मुक्त मापांक: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 1: Line 1:
{{short description|In mathematics, a module that has a basis}}
{{short description|In mathematics, a module that has a basis}}
गणित में, '''मुक्त मापांक''' एक [[मॉड्यूल (गणित)|मापांक (गणित)]] है जिसका एक [[आधार (रैखिक बीजगणित)]] होता है - अर्थात, रैखिक रूप से स्वतंत्र तत्वों से युक्त एक मापांक का [[जनक समुच्चय]]। प्रत्येक [[सदिश समष्टि]] एक मुक्त मापांक है,<ref>{{cite book|author=Keown |title=समूह प्रतिनिधित्व सिद्धांत का परिचय|year=1975|url={{Google books|plainurl=y|id=hC9iTw8DO7gC|page=24|text=Every vector space is free}}|page=24}}</ref> लेकिन, यदि गुणकों का [[वलय (गणित)]] एक विभाजन वलय नहीं है ([[क्रमविनिमेय अंगूठी|क्रम विनिमय स्थिति]] में एक [[क्षेत्र (गणित)]] नहीं है), तो वहां गैर-मुक्त मापांक उपस्थित हैं।
गणित में, '''मुक्त मापांक''' एक [[मॉड्यूल (गणित)|मापांक (गणित)]] है जिसका [[आधार (रैखिक बीजगणित)]] होता है - अर्थात, रैखिक रूप से स्वतंत्र तत्वों से युक्त एक मापांक का [[जनक समुच्चय]]। प्रत्येक [[सदिश समष्टि]] मुक्त मापांक है,<ref>{{cite book|author=Keown |title=समूह प्रतिनिधित्व सिद्धांत का परिचय|year=1975|url={{Google books|plainurl=y|id=hC9iTw8DO7gC|page=24|text=Every vector space is free}}|page=24}}</ref> लेकिन, यदि गुणकों का [[वलय (गणित)]] विभाजन वलय नहीं है ([[क्रमविनिमेय अंगूठी|क्रम विनिमय स्थिति]] में [[क्षेत्र (गणित)]] नहीं है), तो वहां गैर-मुक्त मापांक उपस्थित हैं।


किसी भी [[सेट (गणित)]] {{math|''S''}} और वलय {{math|''R''}} को देखते हुए, आधार {{math|''S''}} के साथ एक मुक्त <math>R</math> मापांक है, जिसे {{math|''S''}} पर एक मुक्त मापांक या <math>S</math> के तत्वों के औपचारिक  {{math|''R''}}-रैखिक संयोजन का एक मापांक कहा जाता है।
किसी भी [[सेट (गणित)]] {{math|''S''}} और वलय {{math|''R''}} को देखते हुए, आधार {{math|''S''}} के साथ मुक्त <math>R</math> मापांक है, जिसे {{math|''S''}} पर मुक्त मापांक या <math>S</math> के तत्वों के औपचारिक  {{math|''R''}}-रैखिक संयोजन का मापांक कहा जाता है।


एक [[मुक्त एबेलियन समूह]] [[पूर्णांकों]] के वलय {{math|'''Z'''}}  पर सटीक रूप से एक मुक्त मापांक है।
एक [[मुक्त एबेलियन समूह]] [[पूर्णांकों]] के वलय {{math|'''Z'''}}  पर सटीक रूप से मुक्त मापांक है।


== परिभाषा ==
== परिभाषा ==
Line 12: Line 12:
* यदि प्रत्येक <math>\{e_1,\dots,e_n\}\subset E</math> के लिए <math>E</math>  रैखिक रूप से स्वतंत्र है, <math>r_1 e_1 + r_2 e_2 + \cdots + r_n e_n = 0_M</math> इसका आशय है <math>r_1 = r_2 = \cdots = r_n = 0_R</math> (जहाँ <math>0_M</math>, <math>M</math> का शून्य तत्व है और <math>0_R</math> , <math>R</math> का शून्य तत्व है)
* यदि प्रत्येक <math>\{e_1,\dots,e_n\}\subset E</math> के लिए <math>E</math>  रैखिक रूप से स्वतंत्र है, <math>r_1 e_1 + r_2 e_2 + \cdots + r_n e_n = 0_M</math> इसका आशय है <math>r_1 = r_2 = \cdots = r_n = 0_R</math> (जहाँ <math>0_M</math>, <math>M</math> का शून्य तत्व है और <math>0_R</math> , <math>R</math> का शून्य तत्व है)


