पोइसन का समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Expression frequently encountered in mathematical physics, generalization of Laplace's equation.}}
{{short description|Expression frequently encountered in mathematical physics, generalization of Laplace's equation.}}
[[File:Simeon Poisson.jpg|thumb|शिमोन डेनिस पोइसन]]पोइसन का समीकरण [[सैद्धांतिक भौतिकी]] में व्यापक उपयोगिता का एक अण्डाकार आंशिक अवकल समीकरण है। उदाहरण के लिए, पोइसन के समीकरण का समाधान किसी दिए गए विद्युत आवेश या द्रव्यमान घनत्व वितरण के कारण होने वाला संभावित क्षेत्र है; ज्ञात संभावित क्षेत्र के साथ, तब कोई इलेक्ट्रोस्टैटिक या गुरुत्वाकर्षण (बल) क्षेत्र की गणना कर सकता है। यह लाप्लास के समीकरण का सामान्यीकरण है, जो अक्सर भौतिकी में भी देखा जाता है। समीकरण का नाम फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी सिमोन डेनिस पोइसन के नाम पर रखा गया है।<ref>{{citation |title=Glossary of Geology |editor1-first=Julia A. |editor1-last=Jackson |editor2-first=James P. |editor2-last=Mehl |editor3-first=Klaus K. E. |editor3-last=Neuendorf |series=American Geological Institute |publisher=Springer |year=2005 |isbn=9780922152766 |page=503 | url=https://books.google.com/books?id=SfnSesBc-RgC&pg=PA503 }}</ref><ref>{{cite journal |last1=Poisson |date=1823 |title=Mémoire sur la théorie du magnétisme en mouvement |trans-title=Memoir on the theory of magnetism in motion | url=https://www.biodiversitylibrary.org/item/55214#page/633/mode/1up |journal=Mémoires de l'Académie Royale des Sciences de l'Institut de France |volume=6 |pages=441–570 |language=fr }} From [https://www.biodiversitylibrary.org/item/55214#page/655/mode/1up p.&nbsp;463]: {{lang|fr|"Donc, d'après ce qui précède, nous aurons enfin:}}
[[File:Simeon Poisson.jpg|thumb|शिमोन डेनिस पोइसन]]पोइसन का समीकरण [[सैद्धांतिक भौतिकी]] में व्यापक उपयोगिता का एक अण्डाकार आंशिक अवकल समीकरण है। उदाहरण के लिए, पोइसन के समीकरण का समाधान किसी दिए गए विद्युत आवेश या द्रव्यमान घनत्व वितरण के कारण होने वाला संभावित क्षेत्र है; ज्ञात संभावित क्षेत्र के साथ, तब कोई इलेक्ट्रोस्टैटिक या गुरुत्वाकर्षण (बल) क्षेत्र की गणना कर सकता है। यह लाप्लास के समीकरण का सामान्यीकरण है, जो अक्सर भौतिकी में भी देखा जाता है। समीकरण का नाम फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी सिमोन डेनिस पोइसन के नाम पर रखा गया है। <ref>{{citation |title=Glossary of Geology |editor1-first=Julia A. |editor1-last=Jackson |editor2-first=James P. |editor2-last=Mehl |editor3-first=Klaus K. E. |editor3-last=Neuendorf |series=American Geological Institute |publisher=Springer |year=2005 |isbn=9780922152766 |page=503 | url=https://books.google.com/books?id=SfnSesBc-RgC&pg=PA503 }}</ref><ref>{{cite journal |last1=Poisson |date=1823 |title=Mémoire sur la théorie du magnétisme en mouvement |trans-title=Memoir on the theory of magnetism in motion | url=https://www.biodiversitylibrary.org/item/55214#page/633/mode/1up |journal=Mémoires de l'Académie Royale des Sciences de l'Institut de France |volume=6 |pages=441–570 |language=fr }} From [https://www.biodiversitylibrary.org/item/55214#page/655/mode/1up p.&nbsp;463]: {{lang|fr|"Donc, d'après ce qui précède, nous aurons enfin:}}
<math display="block">\frac{\partial^2 V} {\partial x^2} + \frac{\partial^2 V} {\partial y^2} + \frac{\partial^2 V} {\partial z^2} = 0, = -2k\pi, = -4k\pi,</math>
<math display="block">\frac{\partial^2 V} {\partial x^2} + \frac{\partial^2 V} {\partial y^2} + \frac{\partial^2 V} {\partial z^2} = 0, = -2k\pi, = -4k\pi,</math>
{{lang|fr|selon que le point M sera situé en dehors, à la surface ou en dedans du volume que l'on considère."}} (Thus, according to what preceded, we will finally have:
{{lang|fr|selon que le point M sera situé en dehors, à la surface ou en dedans du volume que l'on considère."}} (Thus, according to what preceded, we will finally have:
Line 13: Line 13:
पोइसन का समीकरण है
पोइसन का समीकरण है
<math display="block">\Delta\varphi = f,</math>
<math display="block">\Delta\varphi = f,</math>
कहाँ <math>\Delta</math> [[लाप्लास ऑपरेटर]] है, और <math>f</math> और <math>\varphi</math> [[कई गुना]] [[वास्तविक संख्या]] या [[जटिल संख्या]]-मूल्यवान कार्य (गणित) हैं। आम तौर पर, <math>f</math> दिया जाता है, और <math>\varphi</math> की दरकार है। जब मैनिफोल्ड [[ यूक्लिडियन अंतरिक्ष ]] होता है, तो लाप्लास ऑपरेटर को अक्सर इस रूप में दर्शाया जाता है {{math|∇<sup>2</sup>}}, और इसलिए प्वासों के समीकरण को अक्सर इस रूप में लिखा जाता है
जहा <math>\Delta</math> [[लाप्लास ऑपरेटर]] है, और <math>f</math> और <math>\varphi</math> [[कई गुना]] [[वास्तविक संख्या]] या [[जटिल संख्या]]-मूल्यवान कार्य (गणित) हैं। आम तौर पर, <math>f</math> दिया जाता है, और <math>\varphi</math> की है। जब मैनिफोल्ड [[ यूक्लिडियन अंतरिक्ष ]] होता है, तो लाप्लास ऑपरेटर को अक्सर {{math|∇<sup>2</sup>}} इस रूप में दर्शाया जाता है , और इसलिए पोइसन के समीकरण को अक्सर इस रूप में लिखा जाता है
<math display="block">\nabla^2 \varphi = f.</math>
<math display="block">\nabla^2 \varphi = f.</math>
त्रि-आयामी कार्टेशियन निर्देशांक में, यह रूप लेता है
त्रि-आयामी कार्टेशियन निर्देशांक में, यह रूप लेता है
Line 19: Line 19:
कब <math>f = 0</math> समान रूप से, हम लाप्लास का समीकरण प्राप्त करते हैं।
कब <math>f = 0</math> समान रूप से, हम लाप्लास का समीकरण प्राप्त करते हैं।


