भौतिक पता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{About|कंप्यूटर मेमोरी एड्रेसिंग|नेटवर्किंग का अर्थ|मैक पता|भौतिक स्थानों का पता|पता}}
{{About|कंप्यूटर मेमोरी एड्रेसिंग|नेटवर्किंग का अर्थ|मैक पता|भौतिक स्थानों का पता|पता}}
[[Image:Virtual address space and physical address space relationship.svg|thumb|300px|आभासी और भौतिक पता रिक्त स्थान के बीच संबंधों का आरेख]][[ कम्प्यूटिंग ]] में, भौतिक पता (वास्तविक पता, या बाइनरी एड्रेस भी),की गणना करने में  [[ स्मृति पता ]] होता है, जिसे [[ पता बस | डेटा बेस]] सर्किटरी पर [[ बाइनरी संख्या ]] के रूप में दर्शाया जाता है | जिससे [[बस (कंप्यूटिंग)|बेस (कंप्यूटिंग)]] को  '' विशेष '' मुख्य स्मृति का स्टोरेज कक्ष,तक पहुंचने में सक्षम बनाया जा सकता है। ये स्मृति-मैप्ड I/O उपकरण का रजिस्टर है।
[[Image:Virtual address space and physical address space relationship.svg|thumb|300px|आभासी और भौतिक पता रिक्त स्थान के बीच संबंधों का आरेख]][[ कम्प्यूटिंग | कम्प्यूटिंग]] में, भौतिक पता (वास्तविक पता, या बाइनरी एड्रेस भी),की गणना करने में  [[ स्मृति पता | स्मृति पता]] होता है, जिसे [[ पता बस |डेटा बेस]] सर्किटरी पर [[ बाइनरी संख्या |बाइनरी संख्या]] के रूप में दर्शाया जाता है | जिससे [[बस (कंप्यूटिंग)|बेस (कंप्यूटिंग)]] को  '' विशेष'' मुख्य स्मृति का स्टोरेज कक्ष,तक पहुंचने में सक्षम बनाया जा सकता है। ये स्मृति-मैप्ड I/O उपकरण का रजिस्टर है।


== केंद्रीय प्रसंस्करण इकाई द्वारा उपयोग ==
== केंद्रीय प्रसंस्करण इकाई द्वारा उपयोग ==
[[ आभासी मेमोरी | आभासी स्मृति]] की सहायता करने वाले कंप्यूटर में, भौतिक पता शब्द का इस्तेमाल ज्यादातर [[ आभासी पता स्थान ]] से अलग करने के लिए किया जाता है। विशेष रूप से, स्मृति पतों का अनुवाद करने के लिए [[स्मृति प्रबंधन इकाई]] (एमएमयू) का उपयोग करने वाले कंप्यूटरों में, आभासी और भौतिक पते क्रमशः एमएमयू द्वारा किए गए अनुवाद से पहले और बाद में पते को संदर्भित करते हैं। <ref>{{cite web
[[ आभासी मेमोरी | आभासी स्मृति]] की सहायता करने वाले कंप्यूटर में, भौतिक पता शब्द का इस्तेमाल ज्यादातर [[ आभासी पता स्थान |आभासी पता स्थान]] से अलग करने के लिए किया जाता है। विशेष रूप से, स्मृति पतों का अनुवाद करने के लिए [[स्मृति प्रबंधन इकाई]] (एमएमयू) का उपयोग करने वाले कंप्यूटरों में, आभासी और भौतिक पते क्रमशः एमएमयू द्वारा किए गए अनुवाद से पहले और बाद में पते को संदर्भित करते हैं। <ref>{{cite web
  | url = http://cseweb.ucsd.edu/classes/su09/cse120/lectures/Lecture7.pdf
  | url = http://cseweb.ucsd.edu/classes/su09/cse120/lectures/Lecture7.pdf
  | title = Lecture 7: Memory Management
  | title = Lecture 7: Memory Management
Line 11: Line 11:
  }}</ref>
  }}</ref>


[[ कम्प्यूटिंग | '''कम्प्यूटिंग''']] '''में,  भौतिक पता (वास्तविक पता, या बाइनरी एड्रेस भी),  [[ स्मृति पता | स्मृति पता]] होता है, जिसे [[ पता बस | पता बेस]] सर्किटरी पर [[ बाइनरी संख्या | बाइनरी संख्या]] के रूप में दर्शाया जाता है जिससे [[बस (कंप्यूटिंग)|बेस (कंप्यूटिंग)]] को  '''
[[ कम्प्यूटिंग | '''कम्प्यूटिंग''']] '''में,  भौतिक पता (वास्तविक पता, या बाइनरी एड्रेस भी),  [[ स्मृति पता | स्मृति पता]] होता है, जिसे   '''
=== असंरेखित पता ===
=== असंरेखित पता ===
इसके अंतर्निहित [[कंप्यूटर आर्किटेक्चर|कंप्यूटर वास्तुकला]] के आधार पर, कंप्यूटर के प्रदर्शन को स्मृति में असंरेखित पहुंच से बाधित किया जा सकता है। उदाहरण के लिए, एक [[16-बिट कंप्यूटिंग]] , 16-बिट कंप्यूटर 16-बिट स्मृति डेटा बेस के साथ, जैसे [[इंटेल 8086]], सामान्यतः कम [[कम्प्यूटेशनल ओवरहेड]] होता है | यदि एक्सेस  समान पते पर संरेखित हो उस स्थिति में  16-बिट मान प्राप्त करने के लिए एकल स्मृति रीड ऑपरेशन की आवश्यकता होती है,| डेटा बेस पर एकल स्थानांतरण होता है।<ref name="lwn-alignment">{{cite web
इसके अंतर्निहित [[कंप्यूटर आर्किटेक्चर|कंप्यूटर वास्तुकला]] के आधार पर, कंप्यूटर के प्रदर्शन को स्मृति में असंरेखित पहुंच से बाधित किया जा सकता है। उदाहरण के लिए, एक [[16-बिट कंप्यूटिंग]] , 16-बिट कंप्यूटर 16-बिट स्मृति डेटा बेस के साथ, जैसे [[इंटेल 8086]], सामान्यतः कम [[कम्प्यूटेशनल ओवरहेड]] होता है | यदि एक्सेस  समान पते पर संरेखित हो उस स्थिति में  16-बिट मान प्राप्त करने के लिए एकल स्मृति रीड ऑपरेशन की आवश्यकता होती है,| डेटा बेस पर एकल स्थानांतरण होता है।<ref name="lwn-alignment">{{cite web

