अक्ष घूर्णन: Difference between revisions
m (Abhishek moved page कुल्हाड़ियों का घूमना to अक्ष घूर्णन without leaving a redirect) |
No edit summary |
||
Line 77: | Line 77: | ||
== शंकु वर्गों का घूर्णन == | == शंकु वर्गों का घूर्णन == | ||
{{Main| | {{Main|शंकु खंड}} | ||
दूसरी डिग्री के सबसे सामान्य समीकरण का रूप है | दूसरी डिग्री के सबसे सामान्य समीकरण का रूप है | ||
{{NumBlk||<math display="block"> Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 </math> {{spaces|4}} (<math>A, B, C</math> not all zero).<ref>{{harvtxt|Protter|Morrey|1970|p=316}}</ref>|{{EquationRef|9}}}} | {{NumBlk||<math display="block"> Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 </math> {{spaces|4}} (<math>A, B, C</math> not all zero).<ref>{{harvtxt|Protter|Morrey|1970|p=316}}</ref>|{{EquationRef|9}}}} | ||
निर्देशांक के परिवर्तन के माध्यम से (कुल्हाड़ियों का एक रोटेशन और [[ कुल्हाड़ियों का अनुवाद ]]), समीकरण ({{EquationNote|9}}) को कार्तीय निर्देशांक में एक शांकव खंड | कोई भी निर्देशांक के परिवर्तन के माध्यम से (कुल्हाड़ियों का एक रोटेशन और [[ कुल्हाड़ियों का अनुवाद ]]), समीकरण ({{EquationNote|9}}) को कार्तीय निर्देशांक में एक शांकव खंड मानक रूपों में रखा जा सकता है, जिसके साथ काम करना आमतौर पर आसान होता है। x′y′ पद को समाप्त करने के लिए निर्देशांकों को एक विशिष्ट कोण पर घुमाना हमेशा संभव होता है। प्रतिस्थापन समीकरण ({{EquationNote|7}}) तथा ({{EquationNote|8}}) समीकरण में ({{EquationNote|9}}), हमने प्राप्त किया | ||
{{NumBlk||<math display="block"> A'x'^2 + B'x'y' + C'y'^2 + D'x' + E'y' + F' = 0 ,</math>|{{EquationRef|10}}}} | {{NumBlk||<math display="block"> A'x'^2 + B'x'y' + C'y'^2 + D'x' + E'y' + F' = 0 ,</math>|{{EquationRef|10}}}} | ||
यहां पे | |||
{{NumBlk|| | {{NumBlk|| | ||
*<math> A' = A \cos^2 \theta + B \sin \theta \cos \theta + C \sin^2 \theta ,</math> | *<math> A' = A \cos^2 \theta + B \sin \theta \cos \theta + C \sin^2 \theta ,</math> | ||
Line 93: | Line 93: | ||
|{{EquationRef|11}}}} | |{{EquationRef|11}}}} | ||
यदि <math> \theta </math> चुना जाता है ताकि <math> \cot 2 \theta = (A - C)/B </math> | यदि <math> \theta </math> चुना जाता है ताकि <math> \cot 2 \theta = (A - C)/B </math>बनता है, तब हमें <math> B' = 0 </math> और समीकरण ({{EquationNote|10}}) में x′y′ पद समाप्त हो जाएगा।<ref>{{harvtxt|Protter|Morrey|1970|pp=321–322}}</ref> | ||
जब शून्य से अलग सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में एक रोटेशन (बी को खत्म करने) और एक अनुवाद (डी और ई शर्तों को खत्म करने) के द्वारा समाप्त किया जा सकता है।<ref>{{harvtxt|Protter|Morrey|1970|p=324}}</ref> | जब शून्य से अलग सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में एक रोटेशन (बी को खत्म करने) और एक अनुवाद (डी और ई शर्तों को खत्म करने) के द्वारा समाप्त किया जा सकता है।<ref>{{harvtxt|Protter|Morrey|1970|p=324}}</ref> | ||
Line 104: | Line 106: | ||
== कई आयामों का सामान्यीकरण == | == कई आयामों का सामान्यीकरण == | ||
