स्मूथ कम्पलीशन: Difference between revisions
(→उदाहरण) |
|||
Line 2: | Line 2: | ||
== उदाहरण == | == उदाहरण == | ||
[[हाइपरेलिप्टिक वक्र]] का एक सजातीय रूप <math>y^2=P(x)</math> में प्रस्तुत किया जा सकता है जहां <math>(x, y)\in\mathbb{C}^2</math> और {{mvar|P}}({{mvar|x}}) [[वियोज्य बहुपद]] और कम से कम 5 श्रेणी है। जोड़े गए अद्वितीय अनंत बिंदु पर <math>\mathbb{C}\mathbb{P}^2</math> में सजातीय वक्र का ज़ारिस्की संवरण होना एक विलक्षण है। फिर भी, एफ़िन वक्र को एक अद्वितीय सघन [[रीमैन सतह]] में अंतःस्थापित किया जा सकता है जिसे इसकी सुचारू पूर्णता कहा जाता है। रीमैन सतह का प्रक्षेपण <math>\mathbb{C}\mathbb{P}^1</math> अनंत पर | [[हाइपरेलिप्टिक वक्र]] का एक सजातीय रूप <math>y^2=P(x)</math> में प्रस्तुत किया जा सकता है जहां <math>(x, y)\in\mathbb{C}^2</math> और {{mvar|P}}({{mvar|x}}) [[वियोज्य बहुपद]] और कम से कम 5 श्रेणी है। जोड़े गए अद्वितीय अनंत बिंदु पर <math>\mathbb{C}\mathbb{P}^2</math> में सजातीय वक्र का ज़ारिस्की संवरण होना एक विलक्षण है। फिर भी, एफ़िन वक्र को एक अद्वितीय सघन [[रीमैन सतह]] में अंतःस्थापित किया जा सकता है जिसे इसकी सुचारू पूर्णता कहा जाता है। यदि <math>P(x)</math> डिग्री की सम अथवा एकैक फलन(लेकिन शाखाबद्ध) है, तो रीमैन सतह का प्रक्षेपण <math>\mathbb{C}\mathbb{P}^1</math>अनंत पर एकल बिंदु पर 2-से-1 है। | ||
यह सुचारू पूर्णता निम्नानुसार भी प्राप्त की जा सकती है। | यह सुचारू पूर्णता निम्नानुसार भी प्राप्त की जा सकती है। ''x''-निर्देशांक का उपयोग करके सजातीय वक्र को सजातीय रेखा पर प्रक्षेपण करें। सजातीय रेखा को प्रक्षेपीय रेखा में अंतःस्थापित करें, तत्पश्चात सजातीय वक्र के फलन क्षेत्र में प्रक्षेपीय रेखा का सामान्यीकरण करें। | ||
== अनुप्रयोग == | == अनुप्रयोग == |
Revision as of 18:15, 7 May 2023
बीजगणितीय ज्यामिति में, एक चिकनी योजना affine बीजगणितीय वक्र X की चिकनी पूर्णता (या चिकनी संघनन) एक पूर्ण विविधता चिकनी बीजगणितीय वक्र है जिसमें एक खुले उपसमुच्चय के रूप में X होता है।[1] चिकनी पूर्णताएं मौजूद हैं और एक संपूर्ण क्षेत्र में अद्वितीय हैं।
उदाहरण
हाइपरेलिप्टिक वक्र का एक सजातीय रूप में प्रस्तुत किया जा सकता है जहां और P(x) वियोज्य बहुपद और कम से कम 5 श्रेणी है। जोड़े गए अद्वितीय अनंत बिंदु पर में सजातीय वक्र का ज़ारिस्की संवरण होना एक विलक्षण है। फिर भी, एफ़िन वक्र को एक अद्वितीय सघन रीमैन सतह में अंतःस्थापित किया जा सकता है जिसे इसकी सुचारू पूर्णता कहा जाता है। यदि डिग्री की सम अथवा एकैक फलन(लेकिन शाखाबद्ध) है, तो रीमैन सतह का प्रक्षेपण अनंत पर एकल बिंदु पर 2-से-1 है।
यह सुचारू पूर्णता निम्नानुसार भी प्राप्त की जा सकती है। x-निर्देशांक का उपयोग करके सजातीय वक्र को सजातीय रेखा पर प्रक्षेपण करें। सजातीय रेखा को प्रक्षेपीय रेखा में अंतःस्थापित करें, तत्पश्चात सजातीय वक्र के फलन क्षेत्र में प्रक्षेपीय रेखा का सामान्यीकरण करें।
अनुप्रयोग
एक बीजगणितीय रूप से संवृत क्षेत्र पर एक सहज रूप जुड़े हुए वक्र को अतिपरवलीय कहा जाता है यदि जहां g सुचारू पूर्णता का वर्ग और r जोड़े गए बिंदुओं की संख्या है।