एक मुफ्त मापांक एक आधार वाला मापांक है।<ref>{{cite book|author=Hazewinkel |title=Encyclopaedia of Mathematics, Volume 4|year=1989|url={{Google books|plainurl=y|id=s9F71NJxwzoC|page=110|text=A free module is a module with a basis}}|page=110}}</ref>
मुफ्त मापांक आधार वाला मापांक है।<ref>{{cite book|author=Hazewinkel |title=Encyclopaedia of Mathematics, Volume 4|year=1989|url={{Google books|plainurl=y|id=s9F71NJxwzoC|page=110|text=A free module is a module with a basis}}|page=110}}</ref>


परिभाषा की दूसरी छमाही का एक तात्कालिक परिणाम यह है कि पहली छमाही में गुणांक <math>M</math> के प्रत्येक तत्व के लिए अद्वितीय हैं।
परिभाषा की दूसरी छमाही का एक तात्कालिक परिणाम यह है कि पहली छमाही में गुणांक <math>M</math> के प्रत्येक तत्व के लिए अद्वितीय हैं।
Line 21: Line 21:
माना R एक वलय है।
माना R एक वलय है।
*R अपने ऊपर की श्रेणि का एक मुफ्त मापांक है (या तो बाएं या दाएं मापांक के रूप में); कोई भी इकाई तत्व एक आधार है।
*R अपने ऊपर की श्रेणि का एक मुफ्त मापांक है (या तो बाएं या दाएं मापांक के रूप में); कोई भी इकाई तत्व एक आधार है।
*अधिक समान्यतः, यदि R क्रमविनिमेय है, तो R का एक गैर-शून्य आदर्श I मुक्त है और केवल अगर यह एक गैर-शून्यकारक द्वारा उत्पन्न एक प्रमुख आदर्श है, जिसमें जनक एक आधार है।<ref>Proof: Suppose <math>I</math> is free with a basis <math>\{ x_j | j\}</math>. For <math>j \ne k</math>, <math>x_j x_k</math> must have the unique linear combination in terms of <math>x_j</math> and <math>x_k</math>, which is not true. Thus, since <math>I \ne 0</math>, there is only one basis element which must be a nonzerodivisor. The converse is clear.<math>\square</math></ref><!-- How about the non-commutative case? we at least need a reference for the non-commutative case. -->
*अधिक समान्यतः, यदि R क्रमविनिमेय है, तो R का गैर-शून्य आदर्श I मुक्त है और केवल अगर यह गैर-शून्यकारक द्वारा उत्पन्न प्रमुख आदर्श है, जिसमें जनक आधार है।<ref>Proof: Suppose <math>I</math> is free with a basis <math>\{ x_j | j\}</math>. For <math>j \ne k</math>, <math>x_j x_k</math> must have the unique linear combination in terms of <math>x_j</math> and <math>x_k</math>, which is not true. Thus, since <math>I \ne 0</math>, there is only one basis element which must be a nonzerodivisor. The converse is clear.<math>\square</math></ref><!-- How about the non-commutative case? we at least need a reference for the non-commutative case. -->
*एक [[प्रमुख आदर्श डोमेन|प्रमुख आदर्श कार्यक्षेत्र]] पर (उदाहरण के लिए, <math>\mathbb{Z}</math>), एक मुफ्त मापांक का एक उपमापांक मुफ्त है।
*एक [[प्रमुख आदर्श डोमेन|प्रमुख आदर्श कार्यक्षेत्र]] पर (उदाहरण के लिए, <math>\mathbb{Z}</math>), एक मुफ्त मापांक का एक उपमापांक मुफ्त है।