प्वासों के समीकरण को ग्रीन के फलन का उपयोग करके हल किया जा सकता है:
पोइसन के समीकरण को ग्रीन के फलन का उपयोग करके हल किया जा सकता है:
<math display="block">\varphi(\mathbf{r}) = - \iiint \frac{f(\mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|}\, \mathrm{d}^3 r',</math>
<math display="block">\varphi(\mathbf{r}) = - \iiint \frac{f(\mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|}\, \mathrm{d}^3 r',</math>
जहां संपूर्ण स्थान पर समाकलन है। पोइसन के समीकरण के लिए ग्रीन के कार्य का सामान्य विवरण स्क्रीन किए गए पॉइसन समीकरण पर लेख में दिया गया है। संख्यात्मक समाधान के लिए विभिन्न विधियाँ हैं, जैसे [[विश्राम विधि]], पुनरावृत्त एल्गोरिथम।
जहां संपूर्ण स्थान पर समाकलन है। पोइसन के समीकरण के लिए ग्रीन के कार्य का सामान्य विवरण स्क्रीन किए गए पॉइसन समीकरण पर लेख में दिया गया है। संख्यात्मक समाधान के लिए विभिन्न विधियाँ हैं, जैसे [[विश्राम विधि]], पुनरावृत्त एल्गोरिथम।


== न्यूटोनियन गुरुत्वाकर्षण ==
== न्यूटोनियन गुरुत्वाकर्षण ==
{{main|Gravitational field|Gauss's law for gravity}}
{{main|गुरुत्वाकर्षण क्षेत्र|गुरुत्वाकर्षण के लिए गॉस का नियम}}


घनत्व ''ρ'' की एक विशाल वस्तु को आकर्षित करने के कारण एक गुरुत्वाकर्षण क्षेत्र जी के मामले में, गॉस के गुरुत्वाकर्षण के अंतर के रूप में कानून का उपयोग गुरुत्वाकर्षण के लिए संबंधित पॉइसन समीकरण प्राप्त करने के लिए किया जा सकता है:
घनत्व ''ρ'' की एक विशाल वस्तु को आकर्षित करने के कारण एक गुरुत्वाकर्षण क्षेत्र जी के मामले में, गॉस के गुरुत्वाकर्षण के अंतर के रूप में कानून का उपयोग गुरुत्वाकर्षण के लिए संबंधित पॉइसन समीकरण प्राप्त करने के लिए किया जा सकता है:
Line 39: Line 39:


== इलेक्ट्रोस्टैटिक्स ==
== इलेक्ट्रोस्टैटिक्स ==
{{main|Electrostatics}}[[इलेक्ट्रोस्टाटिक्स]] के कोने में से पोइसन समीकरण द्वारा वर्णित समस्याओं को स्थापित करना और हल करना है। प्वासों समीकरण को हल करना विद्युत विभव ज्ञात करने के समान है {{mvar|φ}} दिए गए [[ बिजली का आवेश ]] वितरण के लिए <math>\rho_f</math>.
{{main|Electrostatics}}[[इलेक्ट्रोस्टाटिक्स]] के कोने में से पोइसन समीकरण द्वारा वर्णित समस्याओं को स्थापित करना और हल करना है। पोइसन समीकरण को हल करना दिए गए [[ बिजली का आवेश | प्रकाश का आवेश]] वितरण के लिए विद्युत विभव {{mvar|φ}} ज्ञात करने के समान है <math>\rho_f</math>.