Revision as of 13:34, 28 April 2023

आभासी और भौतिक पता रिक्त स्थान के बीच संबंधों का आरेख

कम्प्यूटिंग में, भौतिक पता (वास्तविक पता, या बाइनरी एड्रेस भी),की गणना करने में स्मृति पता होता है, जिसे डेटा बेस सर्किटरी पर बाइनरी संख्या के रूप में दर्शाया जाता है | जिससे बेस (कंप्यूटिंग) को विशेष मुख्य स्मृति का स्टोरेज कक्ष,तक पहुंचने में सक्षम बनाया जा सकता है। ये स्मृति-मैप्ड I/O उपकरण का रजिस्टर है।

केंद्रीय प्रसंस्करण इकाई द्वारा उपयोग

आभासी स्मृति की सहायता करने वाले कंप्यूटर में, भौतिक पता शब्द का इस्तेमाल ज्यादातर आभासी पता स्थान से अलग करने के लिए किया जाता है। विशेष रूप से, स्मृति पतों का अनुवाद करने के लिए स्मृति प्रबंधन इकाई (एमएमयू) का उपयोग करने वाले कंप्यूटरों में, आभासी और भौतिक पते क्रमशः एमएमयू द्वारा किए गए अनुवाद से पहले और बाद में पते को संदर्भित करते हैं। [1]

कम्प्यूटिंग में, भौतिक पता (वास्तविक पता, या बाइनरी एड्रेस भी), स्मृति पता होता है, जिसे

असंरेखित पता

इसके अंतर्निहित कंप्यूटर वास्तुकला के आधार पर, कंप्यूटर के प्रदर्शन को स्मृति में असंरेखित पहुंच से बाधित किया जा सकता है। उदाहरण के लिए, एक 16-बिट कंप्यूटिंग , 16-बिट कंप्यूटर 16-बिट स्मृति डेटा बेस के साथ, जैसे इंटेल 8086, सामान्यतः कम कम्प्यूटेशनल ओवरहेड होता है | यदि एक्सेस समान पते पर संरेखित हो उस स्थिति में 16-बिट मान प्राप्त करने के लिए एकल स्मृति रीड ऑपरेशन की आवश्यकता होती है,| डेटा बेस पर एकल स्थानांतरण होता है।[2][3]

यदि 16-बिट डेटा मान विषम पते पर प्रारंभ होता है, तो प्रोसेसर को इसमें मूल्य लोड करने के लिए दो स्मृति रीड साइकल करने की आवश्यकता हो सकती है, अर्थात कम पते के लिए (आधा भाग फेंकना) और फिर दूसरा रीड चक्र उच्च पता लोड करें (पुनः प्राप्त डेटा का आधा भाग फेंक दें)। कुछ प्रोसेसर (कंप्यूटिंग) पर, जैसे कि मोटोरोला 68000 और मोटोरोला 68010 प्रोसेसर, और स्पार्क प्रोसेसर, असंरेखित स्मृति एक्सेस के परिणामस्वरूप अपवाद उठाया जाएगा (सामान्यतः सॉफ़्टवेयर अपवाद, जैसे पॉज़िक्स के सिगबस, को उठाया जा रहा है)।[2]


अन्य उपकरणों द्वारा उपयोग करें

प्रत्यक्ष स्मृति एक्सेस (डीएमए) सुविधा मुख्य स्मृति को पता करने के लिए सीपीयू के अतिरिक्त मदर बोर्ड में अन्य उपकरणों की अनुमति देती है। इसलिए, ऐसे उपकरणों को भौतिक पतों का ज्ञान होना भी आवश्यक है।

यह भी देखें

संदर्भ

  1. Frank Uyeda (2009). "Lecture 7: Memory Management" (PDF). CSE 120: Principles of Operating Systems. UC San Diego. Retrieved 2013-12-04.
  2. 2.0 2.1 Daniel Drake (2007-12-04). "Memory access and alignments". LWN.net. Retrieved 2013-12-04.
  3. Daniel Drake; Johannes Berg. "Documentation/unaligned-memory-access.txt". kernel.org. Retrieved 2013-12-04.