*यदि R क्रमविनिमेय है, तो बहुपद वलय <math>R[X]</math> अनिश्चित X में संभावित आधार 1, X, X<sup>2  के साथ मुफ्त मापांक है।
*यदि R क्रमविनिमेय है, तो बहुपद वलय <math>R[X]</math> अनिश्चित X में संभावित आधार 1, X, X<sup>2  के साथ मुफ्त मापांक है।
*मान लीजिए कि <math>A[t]</math> क्रमविनिमेय वलय A पर एक बहुपद वलय हो, जहाँ डिग्री d का एक मोनिक बहुपद, <math>B = A[t]/(f)</math> और <math>\xi</math> B में T की छवि हो। फिर B में उपवलय के रूप में A होता है और आधार के साथ A-मापांक के रूप में मुक्त होता है <math>1, \xi, \dots, \xi^{d-1}</math>.
*मान लीजिए कि <math>A[t]</math> क्रमविनिमेय वलय A पर बहुपद वलय हो, जहाँ डिग्री d का मोनिक बहुपद, <math>B = A[t]/(f)</math> और <math>\xi</math> B में T की छवि हो। फिर B में उपवलय के रूप में A होता है और आधार के साथ A-मापांक के रूप में मुक्त होता है <math>1, \xi, \dots, \xi^{d-1}</math>.
*किसी भी गैर-ऋणात्मक पूर्णांक n के लिए, <math>R^n = R \times \cdots \times R</math>, बाएँ R-मापांक के रूप में R की n प्रतियों का [[कार्तीय गुणन]] मुक्त है। यदि R में [[निश्चर आधार संख्या]] है, तो मापांक का श्रेणि n है।
*किसी भी गैर-ऋणात्मक पूर्णांक n के लिए, <math>R^n = R \times \cdots \times R</math>, बाएँ R-मापांक के रूप में R की n प्रतियों का [[कार्तीय गुणन]] मुक्त है। यदि R में [[निश्चर आधार संख्या]] है, तो मापांक का श्रेणि n है।
* मुक्त मापांक का सीधा योग मुफ्त है, जबकि मुफ्त मापांक का एक अनंत कार्तीय गुणन समान्यतः मुफ्त नहीं होता है।
* मुक्त मापांक का सीधा योग मुफ्त है, जबकि मुफ्त मापांक का एक अनंत कार्तीय गुणन समान्यतः मुफ्त नहीं होता है।
* एक क्रमविनिमेय [[ स्थानीय अंगूठी | स्थानीय वलय]]  पर एक सूक्ष्म रूप से उत्पन्न मापांक मुफ्त है अगर और केवल अगर यह ईमानदारी से सपाट है।<ref>{{harvnb|Matsumura|1986|loc=Theorem 7.10.}}</ref> इसके अतिरिक्त, कप्लान्स्की के प्रमेय में एक (संभवतः गैर-क्रमविनिमेयता) स्थानीय वलय पर एक प्रक्षेपीय मापांक बताया गया है।
* एक क्रमविनिमेय [[ स्थानीय अंगूठी | स्थानीय वलय]]  पर सूक्ष्म रूप से उत्पन्न मापांक मुफ्त है अगर और केवल अगर यह ईमानदारी से सपाट है।<ref>{{harvnb|Matsumura|1986|loc=Theorem 7.10.}}</ref> इसके अतिरिक्त, कप्लान्स्की के प्रमेय में एक (संभवतः गैर-क्रमविनिमेयता) स्थानीय वलय पर प्रक्षेपीय मापांक बताया गया है।
* कभी-कभी, एक मापांक मुक्त है या नहीं, समुच्चय सिद्धांतपरक अर्थ में अनिर्णेय है। एक प्रसिद्ध उदाहरण व्हाइटहेड समस्या है, जो पूछती है कि व्हाइटहेड समूह मुक्त है या नहीं। जैसा कि यह पता लगा कि, ZFC समस्या से स्वतंत्र है।
* कभी-कभी, मापांक मुक्त है या नहीं, समुच्चय सिद्धांतपरक अर्थ में अनिर्णेय है। एक प्रसिद्ध उदाहरण व्हाइटहेड समस्या है, जो पूछती है कि व्हाइटहेड समूह मुक्त है या नहीं। जैसा कि यह पता लगा कि, ZFC समस्या से स्वतंत्र है।