इलेक्ट्रोस्टैटिक्स में पोइसन के समीकरण के पीछे गणितीय विवरण इस प्रकार हैं (गौसियन इकाइयों के बजाय एसआई इकाइयों का उपयोग किया जाता है, जो अक्सर [[विद्युत]] चुंबकत्व में भी उपयोग किया जाता है)।
इलेक्ट्रोस्टैटिक्स में पोइसन के समीकरण के पीछे गणितीय विवरण इस प्रकार हैं (गौसियन इकाइयों के बजाय एसआई इकाइयों का उपयोग किया जाता है, जो अक्सर [[विद्युत]] चुंबकत्व में भी उपयोग किया जाता है)।
Line 45: Line 45:
विद्युत के लिए गाउस के नियम (मैक्सवेल के समीकरणों में से एक भी) के अवकलन रूप से प्रारंभ करते हुए, एक के पास है
विद्युत के लिए गाउस के नियम (मैक्सवेल के समीकरणों में से एक भी) के अवकलन रूप से प्रारंभ करते हुए, एक के पास है
<math display="block">\mathbf{\nabla} \cdot \mathbf{D} = \rho_f,</math>
<math display="block">\mathbf{\nabla} \cdot \mathbf{D} = \rho_f,</math>
कहाँ <math>\mathbf{\nabla} \cdot</math> [[विचलन]] है, डी [[विद्युत विस्थापन क्षेत्र]] है, और ''ρ<sub>f</sub>फ्री-चार्ज घनत्व है (बाहर से लाए गए शुल्कों का वर्णन)।
जहा <math>\mathbf{\nabla} \cdot</math> [[विचलन]] है, डी [[विद्युत विस्थापन क्षेत्र]] है, और ''ρ<sub>f</sub>फ्री-चार्ज घनत्व है (बाहर से लाए गए शुल्कों का वर्णन)।


यह मानते हुए कि माध्यम रैखिक, समदैशिक और सजातीय है ([[ध्रुवीकरण घनत्व]] देखें), हमारे पास संवैधानिक समीकरण#विद्युत चुंबकत्व है
यह मानते हुए कि माध्यम रैखिक, समदैशिक और सजातीय है ([[ध्रुवीकरण घनत्व]] देखें), हमारे पास संवैधानिक समीकरण#विद्युत चुंबकत्व है
<math display="block">\mathbf{D} = \varepsilon \mathbf{E},</math>
<math display="block">\mathbf{D} = \varepsilon \mathbf{E},</math>
कहाँ {{mvar|ε}} माध्यम की पारगम्यता है, और E [[विद्युत क्षेत्र]] है।
जहा {{mvar|ε}} माध्यम की पारगम्यता है, और E [[विद्युत क्षेत्र]] है।


गॉस के कानून में इसे प्रतिस्थापित करना और यह मानना {{mvar|ε}} ब्याज उपज के क्षेत्र में स्थानिक रूप से स्थिर है
गॉस के कानून में इसे प्रतिस्थापित करना और यह मानना {{mvar|ε}} ब्याज उपज के क्षेत्र में स्थानिक रूप से स्थिर है
<math display="block">\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\varepsilon}.</math>
<math display="block">\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\varepsilon}.</math>
कहाँ <math>\rho</math> कुल आयतन आवेश घनत्व है। इलेक्ट्रोस्टैटिक्स में, हम मानते हैं कि कोई चुंबकीय क्षेत्र नहीं है (इसके बाद का तर्क एक स्थिर चुंबकीय क्षेत्र की उपस्थिति में भी लागू होता है)। फिर, हमारे पास वह है
जहा <math>\rho</math> कुल आयतन आवेश घनत्व है। इलेक्ट्रोस्टैटिक्स में, हम मानते हैं कि कोई चुंबकीय क्षेत्र नहीं है (इसके बाद का तर्क एक स्थिर चुंबकीय क्षेत्र की उपस्थिति में भी लागू होता है)। फिर, हमारे पास वह है
<math display="block">\nabla \times \mathbf{E} = 0,</math>
<math display="block">\nabla \times \mathbf{E} = 0,</math>
कहाँ {{math|∇×}} [[कर्ल (गणित)]] है। इस समीकरण का अर्थ है कि हम विद्युत क्षेत्र को स्केलर फ़ंक्शन के ढाल के रूप में लिख सकते हैं {{mvar|φ}} (विद्युत विभव कहलाता है), क्योंकि किसी भी प्रवणता का वक्र शून्य होता है। इस प्रकार हम लिख सकते हैं
जहा {{math|∇×}} [[कर्ल (गणित)]] है। इस समीकरण का अर्थ है कि हम विद्युत क्षेत्र को स्केलर फ़ंक्शन {{mvar|φ}} (विद्युत विभव कहलाता है), के ढाल के रूप में लिख सकते हैं  क्योंकि किसी भी प्रवणता का वक्र शून्य होता है। इस प्रकार हम लिख सकते हैं
 
<math display="block">\mathbf{E} = -\nabla \varphi,</math>
<math display="block">\mathbf{E} = -\nabla \varphi,</math>
जहां माइनस साइन पेश किया गया है ताकि {{mvar|φ}} को प्रति यूनिट चार्ज [[विद्युत संभावित ऊर्जा]] के रूप में पहचाना जाता है।
जहां माइनस साइन पेश किया गया है ताकि {{mvar|φ}} को प्रति यूनिट चार्ज [[विद्युत संभावित ऊर्जा]] के रूप में पहचाना जाता है।