यदि r>0 है तो बीजगणितीय रूप से पूर्णांश 0 के संवृत क्षेत्र पर X का मौलिक समूह जनित्र के साथ कार्यमुक्त है।
(डिरिचलेट की इकाई प्रमेय का सदृश रूप) मान लीजिए X एक परिमित क्षेत्र पर एक सुचारू रूप से जुड़ा हुआ वक्र है। फिर एक्स पर नियमित कार्यों ओ (एक्स) की अंगूठी की इकाइयां रैंक आर -1 का एक अंतिम रूप से उत्पन्न एबेलियन समूह है।
निर्माण
मान लीजिए कि आधार क्षेत्र परिपूर्ण है। कोई भी सजातीय वक्र X एक अभिन्न प्रक्षेपी (इसलिए पूर्ण) वक्र के एक खुले उपसमुच्चय के लिए आइसोमॉर्फिक है। प्रक्षेपी वक्र के सामान्यीकरण (या सिंगुलैरिटीज को उड़ाते हुए) को एक्स की एक सहज पूर्णता देता है। उनके अंक एक बीजगणितीय विविधता के कार्य क्षेत्र के असतत मूल्यांकन के अनुरूप होते हैं जो आधार क्षेत्र पर तुच्छ होते हैं।
निर्माण के द्वारा, सुचारू पूर्णता एक प्रक्षेप्य विविधता वक्र है जिसमें दिए गए वक्र को हर जगह घने खुले उपसमुच्चय के रूप में शामिल किया गया है, और जोड़े गए नए बिंदु चिकने हैं। ऐसा (प्रोजेक्टिव) पूर्णता हमेशा मौजूद है और अद्वितीय है।
यदि आधार क्षेत्र सही नहीं है, तो एक चिकनी एफ़िन वक्र का एक सहज समापन हमेशा मौजूद नहीं होता है। लेकिन उपरोक्त प्रक्रिया हमेशा स्कीम थ्योरी की एक शब्दावली तैयार करती है # योजनाओं के पूरा होने के गुण अगर हम एक नियमित एफ़िन वक्र के साथ शुरू करते हैं (चिकनी किस्में नियमित हैं, और कांसेप्ट सही क्षेत्रों पर सही है)। एक अनुमानित किस्म अद्वितीय है और, उचितता के मूल्यवान मानदंड # उचितता के मूल्यवान मानदंड के अनुसार, एफिन वक्र से पूर्ण बीजगणितीय विविधता तक कोई भी आकारिकी विशिष्ट रूप से नियमित पूर्णता तक फैली हुई है।
सामान्यीकरण
यदि एक्स योजना सिद्धांत की शब्दावली है # अलग और उचित morphisms बीजगणितीय विविधता, नागाटा का कॉम्पैक्टिफिकेशन प्रमेय[2] का कहना है कि X को पूर्ण बीजगणितीय विविधता के खुले उपसमुच्चय के रूप में एम्बेड किया जा सकता है। यदि X अधिक चिकना है और आधार क्षेत्र में विशेषता 0 है, तो विलक्षणताओं के संकल्प द्वारा # उच्च आयामों में विलक्षणताओं का संकल्प | हिरोनाका के प्रमेय X को एक पूर्ण चिकनी बीजगणितीय विविधता के खुले उपसमुच्चय के रूप में भी एम्बेड किया जा सकता है, सीमा के साथ एक सामान्य क्रॉसिंग विभाजक . यदि एक्स अर्ध-प्रोजेक्टिव है, तो चिकनी पूर्णता को प्रोजेक्टिव होने के लिए चुना जा सकता है।
हालांकि, एक आयामी मामले के विपरीत, चिकनी पूर्णता की कोई विशिष्टता नहीं है, न ही यह विहित है।
यह भी देखें
- हाइपरेलिप्टिक वक्र
- बोल्ज़ा सतह
संदर्भ
- ↑ Griffiths, 1972, p. 286.
- ↑ Conrad, Brian (2007). "Deligne's notes on Nagata compactifications" (PDF). Journal of the Ramanujan Mathematical Society. 22 (3): 205–257. MR 2356346.
ग्रन्थसूची
- Griffiths, Phillip A. (1972). "Function theory of finite order on algebraic varieties. I(A)". Journal of Differential Geometry. 6 (3): 285–306. MR 0325999. Zbl 0269.14003.
- Hartshorne, Robin (1977). Algebraic geometry. Graduate Texts in Mathematics. Vol. 52. New York, Heidelberg: Springer-Verlag. ISBN 0387902449. (see chapter 4).