मान लीजिए कि एक आयताकार xyz-निर्देशांक प्रणाली | मान लीजिए कि एक आयताकार xyz-निर्देशांक प्रणाली है जो अपनी z अक्ष के चारों ओर वामावर्त घुमाई जाती है (धनात्मक z अक्ष को नीचे की ओर देखते हुए) एक कोण के माध्यम से <math> \theta </math>, अर्थात्, धनात्मक x अक्ष को धनात्मक y अक्ष में तुरंत घुमाया जाता है। प्रत्येक बिंदु का z निर्देशांक अपरिवर्तित रहता है और x और y निर्देशांक ऊपर के रूप में रूपांतरित होते हैं। एक बिंदु Q के पुराने निर्देशांक (x, y, z) इसके नए निर्देशांक (x′, y′, z′) से संबंधित हैं<ref>{{harvtxt|Anton|1987|p=231}}</ref> | ||
<math display="block">\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = | <math display="block">\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 113: | Line 115: | ||
\begin{bmatrix} x \\ y \\ z \end{bmatrix}. | \begin{bmatrix} x \\ y \\ z \end{bmatrix}. | ||
</math> | </math> | ||
किसी भी परिमित संख्या के आयामों के लिए सामान्यीकरण, एक [[ रोटेशन मैट्रिक्स ]] <math> A </math> एक [[ ओर्थोगोनल मैट्रिक्स ]] है जो अधिकतम चार तत्वों में [[ पहचान मैट्रिक्स ]] से भिन्न होता है। | किसी भी परिमित संख्या के आयामों के लिए सामान्यीकरण, एक [[ रोटेशन मैट्रिक्स ]] <math> A </math> एक [[ ओर्थोगोनल मैट्रिक्स ]] है जो अधिकतम चार तत्वों में [[ पहचान मैट्रिक्स ]] से भिन्न होता है। इन चार तत्वों का प्रारूप होता है | ||
:<math> a_{ii} = a_{jj} = \cos \theta </math> {{spaces|4}} तथा {{spaces|4}} <math> a_{ij} = - a_{ji} = \sin \theta ,</math> | :<math> a_{ii} = a_{jj} = \cos \theta </math> {{spaces|4}} तथा {{spaces|4}} <math> a_{ij} = - a_{ji} = \sin \theta ,</math> |
Revision as of 17:53, 23 April 2023
गणित में, दो आयामों में कुल्हाड़ियों का एक रोटेशन एक xy-कार्टेशियन समन्वय प्रणाली से एक x′y′-कार्टेशियन समन्वय प्रणाली में एक नक्शा (गणित) है जिसमें मूल (गणित) रखा जाता है स्थिर और x′ और y′ कुल्हाड़ियों को x और y कुल्हाड़ियों को एक कोण से वामावर्त घुमाकर प्राप्त किया जाता है . एक बिंदु P में मूल प्रणाली के संबंध में निर्देशांक (x, y) हैं और नई प्रणाली के संबंध में निर्देशांक (x′, y′) हैं।[1] नई समन्वय प्रणाली में, बिंदु P विपरीत दिशा में घूमता हुआ प्रतीत होगा, अर्थात, कोण के माध्यम से दक्षिणावर्त . दो से अधिक आयामों में अक्षों के घूर्णन को समान रूप से परिभाषित किया गया है।[2][3] कुल्हाड़ियों का एक घूर्णन एक रैखिक नक्शा है[4][5] और एक कठोर परिवर्तन ।
प्रेरणा
विश्लेषणात्मक ज्यामिति की विधियों का उपयोग करते हुए वक्र (ज्यामिति) के समीकरणों के अध्ययन के लिए निर्देशांक प्रणालियाँ आवश्यक हैं। निर्देशांक ज्यामिति की विधि का उपयोग करने के लिए, अक्षों को विचाराधीन वक्र के संबंध में सुविधाजनक स्थिति में रखा जाता है। उदाहरण के लिए, दीर्घवृत्त और अतिपरवलय के समीकरणों का अध्ययन करने के लिए, फोकस (ज्यामिति) आमतौर पर एक अक्ष पर स्थित होते हैं और मूल के संबंध में सममित रूप से स्थित होते हैं। यदि वक्र (अतिशयोक्ति , परबोला, दीर्घवृत्त, आदि) कुल्हाड़ियों के संबंध में आसानी से स्थित नहीं है, तो वक्र को सुविधाजनक और परिचित स्थान और अभिविन्यास पर रखने के लिए समन्वय प्रणाली को बदला जाना चाहिए। इस परिवर्तन को करने की प्रक्रिया को कोऑर्डिनेट सिस्टम#ट्रांसफॉर्मेशन कहा जाता है।[6] एक ही मूल से नए अक्षों को प्राप्त करने के लिए निर्देशांक अक्षों को घुमाकर कई समस्याओं के समाधान को सरल बनाया जा सकता है।
व्युत्पत्ति
दो आयामों में परिवर्तन को परिभाषित करने वाले समीकरण, जो xy अक्षों को एक कोण से वामावर्त घुमाते हैं x'y' कुल्हाड़ियों में, निम्नानुसार व्युत्पन्न होते हैं।
मान लीजिए कि xy प्रणाली में बिंदु P का ध्रुवीय निर्देशांक तंत्र है . तब, x'y' निकाय में, P के ध्रुवीय निर्देशांक होंगे .