इन परिस्थितियों में प्वासों के समीकरण की व्युत्पत्ति सीधी है। विद्युत क्षेत्र के लिए संभावित ढाल को प्रतिस्थापित करना,
इन परिस्थितियों में पोइसन के समीकरण की व्युत्पत्ति सीधी है। विद्युत क्षेत्र के लिए संभावित ढाल को प्रतिस्थापित करना,
<math display="block">\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \varphi) = -\nabla^2 \varphi = \frac{\rho}{\varepsilon},</math>
<math display="block">\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \varphi) = -\nabla^2 \varphi = \frac{\rho}{\varepsilon},</math>
सीधे इलेक्ट्रोस्टैटिक्स के लिए पॉसॉन के समीकरण का उत्पादन करता है, जो है
सीधे इलेक्ट्रोस्टैटिक्स के लिए पॉसॉन के समीकरण का उत्पादन करता है, जो है
<math display="block">\nabla^2 \varphi = -\frac{\rho}{\varepsilon}.</math>
<math display="block">\nabla^2 \varphi = -\frac{\rho}{\varepsilon}.</math>
क्षमता के लिए प्वासों के समीकरण को हल करने के लिए चार्ज घनत्व वितरण को जानना आवश्यक है। यदि आवेश घनत्व शून्य है, तो लाप्लास का समीकरण परिणाम देता है। यदि आवेश घनत्व बोल्ट्ज़मैन वितरण का अनुसरण करता है, तो पोइसन-बोल्ट्ज़मैन समीकरण परिणाम। प्वासों-बोल्ट्ज़मैन समीकरण डेबी-हकल समीकरण के विकास में भूमिका निभाता है | तनु इलेक्ट्रोलाइट विलयनों का डेबाई-हुकेल सिद्धांत।
क्षमता के लिए पोइसन के समीकरण को हल करने के लिए चार्ज घनत्व वितरण को जानना आवश्यक है। यदि आवेश घनत्व शून्य है, तो लाप्लास का समीकरण परिणाम देता है। यदि आवेश घनत्व बोल्ट्ज़मैन वितरण का अनुसरण करता है, तो पोइसन-बोल्ट्ज़मैन समीकरण परिणाम डेबी-हकल समीकरण के विकास में भूमिका निभाता है | तनु इलेक्ट्रोलाइट विलयनों का डेबाई-हुकेल सिद्धांत।


ग्रीन के कार्य का उपयोग, दूरी पर क्षमता {{mvar|r}} एक केंद्रीय बिंदु प्रभार से {{mvar|Q}} (यानी, मौलिक समाधान) है
ग्रीन के कार्य का उपयोग, दूरी पर क्षमता {{mvar|r}} एक केंद्रीय बिंदु प्रभार से {{mvar|Q}} (यानी, मौलिक समाधान) है
Line 69: Line 70:
जो कूलम्ब का इलेक्ट्रोस्टैटिक्स का नियम है। (ऐतिहासिक कारणों से, और ऊपर गुरुत्वाकर्षण के मॉडल के विपरीत, <math>4 \pi</math> कारक यहाँ प्रकट होता है और गॉस के नियम में नहीं।)
जो कूलम्ब का इलेक्ट्रोस्टैटिक्स का नियम है। (ऐतिहासिक कारणों से, और ऊपर गुरुत्वाकर्षण के मॉडल के विपरीत, <math>4 \pi</math> कारक यहाँ प्रकट होता है और गॉस के नियम में नहीं।)


उपरोक्त चर्चा मानती है कि चुंबकीय क्षेत्र समय के साथ बदलता नहीं है। जब तक [[कूलम्ब गेज]] का उपयोग किया जाता है, तब तक समान पोइसन समीकरण उत्पन्न होता है, भले ही यह समय में भिन्न हो। इस अधिक सामान्य संदर्भ में, कंप्यूटिंग {{mvar|φ}} अब ई की गणना करने के लिए पर्याप्त नहीं है, क्योंकि ई भी [[चुंबकीय वेक्टर क्षमता]] ए पर निर्भर करता है, जिसे स्वतंत्र रूप से गणना की जानी चाहिए। विद्युतचुंबकीय क्षेत्र का गणितीय विवरण देखें# संभावित सूत्रीकरण में मैक्सवेल के समीकरण | संभावित सूत्रीकरण में मैक्सवेल का समीकरण अधिक जानकारी के लिए {{mvar|φ}मैक्सवेल के समीकरणों में } और ए और इस मामले में पोइसन का समीकरण कैसे प्राप्त किया जाता है।
उपरोक्त चर्चा मानती है कि चुंबकीय क्षेत्र समय के साथ बदलता नहीं है। जब तक [[कूलम्ब गेज]] का उपयोग किया जाता है, तब तक समान पोइसन समीकरण उत्पन्न होता है, भले ही यह समय में भिन्न हो। इस अधिक सामान्य संदर्भ में, गणना {{mvar|φ}} अब ई की करने के लिए पर्याप्त नहीं है, क्योंकि ई भी [[चुंबकीय वेक्टर क्षमता]]<nowiki> ए पर निर्भर करता है, जिसे स्वतंत्र रूप से गणना की जानी चाहिए। मैक्सवेल के समीकरण में φ और A विद्युतचुंबकीय क्षेत्र का गणितीय विवरण देखें संभावित सूत्रीकरण | संभावित सूत्रीकरण में मैक्सवेल का समीकरण अधिक जानकारी के लिए {{मवार|φ}मैक्सवेल के समीकरणों में } और ए और इस मामले में पोइसन का समीकरण कैसे प्राप्त किया जाता है।</nowiki>