== औपचारिक रैखिक संयोजन ==
== औपचारिक रैखिक संयोजन ==


{{anchor|Free module over a set}} एक सेट {{math|''E''}} और वलय {{math|''R''}} दिया गया है, एक मुफ़्त {{math|''R''}}-मापांक है जिसका आधार {{math|''E''}} है: अर्थात्, E द्वारा अनुक्रमित R की प्रतियों के मापांक का प्रत्यक्ष योग
{{anchor|Free module over a set}} एक सेट {{math|''E''}} और वलय {{math|''R''}} दिया गया है, मुफ़्त {{math|''R''}}-मापांक है जिसका आधार {{math|''E''}} है: अर्थात्, E द्वारा अनुक्रमित R की प्रतियों के मापांक का प्रत्यक्ष योग
:<math>R^{(E)} = \bigoplus_{e \in E} R</math>.
:<math>R^{(E)} = \bigoplus_{e \in E} R</math>.
स्पष्ट रूप से, यह कार्तीय गुणन <math display="inline">\prod_E R</math> का उपमापांक है (R को बाएं मापांक के रूप में देखा जाता है) जिसमें ऐसे तत्व होते हैं जिनमें केवल बहुत से अशून्य घटक होते हैं। कोई E को {{math|''R''<sup>(''E'')</sup>}} के साथ एक तत्व E की पहचान करके एक उपसमुच्चय के रूप में {{math|''R''<sup>(''E'')</sup>}} में अंत:स्थापित कर सकता है जिसका E-वाँ घटक 1 (R की एकता) है और अन्य सभी घटक शून्य हैं। फिर तत्व {{math|''R''<sup>(''E'')</sup>}} के प्रत्येक अवयव को विशिष्ट रूप से लिखा जा सकता है
स्पष्ट रूप से, यह कार्तीय गुणन <math display="inline">\prod_E R</math> का उपमापांक है (R को बाएं मापांक के रूप में देखा जाता है) जिसमें ऐसे तत्व होते हैं जिनमें केवल बहुत से अशून्य घटक होते हैं। कोई E को {{math|''R''<sup>(''E'')</sup>}} के साथ तत्व E की पहचान करके उपसमुच्चय के रूप में {{math|''R''<sup>(''E'')</sup>}} में अंत:स्थापित कर सकता है जिसका E-वाँ घटक 1 (R की एकता) है और अन्य सभी घटक शून्य हैं। फिर तत्व {{math|''R''<sup>(''E'')</sup>}} के प्रत्येक अवयव को विशिष्ट रूप से लिखा जा सकता है
:<math>\sum_{e \in E} c_e e ,</math>
:<math>\sum_{e \in E} c_e e ,</math>
जहाँ केवल बहुत से <math>c_e</math> अशून्य हैं। इसे {{math|''E''}} के तत्वों का [[औपचारिक रैखिक संयोजन]] कहा जाता है।
जहाँ केवल बहुत से <math>c_e</math> अशून्य हैं। इसे {{math|''E''}} के तत्वों का [[औपचारिक रैखिक संयोजन]] कहा जाता है।
Line 44: Line 44:
मुफ्त मापांक {{math|''R''<sup>(''E'')</sup>}} निम्नलिखित समतुल्य प्रकार से भी बनाया जा सकता है।
मुफ्त मापांक {{math|''R''<sup>(''E'')</sup>}} निम्नलिखित समतुल्य प्रकार से भी बनाया जा सकता है।


एक वलय R और एक समुच्चय E दिया है, पहले एक समुच्चय के रूप में हम देते हैं
एक वलय R और समुच्चय E दिया है, पहले समुच्चय के रूप में हम देते हैं
:<math>R^{(E)} = \{ f: E \to R \mid f(x) = 0 \text { for all but finitely many } x \in E \}.</math>
:<math>R^{(E)} = \{ f: E \to R \mid f(x) = 0 \text { for all but finitely many } x \in E \}.</math>
हम इसे बाएं मापांक की संरचना के लिए सुसज्जित करते हैं जैसे कि इसके द्वारा परिभाषित किया गया है: X में E के लिए,
हम इसे बाएं मापांक की संरचना के लिए सुसज्जित करते हैं जैसे कि इसके द्वारा परिभाषित किया गया है: X में E के लिए,
Line 54: Line 54:
जहाँ <math>c_e</math> R में हैं और उनमें से बहुत से केवल अशून्य हैं और <math>\delta_e</math> इस प्रकार दिया गया है
जहाँ <math>c_e</math> R में हैं और उनमें से बहुत से केवल अशून्य हैं और <math>\delta_e</math> इस प्रकार दिया गया है
:<math> \delta_e(x) = \begin{cases} 1_R \quad\mbox{if } x=e \\ 0_R \quad\mbox{if } x\neq e \end{cases} </math>
:<math> \delta_e(x) = \begin{cases} 1_R \quad\mbox{if } x=e \\ 0_R \quad\mbox{if } x\neq e \end{cases} </math>
(यह [[क्रोनकर डेल्टा]] का एक प्रकार है)। उपरोक्त का अर्थ है कि <math>R^{(E)}</math> का उपसमुच्चय <math>\{ \delta_e \mid e \in E \}</math>, <math>R^{(E)}</math>का एक आधार है। प्रतिचित्रण <math>e \mapsto \delta_e</math> {{math|''E''}} और इस आधार के बीच [[एकैक आच्छादन]] है। इस एकैक आच्छादन के माध्यम से, <math>R^{(E)}</math> आधार E के साथ एक मुफ्त मापांक है।
(यह [[क्रोनकर डेल्टा]] का प्रकार है)। उपरोक्त का अर्थ है कि <math>R^{(E)}</math> का उपसमुच्चय <math>\{ \delta_e \mid e \in E \}</math>, <math>R^{(E)}</math>का आधार है। प्रतिचित्रण <math>e \mapsto \delta_e</math> {{math|''E''}} और इस आधार के बीच [[एकैक आच्छादन]] है। इस एकैक आच्छादन के माध्यम से, <math>R^{(E)}</math> आधार E के साथ मुफ्त मापांक है।