त्रिकोणमितीय कार्यों का उपयोग करते हुए, हमारे पास है
|
(1) |
|
(2) |
और अंतर के लिए मानक त्रिकोणमितीय सूत्र ों का उपयोग करके, हमारे पास है
|
(3) |
|
(4) |
प्रतिस्थापन समीकरण (1) तथा (2) समीकरणों में (3) तथा (4), हमने प्राप्त किया[7]
|
(5) |
|
(6) |
समीकरण (5) तथा (6) को मैट्रिक्स के रूप में दर्शाया जा सकता है:
|
(7) |
|
(8) |
या
दो आयामों में उदाहरण
उदाहरण 1
बिंदु के निर्देशांक खोजें कुल्हाड़ियों को कोण के माध्यम से घुमाए जाने के बाद , या 30°.
समाधान:
उदाहरण 2
बिंदु के निर्देशांक खोजें अक्षों को दक्षिणावर्त 90° घुमाने के बाद, यानी कोण के माध्यम से , या -90°।
समाधान:
शंकु वर्गों का घूर्णन
दूसरी डिग्री के सबसे सामान्य समीकरण का रूप है
|
(9) |
कोई भी निर्देशांक के परिवर्तन के माध्यम से (कुल्हाड़ियों का एक रोटेशन और कुल्हाड़ियों का अनुवाद ), समीकरण (9) को कार्तीय निर्देशांक में एक शांकव खंड मानक रूपों में रखा जा सकता है, जिसके साथ काम करना आमतौर पर आसान होता है। x′y′ पद को समाप्त करने के लिए निर्देशांकों को एक विशिष्ट कोण पर घुमाना हमेशा संभव होता है। प्रतिस्थापन समीकरण (7) तथा (8) समीकरण में (9), हमने प्राप्त किया
|
(10) |
यहां पे
|
(11) |
यदि चुना जाता है ताकि बनता है, तब हमें और समीकरण (10) में x′y′ पद समाप्त हो जाएगा।[11]
जब शून्य से अलग सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में एक रोटेशन (बी को खत्म करने) और एक अनुवाद (डी और ई शर्तों को खत्म करने) के द्वारा समाप्त किया जा सकता है।[12]
घुमाए गए शांकव वर्गों की पहचान करना
समीकरण द्वारा दिया गया एक गैर-पतित शांकव खंड (9) का मूल्यांकन करके पहचाना जा सकता है . शंकु खंड है:[13]
- एक दीर्घवृत्त या एक वृत्त, यदि ;
- एक परवलय, अगर ;
- एक अतिपरवलय, अगर .
कई आयामों का सामान्यीकरण
मान लीजिए कि एक आयताकार xyz-निर्देशांक प्रणाली है जो अपनी z अक्ष के चारों ओर वामावर्त घुमाई जाती है (धनात्मक z अक्ष को नीचे की ओर देखते हुए) एक कोण के माध्यम से , अर्थात्, धनात्मक x अक्ष को धनात्मक y अक्ष में तुरंत घुमाया जाता है। प्रत्येक बिंदु का z निर्देशांक अपरिवर्तित रहता है और x और y निर्देशांक ऊपर के रूप में रूपांतरित होते हैं। एक बिंदु Q के पुराने निर्देशांक (x, y, z) इसके नए निर्देशांक (x′, y′, z′) से संबंधित हैं[14]
- तथा
कुछ के लिए और कुछ मैं जे।[15]
कई आयामों में उदाहरण
उदाहरण 3
बिंदु के निर्देशांक ज्ञात कीजिए सकारात्मक w अक्ष को कोण के माध्यम से घुमाए जाने के बाद , या 15°, धनात्मक z अक्ष में।
'समाधान:'
यह भी देखें
टिप्पणियाँ
- ↑ Protter & Morrey (1970, p. 320)
- ↑ Anton (1987, p. 231)
- ↑ Burden & Faires (1993, p. 532)
- ↑ Anton (1987, p. 247)
- ↑ Beauregard & Fraleigh (1973, p. 266)
- ↑ Protter & Morrey (1970, pp. 314–315)
- ↑ Protter & Morrey (1970, pp. 320–321)
- ↑ Anton (1987, p. 230)
- ↑ Protter & Morrey (1970, p. 320)
- ↑ Protter & Morrey (1970, p. 316)
- ↑ Protter & Morrey (1970, pp. 321–322)
- ↑ Protter & Morrey (1970, p. 324)
- ↑ Protter & Morrey (1970, p. 326)
- ↑ Anton (1987, p. 231)
- ↑ Burden & Faires (1993, p. 532)
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- अंक शास्त्र
- कार्तीय समन्वय प्रणाली
- अंडाकार
- ध्रुवीय समन्वय प्रणाली
- त्रिकोणमितीय फलन
संदर्भ
- Anton, Howard (1987), Elementary Linear Algebra (5th ed.), New York: Wiley, ISBN 0-471-84819-0
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3
- Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, LCCN 76087042