=== गॉसियन चार्ज घनत्व की क्षमता ===
=== गॉसियन चार्ज घनत्व की क्षमता ===
यदि एक स्थिर गोलाकार रूप से सममित [[गाऊसी वितरण]] आवेश घनत्व है
यदि एक स्थिर गोलाकार रूप से सममित [[गाऊसी वितरण]] आवेश घनत्व है
<math display="block">\rho_f(r) = \frac{Q}{\sigma^3\sqrt{2\pi}^3}\,e^{-r^2/(2\sigma^2)},</math>
<math display="block">\rho_f(r) = \frac{Q}{\sigma^3\sqrt{2\pi}^3}\,e^{-r^2/(2\sigma^2)},</math>
कहाँ {{mvar|Q}} कुल आवेश है, फिर समाधान {{math|''φ''(''r'')}प्वासों के समीकरण के }
जहा {{mvar|Q}} कुल आवेश है, फिर समाधान {{math|''φ''(''r'')}पोइसन के समीकरण के }
<math display="block">\nabla^2 \varphi = -\frac{\rho_f}{\varepsilon}</math>
<math display="block">\nabla^2 \varphi = -\frac{\rho_f}{\varepsilon}</math>
द्वारा दिया गया है
द्वारा दिया गया है
<math display="block">\varphi(r) = \frac{1}{4 \pi \varepsilon} \frac{Q}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}\sigma}\right),</math>
<math display="block">\varphi(r) = \frac{1}{4 \pi \varepsilon} \frac{Q}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}\sigma}\right),</math>
कहाँ {{math|erf(''x'')}} त्रुटि कार्य है।
जहा {{math|erf(''x'')}} त्रुटि कार्य है।
 
इस समाधान  {{math|∇<sup>2</sup>''φ''}} का मूल्यांकन करके स्पष्ट रूप से जाँच की जा सकती है .
 


इस समाधान का मूल्यांकन करके स्पष्ट रूप से जाँच की जा सकती है {{math|∇<sup>2</sup>''φ''}}.
ध्यान दें कि {{mvar|σ}} से बहुत अधिक {{mvar|r}} के लिए , erf फलन एकता और क्षमता तक पहुंचता है [[विद्युत क्षमता]] {{math|''φ''(''r'')}} तक पहुँचता है | बिंदु-आवेश क्षमता,


ध्यान दें कि के लिए {{mvar|r}} से बहुत अधिक {{mvar|σ}}, erf फलन एकता और क्षमता तक पहुंचता है {{math|''φ''(''r'')}} [[विद्युत क्षमता]] तक पहुँचता है | बिंदु-आवेश क्षमता,
<math display="block">\varphi \approx \frac{1}{4 \pi \varepsilon} \frac{Q}{r},</math>
<math display="block">\varphi \approx \frac{1}{4 \pi \varepsilon} \frac{Q}{r},</math>
जैसा कि कोई उम्मीद करेगा। इसके अलावा, जैसे ही इसका तर्क बढ़ता है, त्रुटि फ़ंक्शन 1 तक पहुंचता है; व्यवहार में, के लिए {{math|''r'' > 3''σ''}} सापेक्ष त्रुटि एक हजार में एक भाग से छोटी है।
जैसा कि कोई उम्मीद करेगा। इसके अलावा, जैसे ही इसका तर्क बढ़ता है, त्रुटि फ़ंक्शन 1 तक पहुंचता है; व्यवहार में, के लिए {{math|''r'' > 3''σ''}} सापेक्ष त्रुटि एक हजार में एक भाग से छोटी है।
Line 100: Line 103:
  \nabla \cdot \mathbf{v} &= 0.
  \nabla \cdot \mathbf{v} &= 0.
\end{aligned}</math>
\end{aligned}</math>
दबाव क्षेत्र के लिए समीकरण <math>p</math> एक अरेखीय प्वासों समीकरण का एक उदाहरण है:
दबाव क्षेत्र के लिए समीकरण <math>p</math> एक अरेखीय पोइसन समीकरण का एक उदाहरण है:
<math display="block">\begin{aligned}
<math display="block">\begin{aligned}
  \Delta p &= -\rho \nabla \cdot(\mathbf{v} \cdot \nabla \mathbf{v}) \\
  \Delta p &= -\rho \nabla \cdot(\mathbf{v} \cdot \nabla \mathbf{v}) \\
Line 109: Line 112:
== यह भी देखें ==
== यह भी देखें ==
{{Portal|Mathematics|Physics}}
{{Portal|Mathematics|Physics}}
* असतत प्वासों समीकरण
* असतत पोइसन समीकरण
* पोइसन-बोल्ट्जमैन समीकरण
* पोइसन-बोल्ट्जमैन समीकरण
* [[हेल्महोल्ट्ज़ समीकरण]]
* [[हेल्महोल्ट्ज़ समीकरण]]
* प्वासों के समीकरण के लिए अद्वितीयता प्रमेय
* पोइसन के समीकरण के लिए अद्वितीयता प्रमेय
* कमजोर सूत्रीकरण उदाहरण 2: पोइसन का समीकरण
* कमजोर सूत्रीकरण उदाहरण 2: पोइसन का समीकरण