== सार्वभौमिक गुण ==
== सार्वभौमिक गुण ==


समावेशन प्रतिचित्रण <math>\iota : E\to R^{(E)}</math> ऊपर परिभाषित निम्नलिखित अर्थों में [[सार्वभौमिक संपत्ति]] है। एक सेट E से बाईं ओर R-मापांक N में एक मनमाना फलन <math>f : E\to N</math>  दिया गया है, एक अद्वितीय [[मॉड्यूल समरूपता|मापांक समरूपता]] <math>\overline{f}: R^{(E)}\to N</math> उपस्थित है, ऐसा है कि <math>f = \overline{f} \circ\iota</math>; अर्थात्, <math>\overline{f}</math> सूत्र द्वारा परिभाषित किया गा है:
समावेशन प्रतिचित्रण <math>\iota : E\to R^{(E)}</math> ऊपर परिभाषित निम्नलिखित अर्थों में [[सार्वभौमिक संपत्ति]] है। एक सेट E से बाईं ओर R-मापांक N में मनमाना फलन <math>f : E\to N</math>  दिया गया है, एक अद्वितीय [[मॉड्यूल समरूपता|मापांक समरूपता]] <math>\overline{f}: R^{(E)}\to N</math> उपस्थित है, ऐसा है कि <math>f = \overline{f} \circ\iota</math>; अर्थात्, <math>\overline{f}</math> सूत्र द्वारा परिभाषित किया गा है:
:<math>\overline{f}\left (\sum_{e \in E} r_e e \right) = \sum_{e \in E} r_e f(e)</math>
:<math>\overline{f}\left (\sum_{e \in E} r_e e \right) = \sum_{e \in E} r_e f(e)</math>
और <math>\overline{f}</math> को रैखिकता द्वारा <math>f</math> को विस्तारित करके प्राप्त किया जा सकता है। विशिष्टता का अर्थ है कि प्रत्येक R-रैखिक प्रतिचित्रण <math>R^{(E)} \to N</math> विशिष्ट रूप से इसके [[प्रतिबंध (गणित)]] द्वारा E को निर्धारित किया जाता है।
और <math>\overline{f}</math> को रैखिकता द्वारा <math>f</math> को विस्तारित करके प्राप्त किया जा सकता है। विशिष्टता का अर्थ है कि प्रत्येक R-रैखिक प्रतिचित्रण <math>R^{(E)} \to N</math> विशिष्ट रूप से इसके [[प्रतिबंध (गणित)]] द्वारा E को निर्धारित किया जाता है।


हमेशा की तरह सार्वभौमिक गुणों के लिए, यह {{math|''R''<sup>(''E'')</sup>}} को एक विहित समरूपता तक परिभाषित करता है। साथ ही <math>\iota : E\to R^{(E)}</math> का गठन प्रत्येक सेट E के लिए एक [[ऑपरेटर|प्रकार्यक]] निर्धारित करता है
हमेशा की तरह सार्वभौमिक गुणों के लिए, यह {{math|''R''<sup>(''E'')</sup>}} को विहित समरूपता तक परिभाषित करता है। साथ ही <math>\iota : E\to R^{(E)}</math> का गठन प्रत्येक सेट E के लिए एक [[ऑपरेटर|प्रकार्यक]] निर्धारित करता है
:<math>R^{(-)}: \textbf{Set} \to R-\mathsf{Mod}, \, E \mapsto R^{(E)}</math>,
:<math>R^{(-)}: \textbf{Set} \to R-\mathsf{Mod}, \, E \mapsto R^{(E)}</math>,
[[सेट की श्रेणी]] से बाएं {{math|''R''}}-मापांक की श्रेणी में । इसे [[मुक्त कारक|मुक्त गुणक]] कहा जाता है और प्राकृतिक संबंध को संतुष्ट करता है: प्रत्येक सेट E और बाएं मापांक N के लिए,
[[सेट की श्रेणी]] से बाएं {{math|''R''}}-मापांक की श्रेणी में । इसे [[मुक्त कारक|मुक्त गुणक]] कहा जाता है और प्राकृतिक संबंध को संतुष्ट करता है: प्रत्येक सेट E और बाएं मापांक N के लिए,
Line 70: Line 70:
== सामान्यीकरण ==
== सामान्यीकरण ==


