, <math>0 \in \mathbb{C}^n</math> पर एकल है यदि इसकी प्रवणता <math>\nabla f</math>, <math>0 </math> एक विलक्षण बिंदु पृथक है यदि यह पर्याप्ततः निम्न सामीप्य में एकमात्र विलक्षण बिंदु है। विशेष रूप से, प्रवणता की बहुलता | ||
:<math> \mu(f) = \dim_{\mathbb{C}} \mathcal{O}_n/\nabla f </math> | :<math> \mu(f) = \dim_{\mathbb{C}} \mathcal{O}_n/\nabla f </math> |
Revision as of 09:21, 6 May 2023
गणित और विशेष रूप से विलक्षणता सिद्धांत में जॉन मिल्नोर के नाम पर मिल्नोर संख्या रोगाणु फलन का अचर है।
यदि f सम्मिश्र- मान पूर्णसममितिक रोगाणु फलन (गणित) है, तो f की मिल्नोर संख्या को μ(f) से निरूपित किया गया है, या तो ऋणेतर पूर्णांक या अपरिमित है। इसे ज्यामितीय अचर और बीजगणितीय अचर दोनों माना जा सकता है। इसी कारण यह बीजगणितीय ज्यामिति और विलक्षणता सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है।
बीजगणितीय परिभाषा
एक पूर्णसममितिक सम्मिश्र रोगाणु फलन पर विचार करें (गणित)
- और सभी रोगाणु फलन के वलय को द्वारा निरूपित करें। फलन के प्रत्येक स्तर में संकुल ऊनविम पृष्ठ है, इसलिए हम को ऊनविम पृष्ठ विलक्षणता कहेंगे।
मान लें कि यह एक विलगित विलक्षणता है: पूर्णसममितिक प्रतिचित्रण के स्थिति में कहा जा सकता हैं कि अधिपृष्ठ विलक्षणता , पर एकल है यदि इसकी प्रवणता , एक विलक्षण बिंदु पृथक है यदि यह पर्याप्ततः निम्न सामीप्य में एकमात्र विलक्षण बिंदु है। विशेष रूप से, प्रवणता की बहुलता
रूकर के नलस्टेलेंसत्ज के अनुप्रयोग द्वारा परिमित है। यह संख्या , विलक्षणता की मिलनोर संख्या है।
ध्यान दें कि प्रवणता की बहुलता परिमित है केवल यदि मूल f का एक पृथक क्रांतिक बिंदु है।
ज्यामितीय व्याख्या
मिल्नोर मूल रूप से ज्यामितीय शब्दों में[1] को ज्यामितीय नियमों में निम्नलिखित प्रकार से प्रस्तुत किया। के समीप मान के सभी तंतु वास्तविक विमाप के व्युत्क्रमणीय बहुरूपी हैं। पर केंद्रित एक छोटी विवृत डिस्क के साथ उनका प्रतिच्छेदन समतल बहुरूपी है जिसे मिल्नोर तंतु कहा जाता है। डिफियोमोर्फिज्म तक या पर निर्भर नहीं करता है यदि वे अधिक छोटे है। यह मिलनोर फिब्रेशन मैप के तंतु के लिए भी भिन्न (डिफोमोर्फिक) है।
मिल्नोर तंतु विमाप के समान बहुरूपी है और वृत्त के गुच्छ के रूप में समान समस्थेयता प्रकार है। इसका अर्थ यह है कि इसकी मध्य बेट्टी संख्या मिलनोर संख्या के समान है और से कम विमाप में एक बिंदु पर इसकी समजातता है। उदाहरण के लिए, प्रत्येक विलक्षण बिंदु के समीप एक सम्मिश्र समतल वक्र में इसकी मिल्नोर तंतु होती है जो वृत्तों के वेज के लिए समस्थानी हैं (मिल्नोर संख्या एक स्थानीय गुणधर्म है, इसलिए विभिन्न विलक्षण बिंदुओं पर इसके पृथक मान हो सकते हैं)।
इस प्रकार हमारे पास समानताएं हैं
- मिलनोर संख्या = पच्चर में गोलों की संख्या = की मध्य बेट्टी संख्या = मानचित्रण की डिग्री पर = प्रवणता की बहुलता
मिल्नोर संख्या को देखने का एक अन्य तरीका क्षोभ सिद्धांत है। हम कहते हैं कि बिंदु एक पतित एकल बिंदु या f में एक अपभ्रष्ट विलक्षणता है तथा पर यदि एक विलक्षण बिंदु है और दूसरे क्रम के सभी आंशिक डेरिवेटिव के हेसियन मैट्रिक्स का में शून्य निर्धारक है:
हम मानते हैं कि f में 0 पर एक पतित विलक्षणता है। हम इस पतित विलक्षणता की बहुलता के विषय में विचार करके यह कह सकते हैं कि कितने बिंदु अतिसूक्ष्म रूप से जुड़े हुए हैं। यदि हम अब क्षोभ सिद्धांत को एक निश्चित स्थिर तरह से व्यग्र करते हैं तो 0 पर पृथक पतित विलक्षणता अन्य पृथक विलक्षणताओं में विभाजित हो जाएगी जो अपतित हैं! ऐसी पृथक अपतित विलक्षणताओं की संख्या उन बिंदुओं की संख्या होगी जो अतिसूक्ष्म रूप से परस्पर जुड़ी हुई हैं।
संक्षेप में हम एक अन्य रोगाणु फलन g लेते हैं जो मूल बिंदु पर व्युत्क्रमणीय है और नए रोगाणु फलन h:= f + εg पर विचार करते हैं जहां ε बहुत छोटा है। जब ε = 0 तब h = f होता है। फलन h को मोर्स सिद्धांत का औपचारिक विकास कहा जाता है। एच की विलक्षणताओं की गणना करना बहुत कठिन है और वास्तव में यह अभिकलनीयतः असंभव हो सकता है। f की इस स्थानीय बहुलता को अतिसूक्ष्म रूप से चिपकाने वाले बिंदुओं की यह संख्या वास्तव में f की मिलनोर संख्या है।