Revision as of 17:45, 20 April 2023

शिमोन डेनिस पोइसन

पोइसन का समीकरण सैद्धांतिक भौतिकी में व्यापक उपयोगिता का एक अण्डाकार आंशिक अवकल समीकरण है। उदाहरण के लिए, पोइसन के समीकरण का समाधान किसी दिए गए विद्युत आवेश या द्रव्यमान घनत्व वितरण के कारण होने वाला संभावित क्षेत्र है; ज्ञात संभावित क्षेत्र के साथ, तब कोई इलेक्ट्रोस्टैटिक या गुरुत्वाकर्षण (बल) क्षेत्र की गणना कर सकता है। यह लाप्लास के समीकरण का सामान्यीकरण है, जो अक्सर भौतिकी में भी देखा जाता है। समीकरण का नाम फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी सिमोन डेनिस पोइसन के नाम पर रखा गया है। [1][2]

यह लाप्लास के समीकरण का सामान्यीकरण है, जो अक्सर भौतिकी में भी देखा जाता है। समीकरण का नाम फ्रांसीसी

समीकरण का कथन

पोइसन का समीकरण है

जहा लाप्लास ऑपरेटर है, और और कई गुना वास्तविक संख्या या जटिल संख्या-मूल्यवान कार्य (गणित) हैं। आम तौर पर, दिया जाता है, और की है। जब मैनिफोल्ड यूक्लिडियन अंतरिक्ष होता है, तो लाप्लास ऑपरेटर को अक्सर 2 इस रूप में दर्शाया जाता है , और इसलिए पोइसन के समीकरण को अक्सर इस रूप में लिखा जाता है
त्रि-आयामी कार्टेशियन निर्देशांक में, यह रूप लेता है
कब समान रूप से, हम लाप्लास का समीकरण प्राप्त करते हैं।

पोइसन के समीकरण को ग्रीन के फलन का उपयोग करके हल किया जा सकता है:

जहां संपूर्ण स्थान पर समाकलन है। पोइसन के समीकरण के लिए ग्रीन के कार्य का सामान्य विवरण स्क्रीन किए गए पॉइसन समीकरण पर लेख में दिया गया है। संख्यात्मक समाधान के लिए विभिन्न विधियाँ हैं, जैसे विश्राम विधि, पुनरावृत्त एल्गोरिथम।

न्यूटोनियन गुरुत्वाकर्षण

घनत्व ρ की एक विशाल वस्तु को आकर्षित करने के कारण एक गुरुत्वाकर्षण क्षेत्र जी के मामले में, गॉस के गुरुत्वाकर्षण के अंतर के रूप में कानून का उपयोग गुरुत्वाकर्षण के लिए संबंधित पॉइसन समीकरण प्राप्त करने के लिए किया जा सकता है:

चूंकि गुरुत्वाकर्षण क्षेत्र रूढ़िवादी (और तर्कहीन ) है, इसे स्केलर क्षमता ϕ के रूप में व्यक्त किया जा सकता है:
गॉस के नियम में इसे प्रतिस्थापित करने पर,
गुरुत्वाकर्षण के लिए पोइसन का समीकरण देता है:
यदि द्रव्यमान घनत्व शून्य है, तो पोइसन का समीकरण लाप्लास के समीकरण में घट जाता है। तीन-चर लाप्लास समीकरण के लिए ग्रीन का कार्य | संगत ग्रीन के कार्य का उपयोग दूरी पर क्षमता की गणना के लिए किया जा सकता है r एक केंद्रीय बिंदु द्रव्यमान से m (यानी, मौलिक समाधान)। तीन आयामों में क्षमता है
जो न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम के बराबर है।

इलेक्ट्रोस्टैटिक्स

इलेक्ट्रोस्टाटिक्स के कोने में से पोइसन समीकरण द्वारा वर्णित समस्याओं को स्थापित करना और हल करना है। पोइसन समीकरण को हल करना दिए गए प्रकाश का आवेश वितरण के लिए विद्युत विभव φ ज्ञात करने के समान है .

इलेक्ट्रोस्टैटिक्स में पोइसन के समीकरण के पीछे गणितीय विवरण इस प्रकार हैं (गौसियन इकाइयों के बजाय एसआई इकाइयों का उपयोग किया जाता है, जो अक्सर विद्युत चुंबकत्व में भी उपयोग किया जाता है)।

विद्युत के लिए गाउस के नियम (मैक्सवेल के समीकरणों में से एक भी) के अवकलन रूप से प्रारंभ करते हुए, एक के पास है

जहा विचलन है, डी विद्युत विस्थापन क्षेत्र है, और ρfफ्री-चार्ज घनत्व है (बाहर से लाए गए शुल्कों का वर्णन)।

यह मानते हुए कि माध्यम रैखिक, समदैशिक और सजातीय है (ध्रुवीकरण घनत्व देखें), हमारे पास संवैधानिक समीकरण#विद्युत चुंबकत्व है

जहा ε माध्यम की पारगम्यता है, और E विद्युत क्षेत्र है।

गॉस के कानून में इसे प्रतिस्थापित करना और यह मानना ε ब्याज उपज के क्षेत्र में स्थानिक रूप से स्थिर है