मुफ्त मापांक के बारे में कई बयान, जो वलयों पर सामान्य मापांक के लिए गलत हैं, मुक्त मापांक के कुछ सामान्यीकरणों के लिए अभी भी सही हैं। [[प्रोजेक्टिव मॉड्यूल|प्रक्षेपी मापांक]] मुफ्त मापांक के प्रत्यक्ष योग हैं, इसलिए कोई भी एक मुक्त मापांक में [[इंजेक्शन|अंतःक्षेपण]] चुन सकता है और कोई प्रक्षेपी मापांक के लिए कुछ साबित करने के लिए इसका आधार उपयोग कर सकता है। यहां तक ​​कि कमजोर सामान्यीकरण भी [[फ्लैट मॉड्यूल|समतल मापांक]] हैं, जिनके पास अभी भी गुण है जो उनके प्रदिश सटीक अनुक्रमों और मरोड़-मुक्त मापांक को संरक्षित करती है। यदि वलय में विशेष गुण हैं, तो यह पदानुक्रम ढह सकता है, उदाहरण के लिए, किसी भी संपूर्ण स्थानीय डेडेकाइंड वलय के लिए, प्रत्येक मरोड़-मुक्त मापांक सपाट, प्रक्षेपी और मुक्त भी है। एक क्रमविनिमेय PID ​​​​का एक सूक्ष्म रूप से उत्पन्न मरोड़-मुक्त मापांक मुफ़्त है। एक निश्चित रूप से जनक किया गया Z-मापांक मुफ़्त है और केवल अगर यह समतल है।
मुफ्त मापांक के बारे में कई बयान, जो वलयों पर सामान्य मापांक के लिए गलत हैं, मुक्त मापांक के कुछ सामान्यीकरणों के लिए अभी भी सही हैं। [[प्रोजेक्टिव मॉड्यूल|प्रक्षेपी मापांक]] मुफ्त मापांक के प्रत्यक्ष योग हैं, इसलिए कोई भी एक मुक्त मापांक में [[इंजेक्शन|अंतःक्षेपण]] चुन सकता है और कोई प्रक्षेपी मापांक के लिए कुछ साबित करने के लिए इसका आधार उपयोग कर सकता है। यहां तक ​​कि कमजोर सामान्यीकरण भी [[फ्लैट मॉड्यूल|समतल मापांक]] हैं, जिनके पास अभी भी गुण है जो उनके प्रदिश सटीक अनुक्रमों और मरोड़-मुक्त मापांक को संरक्षित करती है। यदि वलय में विशेष गुण हैं, तो यह पदानुक्रम ढह सकता है, उदाहरण के लिए, किसी भी संपूर्ण स्थानीय डेडेकाइंड वलय के लिए, प्रत्येक मरोड़-मुक्त मापांक सपाट, प्रक्षेपी और मुक्त भी है। क्रमविनिमेय PID ​​​​का एक सूक्ष्म रूप से उत्पन्न मरोड़-मुक्त मापांक मुफ़्त है। निश्चित रूप से जनक किया गया Z-मापांक मुफ़्त है और केवल अगर यह समतल है।


:[[File:Module properties in commutative algebra.svg|विनिमेय बीजगणित में मॉड्यूल गुण]]  
:[[File:Module properties in commutative algebra.svg|विनिमेय बीजगणित में मॉड्यूल गुण]]  

Revision as of 05:52, 2 May 2023

गणित में, मुक्त मापांक एक मापांक (गणित) है जिसका आधार (रैखिक बीजगणित) होता है - अर्थात, रैखिक रूप से स्वतंत्र तत्वों से युक्त एक मापांक का जनक समुच्चय। प्रत्येक सदिश समष्टि मुक्त मापांक है,[1] लेकिन, यदि गुणकों का वलय (गणित) विभाजन वलय नहीं है (क्रम विनिमय स्थिति में क्षेत्र (गणित) नहीं है), तो वहां गैर-मुक्त मापांक उपस्थित हैं।

किसी भी सेट (गणित) S और वलय R को देखते हुए, आधार S के साथ मुक्त मापांक है, जिसे S पर मुक्त मापांक या के तत्वों के औपचारिक R-रैखिक संयोजन का मापांक कहा जाता है।

एक मुक्त एबेलियन समूह पूर्णांकों के वलय Z पर सटीक रूप से मुक्त मापांक है।

परिभाषा

एक वलय और -मापांक के लिए, सेट का आधार है अगर:

  • के लिए जनक समुच्चय है; अर्थात्, का प्रत्येक तत्व के तत्वों का परिमित योग है जिसे में गुणांक से गुणा किया जाता है; और
  • यदि प्रत्येक के लिए रैखिक रूप से स्वतंत्र है, इसका आशय है (जहाँ , का शून्य तत्व है और , का शून्य तत्व है)

क मुफ्त मापांक आधार वाला मापांक है।[2]