आगे का योगदान[2] बहुमुखी विकृतियों के स्थान के आयाम के संदर्भ में मिल्नोर संख्या को अर्थ देते हैं अर्थात मिल्नोर संख्या विकृतियों के पैरामीटर स्थान का न्यूनतम आयाम है जो प्रारंभिक विलक्षणता के विषय में सभी जानकारी लेती है।
उदाहरण
यहां हम दो चर राशियों में किए गए कुछ कार्यों का उदाहरण देते हैं। एक चर के साथ कार्य करना अधिक सरल है और तकनीकों के विषय में ज्ञात नहीं होता है किन्तु इसके विपरीत तीन चर राशियों के साथ कार्य करना अधिक जटिल हो सकता है। दो अच्छी संख्या है। साथ ही हम बहुपदों से चिपके रहते हैं। यदि f केवल पूर्णसममितिक(होलोमार्फिक) फलन तथा बहुपद नहीं है, तो हम f के घात श्रेणी विस्तरण के साथ कार्य कर सकते थे।
1
0 पर एक अनपभ्रष्ट विलक्षणता के साथ एक कार्य रोगाणु पर विचार करें, जिसे कहते हैं। जैकबियन आदर्श सिर्फ हैं। हम अगले स्थानीय बीजगणित की गणना करते हैं:
इसके सत्यापन के लिए हैडामार्ड के स्वीकृत सिद्धांत का उपयोग कर सकते हैं जो कहती है कि हम कोई भी फलन लिख सकते हैं, जैसे
में कुछ स्थिरांक k और फलन और के लिए (जहां या या दोनों यथार्थत: शून्य हो सकते हैं)। इसलिये x और y के मॉड्यूलो कार्यात्मक गुणक स्थिरांक को h के रूप में लिख सकते हैं। अचर फलन का स्थान 1 द्वारा फैला हुआ है, इसलिए
यह इस प्रकार है कि μ(f) = 1. यह जांचना सरल है कि 0 पर अनपभ्रष्ट विलक्षणता वाले किसी भी रोगाणु फलन g के लिए हमें μ(g) = 1 प्राप्त होता है।
ध्यान दें कि इस विधि को एक व्युत्क्रमणीय रोगाणु फलन g पर अनप्रयुक्त करने से हमें μ(g) = 0 प्राप्त होता है।
2
मान लें , तब
तो इस स्थिति में .
3
यदि कोई इसे प्रदर्शित कर सकता है
तब
इसे इस तथ्य से व्यक्त किया जा सकता है कि x-अक्ष के प्रत्येक बिंदु f पर एकल है।
वर्सल विकृति
मान लीजिए f परिमित मिलनोर संख्या μ और स्थानीय बीजगणित के लिए एक सदिश समष्टि (रैखिक बीजगणित) के रूप में माना जाता है। तब f का एक मिनिवर्सल विरूपण किया जाता है
जहाँ .
ये विकृतियाँ (या विकास(कार्य)) विज्ञान के अधिकांश क्षेत्रों में रुचि रखते हैं।[citation needed]
अप्रसरण
तुल्यता वर्ग की रचना करने के लिए हम कार्य करने वाले रोगाणुओं को एक साथ एकत्रित कर सकते हैं। एक मानक तुल्यता A-समानक है। हम कहते हैं कि रोगाणु फलन A-समानक हैं यदि वहाँ डिफियोमोर्फिज्म रोगाणु उपस्थित हैं और जैसे कि : फलन के डोमेन और श्रेणी दोनों में चर का एक डिफियोमॉर्फिक परिवर्तन उपस्थित है जो f से g तक ले जाता है।
यदि f और g, A-समानक हैं तो μ(f) = μ(g)।
तथापि, मिलनोर संख्या रोगाणु फलन के लिए एक पूर्ण अचर प्रदान नहीं करती है, अर्थात इसके विपरीत असत्य है: रोगाणु फलन f और g, μ(f) = μ(g) के साथ उपस्थित A-समानक नहीं हैं। इसे और देखने के लिए विचार करें। हमारे पास किंतु f और g स्पष्ट रूप से A-समानक नहीं हैं क्योंकि f का हेसियन आव्यूह शून्य के बराबर है जबकि g का हेसियन आव्यूह शून्य के बराबर नहीं है (और हेसियन की श्रेणी A-अचर है, जो देखने में सरल है)।
संदर्भ
- ↑ Milnor, John (1969). कॉम्प्लेक्स हाइपरसर्फ्स के एकवचन बिंदु. Annals of Mathematics Studies. Princeton University Press.
- ↑ Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N. (1988). अलग-अलग मानचित्रों की विलक्षणता. Vol. 2. Birkhäuser.
- Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N. (1985). Singularities of differentiable maps. Vol. 1. Birkhäuser.
- Gibson, Christopher G. (1979). Singular Points of Smooth Mappings. Research Notes in Mathematics. Pitman.
- Milnor, John (1963). Morse Theory. Annals of Mathematics Studies. Princeton University Press.
- Milnor, John (1969). Singular points of Complex Hypersurfaces. Annals of Mathematics Studies. Princeton University Press.