जहा कुल आयतन आवेश घनत्व है। इलेक्ट्रोस्टैटिक्स में, हम मानते हैं कि कोई चुंबकीय क्षेत्र नहीं है (इसके बाद का तर्क एक स्थिर चुंबकीय क्षेत्र की उपस्थिति में भी लागू होता है)। फिर, हमारे पास वह है
जहा ∇× कर्ल (गणित) है। इस समीकरण का अर्थ है कि हम विद्युत क्षेत्र को स्केलर फ़ंक्शन φ (विद्युत विभव कहलाता है), के ढाल के रूप में लिख सकते हैं क्योंकि किसी भी प्रवणता का वक्र शून्य होता है। इस प्रकार हम लिख सकते हैं

जहां माइनस साइन पेश किया गया है ताकि φ को प्रति यूनिट चार्ज विद्युत संभावित ऊर्जा के रूप में पहचाना जाता है।

इन परिस्थितियों में पोइसन के समीकरण की व्युत्पत्ति सीधी है। विद्युत क्षेत्र के लिए संभावित ढाल को प्रतिस्थापित करना,

सीधे इलेक्ट्रोस्टैटिक्स के लिए पॉसॉन के समीकरण का उत्पादन करता है, जो है
क्षमता के लिए पोइसन के समीकरण को हल करने के लिए चार्ज घनत्व वितरण को जानना आवश्यक है। यदि आवेश घनत्व शून्य है, तो लाप्लास का समीकरण परिणाम देता है। यदि आवेश घनत्व बोल्ट्ज़मैन वितरण का अनुसरण करता है, तो पोइसन-बोल्ट्ज़मैन समीकरण परिणाम डेबी-हकल समीकरण के विकास में भूमिका निभाता है | तनु इलेक्ट्रोलाइट विलयनों का डेबाई-हुकेल सिद्धांत।

ग्रीन के कार्य का उपयोग, दूरी पर क्षमता r एक केंद्रीय बिंदु प्रभार से Q (यानी, मौलिक समाधान) है

जो कूलम्ब का इलेक्ट्रोस्टैटिक्स का नियम है। (ऐतिहासिक कारणों से, और ऊपर गुरुत्वाकर्षण के मॉडल के विपरीत, कारक यहाँ प्रकट होता है और गॉस के नियम में नहीं।)

उपरोक्त चर्चा मानती है कि चुंबकीय क्षेत्र समय के साथ बदलता नहीं है। जब तक कूलम्ब गेज का उपयोग किया जाता है, तब तक समान पोइसन समीकरण उत्पन्न होता है, भले ही यह समय में भिन्न हो। इस अधिक सामान्य संदर्भ में, गणना φ अब ई की करने के लिए पर्याप्त नहीं है, क्योंकि ई भी चुंबकीय वेक्टर क्षमता ए पर निर्भर करता है, जिसे स्वतंत्र रूप से गणना की जानी चाहिए। मैक्सवेल के समीकरण में φ और A विद्युतचुंबकीय क्षेत्र का गणितीय विवरण देखें संभावित सूत्रीकरण | संभावित सूत्रीकरण में मैक्सवेल का समीकरण अधिक जानकारी के लिए {{मवार|φ}मैक्सवेल के समीकरणों में } और ए और इस मामले में पोइसन का समीकरण कैसे प्राप्त किया जाता है।

गॉसियन चार्ज घनत्व की क्षमता

यदि एक स्थिर गोलाकार रूप से सममित गाऊसी वितरण आवेश घनत्व है

जहा Q कुल आवेश है, फिर समाधान {{math|φ(r)}पोइसन के समीकरण के }
द्वारा दिया गया है
जहा erf(x) त्रुटि कार्य है।

इस समाधान 2φ का मूल्यांकन करके स्पष्ट रूप से जाँच की जा सकती है .


ध्यान दें कि σ से बहुत अधिक r के लिए , erf फलन एकता और क्षमता तक पहुंचता है विद्युत क्षमता φ(r) तक पहुँचता है | बिंदु-आवेश क्षमता,

जैसा कि कोई उम्मीद करेगा। इसके अलावा, जैसे ही इसका तर्क बढ़ता है, त्रुटि फ़ंक्शन 1 तक पहुंचता है; व्यवहार में, के लिए r > 3σ सापेक्ष त्रुटि एक हजार में एक भाग से छोटी है।

भूतल पुनर्निर्माण

भूतल पुनर्निर्माण एक उलटा समस्या है। लक्ष्य बड़ी संख्या में बिंदुओं के आधार पर एक चिकनी सतह को डिजिटल रूप से पुनर्निर्माण करना हैi(बिंदु बादल) जहां प्रत्येक बिंदु स्थानीय सतह सामान्य 'एन' का अनुमान भी लगाता हैi.[3] इस समस्या को हल करने के लिए पोइसन के समीकरण का उपयोग पॉइसन सतह पुनर्निर्माण नामक तकनीक के साथ किया जा सकता है।[4]

इस तकनीक का लक्ष्य एक निहित फलन f का पुनर्निर्माण करना है जिसका मान बिंदु p पर शून्य हैiऔर किसकी प्रवणता बिंदु p पर हैiसामान्य वैक्टर 'एन' के बराबरi. का सेट (pi, 'एन'i) इस प्रकार एक निरंतर यूक्लिडियन वेक्टर फ़ील्ड वी के रूप में तैयार किया गया है। निहित फ़ंक्शन 'एफ' ' अभिन्न वेक्टर फ़ील्ड वी द्वारा पाया जाता है। चूंकि प्रत्येक वेक्टर फ़ील्ड फ़ंक्शन का ढाल नहीं है, समस्या का समाधान हो सकता है या नहीं भी हो सकता है : एक सुचारू सदिश क्षेत्र V के लिए एक फंक्शन f की ढाल होने के लिए आवश्यक और पर्याप्त शर्त यह है कि V का कर्ल (गणित) समान रूप से शून्य होना चाहिए। यदि इस स्थिति को लागू करना मुश्किल है, तो V और 'f' के ग्रेडिएंट के बीच के अंतर को कम करने के लिए कम से कम वर्ग फ़िट करना अभी भी संभव है।