परिभाषा की दूसरी छमाही का एक तात्कालिक परिणाम यह है कि पहली छमाही में गुणांक के प्रत्येक तत्व के लिए अद्वितीय हैं।

अगर अपरिवर्तनीय आधार संख्या है, तो परिभाषा के अनुसार किसी भी दो आधारों में समान गणनांक होता है। उदाहरण के लिए, शून्येतर क्रमविनिमेय वलयों में परिवर्तनीय आधार संख्या होती है। किसी भी (और इसलिए हर) आधार के गणनांक को मुक्त मापांक की श्रेणि कहा जाता है। यदि यह गणनांक परिमित है, तो मुक्त मापांक को परिमित श्रेणि से मुक्त कहा जाता है, या श्रेणि n से मुक्त कहा जाता है, यदि श्रेणि n के रूप में जाना जाता है।

उदाहरण

माना R एक वलय है।

  • R अपने ऊपर की श्रेणि का एक मुफ्त मापांक है (या तो बाएं या दाएं मापांक के रूप में); कोई भी इकाई तत्व एक आधार है।
  • अधिक समान्यतः, यदि R क्रमविनिमेय है, तो R का गैर-शून्य आदर्श I मुक्त है और केवल अगर यह गैर-शून्यकारक द्वारा उत्पन्न प्रमुख आदर्श है, जिसमें जनक आधार है।[3]
  • एक प्रमुख आदर्श कार्यक्षेत्र पर (उदाहरण के लिए, ), एक मुफ्त मापांक का एक उपमापांक मुफ्त है।
  • यदि R क्रमविनिमेय है, तो बहुपद वलय अनिश्चित X में संभावित आधार 1, X, X2 के साथ मुफ्त मापांक है।
  • मान लीजिए कि क्रमविनिमेय वलय A पर बहुपद वलय हो, जहाँ डिग्री d का मोनिक बहुपद, और B में T की छवि हो। फिर B में उपवलय के रूप में A होता है और आधार के साथ A-मापांक के रूप में मुक्त होता है .
  • किसी भी गैर-ऋणात्मक पूर्णांक n के लिए, , बाएँ R-मापांक के रूप में R की n प्रतियों का कार्तीय गुणन मुक्त है। यदि R में निश्चर आधार संख्या है, तो मापांक का श्रेणि n है।
  • मुक्त मापांक का सीधा योग मुफ्त है, जबकि मुफ्त मापांक का एक अनंत कार्तीय गुणन समान्यतः मुफ्त नहीं होता है।
  • एक क्रमविनिमेय स्थानीय वलय पर सूक्ष्म रूप से उत्पन्न मापांक मुफ्त है अगर और केवल अगर यह ईमानदारी से सपाट है।[4] इसके अतिरिक्त, कप्लान्स्की के प्रमेय में एक (संभवतः गैर-क्रमविनिमेयता) स्थानीय वलय पर प्रक्षेपीय मापांक बताया गया है।
  • कभी-कभी, मापांक मुक्त है या नहीं, समुच्चय सिद्धांतपरक अर्थ में अनिर्णेय है। एक प्रसिद्ध उदाहरण व्हाइटहेड समस्या है, जो पूछती है कि व्हाइटहेड समूह मुक्त है या नहीं। जैसा कि यह पता लगा कि, ZFC समस्या से स्वतंत्र है।

औपचारिक रैखिक संयोजन

एक सेट E और वलय R दिया गया है, मुफ़्त R-मापांक है जिसका आधार E है: अर्थात्, E द्वारा अनुक्रमित R की प्रतियों के मापांक का प्रत्यक्ष योग

.

स्पष्ट रूप से, यह कार्तीय गुणन का उपमापांक है (R को बाएं मापांक के रूप में देखा जाता है) जिसमें ऐसे तत्व होते हैं जिनमें केवल बहुत से अशून्य घटक होते हैं। कोई E को R(E) के साथ तत्व E की पहचान करके उपसमुच्चय के रूप में R(E) में अंत:स्थापित कर सकता है जिसका E-वाँ घटक 1 (R की एकता) है और अन्य सभी घटक शून्य हैं। फिर तत्व R(E) के प्रत्येक अवयव को विशिष्ट रूप से लिखा जा सकता है

जहाँ केवल बहुत से अशून्य हैं। इसे E के तत्वों का औपचारिक रैखिक संयोजन कहा जाता है।

इसी तरह के एक तर्क से पता चलता है कि हर मुक्त लेफ्ट (रेस्प। राइट) R-मापांक समरूपी है जो कि R की प्रतियों के प्रत्यक्ष योग के रूप में लेफ्ट (रेस्प। राइट) मापांक है।

एक और निर्माण

मुफ्त मापांक R(E) निम्नलिखित समतुल्य प्रकार से भी बनाया जा सकता है।

एक वलय R और समुच्चय E दिया है, पहले समुच्चय के रूप में हम देते हैं

हम इसे बाएं मापांक की संरचना के लिए सुसज्जित करते हैं जैसे कि इसके द्वारा परिभाषित किया गया है: X में E के लिए,

और अदिश गुणा द्वारा: r में R और x में E के लिए,

अब, E पर एक R-मान फलन (गणित) के रूप में, प्रत्येक F में के रूप में विशिष्ट रूप से लिखा जा सकता है

जहाँ R में हैं और उनमें से बहुत से केवल अशून्य हैं और इस प्रकार दिया गया है

(यह क्रोनकर डेल्टा का प्रकार है)। उपरोक्त का अर्थ है कि का उपसमुच्चय , का आधार है। प्रतिचित्रण E और इस आधार के बीच एकैक आच्छादन है। इस एकैक आच्छादन के माध्यम से, आधार E के साथ मुफ्त मापांक है।

सार्वभौमिक गुण

समावेशन प्रतिचित्रण ऊपर परिभाषित निम्नलिखित अर्थों में सार्वभौमिक संपत्ति है। एक सेट E से बाईं ओर R-मापांक N में मनमाना फलन दिया गया है, एक अद्वितीय मापांक समरूपता उपस्थित है, ऐसा है कि ; अर्थात्, सूत्र द्वारा परिभाषित किया गा है:

और को रैखिकता द्वारा को विस्तारित करके प्राप्त किया जा सकता है। विशिष्टता का अर्थ है कि प्रत्येक R-रैखिक प्रतिचित्रण विशिष्ट रूप से इसके प्रतिबंध (गणित) द्वारा E को निर्धारित किया जाता है।

हमेशा की तरह सार्वभौमिक गुणों के लिए, यह R(E) को विहित समरूपता तक परिभाषित करता है। साथ ही का गठन प्रत्येक सेट E के लिए एक प्रकार्यक निर्धारित करता है

,

सेट की श्रेणी से बाएं R-मापांक की श्रेणी में । इसे मुक्त गुणक कहा जाता है और प्राकृतिक संबंध को संतुष्ट करता है: प्रत्येक सेट E और बाएं मापांक N के लिए,

जहाँ विस्मरणता प्रकार्यक है, जिसका अर्थ है विस्मरणता प्रकार्यक का बायां संलग्न है।

सामान्यीकरण

मुफ्त मापांक के बारे में कई बयान, जो वलयों पर सामान्य मापांक के लिए गलत हैं, मुक्त मापांक के कुछ सामान्यीकरणों के लिए अभी भी सही हैं। प्रक्षेपी मापांक मुफ्त मापांक के प्रत्यक्ष योग हैं, इसलिए कोई भी एक मुक्त मापांक में अंतःक्षेपण चुन सकता है और कोई प्रक्षेपी मापांक के लिए कुछ साबित करने के लिए इसका आधार उपयोग कर सकता है। यहां तक ​​कि कमजोर सामान्यीकरण भी समतल मापांक हैं, जिनके पास अभी भी गुण है जो उनके प्रदिश सटीक अनुक्रमों और मरोड़-मुक्त मापांक को संरक्षित करती है। यदि वलय में विशेष गुण हैं, तो यह पदानुक्रम ढह सकता है, उदाहरण के लिए, किसी भी संपूर्ण स्थानीय डेडेकाइंड वलय के लिए, प्रत्येक मरोड़-मुक्त मापांक सपाट, प्रक्षेपी और मुक्त भी है। क्रमविनिमेय PID ​​​​का एक सूक्ष्म रूप से उत्पन्न मरोड़-मुक्त मापांक मुफ़्त है। निश्चित रूप से जनक किया गया Z-मापांक मुफ़्त है और केवल अगर यह समतल है।

विनिमेय बीजगणित में मॉड्यूल गुण
स्थानीय वलय, आदर्श वलय और डेडेकाइंड वलय देखें।

यह भी देखें

टिप्पणियाँ

  1. Keown (1975). समूह प्रतिनिधित्व सिद्धांत का परिचय. p. 24.
  2. Hazewinkel (1989). Encyclopaedia of Mathematics, Volume 4. p. 110.
  3. Proof: Suppose is free with a basis . For , must have the unique linear combination in terms of and , which is not true. Thus, since , there is only one basis element which must be a nonzerodivisor. The converse is clear.
  4. Matsumura 1986, Theorem 7.10.


संदर्भ

This article incorporates material from free vector space over a set on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.