सतह के पुनर्निर्माण की समस्या के लिए पोइसन के समीकरण को प्रभावी ढंग से लागू करने के लिए, वेक्टर क्षेत्र V का एक अच्छा विवेक खोजना आवश्यक है। मूल दृष्टिकोण डेटा को परिमित-अंतर ग्रिड के साथ बांधना है। ऐसे ग्रिड के नोड्स पर मूल्यवान फ़ंक्शन के लिए, इसके ग्रेडियेंट को स्टैगर्ड ग्रिड पर मूल्यवान के रूप में प्रदर्शित किया जा सकता है, यानी ग्रिड पर जिनके नोड मूल ग्रिड के नोड्स के बीच स्थित होते हैं। तीन कंपित ग्रिडों को परिभाषित करना सुविधाजनक है, प्रत्येक को सामान्य डेटा के घटकों के अनुरूप और केवल एक दिशा में स्थानांतरित किया गया है। प्रत्येक कंपित ग्रिड पर हम बिंदुओं के सेट पर ट्रिलिनियर इंटरपोलेशन करते हैं। इंटरपोलेशन वेट का उपयोग 'एन' के संबंधित घटक के परिमाण को वितरित करने के लिए किया जाता हैiपी युक्त विशेष कंपित ग्रिड सेल के नोड्स परi. कज़्दान और सहलेखक एक अनुकूली परिमित-अंतर ग्रिड का उपयोग करके विवेक का अधिक सटीक तरीका देते हैं, यानी ग्रिड की कोशिकाएँ छोटी होती हैं (ग्रिड अधिक सूक्ष्मता से विभाजित होती है) जहाँ अधिक डेटा बिंदु होते हैं। [4] वे इस तकनीक को अनुकूली अष्टक के साथ लागू करने का सुझाव देते हैं।

द्रव गतिकी

असंपीड्य नेवियर-स्टोक्स समीकरणों के लिए, द्वारा दिया गया

दबाव क्षेत्र के लिए समीकरण एक अरेखीय पोइसन समीकरण का एक उदाहरण है:
ध्यान दें कि उपरोक्त ट्रेस साइन-डिफिनिट नहीं है।

यह भी देखें

  • असतत पोइसन समीकरण
  • पोइसन-बोल्ट्जमैन समीकरण
  • हेल्महोल्ट्ज़ समीकरण
  • पोइसन के समीकरण के लिए अद्वितीयता प्रमेय
  • कमजोर सूत्रीकरण उदाहरण 2: पोइसन का समीकरण

संदर्भ

  1. Jackson, Julia A.; Mehl, James P.; Neuendorf, Klaus K. E., eds. (2005), Glossary of Geology, American Geological Institute, Springer, p. 503, ISBN 9780922152766
  2. Poisson (1823). "Mémoire sur la théorie du magnétisme en mouvement" [Memoir on the theory of magnetism in motion]. Mémoires de l'Académie Royale des Sciences de l'Institut de France (in français). 6: 441–570. From p. 463: "Donc, d'après ce qui précède, nous aurons enfin:
    selon que le point M sera situé en dehors, à la surface ou en dedans du volume que l'on considère." (Thus, according to what preceded, we will finally have:
    depending on whether the point M is located outside, on the surface of, or inside the volume that one is considering.) V is defined (p. 462) as
    where, in the case of electrostatics, the integral is performed over the volume of the charged body, the coordinates of points that are inside or on the volume of the charged body are denoted by , is a given function of and in electrostatics, would be a measure of charge density, and is defined as the length of a radius extending from the point M to a point that lies inside or on the charged body. The coordinates of the point M are denoted by and denotes the value of (the charge density) at M.
  3. Calakli, Fatih; Taubin, Gabriel (2011). "चिकनी हस्ताक्षरित दूरी सतह पुनर्निर्माण" (PDF). Pacific Graphics. 30 (7).
  4. 4.0 4.1 Kazhdan, Michael; Bolitho, Matthew; Hoppe, Hugues (2006). "Poisson surface reconstruction". Proceedings of the fourth Eurographics symposium on Geometry processing (SGP '06). Eurographics Association, Aire-la-Ville, Switzerland. pp. 61–70. ISBN 3-905673-36-3.


अग्रिम पठन

  • Evans, Lawrence C. (1998). Partial Differential Equations. Providence (RI): American Mathematical Society. ISBN 0-8218-0772-2.
  • Mathews, Jon; Walker, Robert L. (1970). Mathematical Methods of Physics (2nd ed.). New York: W. A. Benjamin. ISBN 0-8053-7002-1.
  • Polyanin, Andrei D. (2002). Handbook of Linear Partial Differential Equations for Engineers and Scientists. Boca Raton (FL): Chapman & Hall/CRC Press. ISBN 1-58488-299-9.


बाहरी संबंध