मीट्रिक व्युत्पन्न: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (9 revisions imported from alpha:मीट्रिक_व्युत्पन्न) |
(No difference)
|
Revision as of 10:19, 17 May 2023
गणित में, मेट्रिक यौगिक मेट्रिक रिक्त स्थान में पैरामीट्रिक समीकरण पथ (टोपोलॉजी) के लिए उपयुक्त व्युत्पन्न की धारणा है। यह उन स्थानों के लिए गति या पूर्ण वेग की धारणा को सामान्यीकृत करता है | जिनमें दूरी (अर्थात मीट्रिक रिक्त स्थान) की धारणा होती है | किन्तु दिशा (जैसे सदिश रिक्त स्थान) नहीं होती है।
परिभाषा
माना मीट्रिक स्थान है। माना पर सीमा बिंदु है | माना पथ है। फिर पर मीट्रिक व्युत्पन्न का निरूपित , द्वारा परिभाषित किया गया है |
यदि यह सीमा (गणित) उपस्थित है।
गुण
याद रखें कि ACp(I; X) पूर्ण निरंतरता γ : I → X का स्थान है | जैसे कि
एलपी स्पेस Lp (I; R) में कुछ मीटर के लिए γ ∈ ACp (I; X) के लिए γ का मीट्रिक व्युत्पन्न लेबेस्ग के लिए उपस्थित है | जिससे I में लगभग हर समय और मीट्रिक व्युत्पन्न सबसे छोटा m ∈ Lp (I; R) है | जिससे उपरोक्त असमानता बनी रहती है।
यदि यूक्लिडियन अंतरिक्ष अपने सामान्य यूक्लिडियन मानदंड से सुसज्जित है | , और समय के संबंध में सामान्य फ्रेचेट व्युत्पन्न है, तो
जहाँ यूक्लिडियन मीट्रिक है।
संदर्भ
- एम्ब्रोसियो, एल।, गिगली, एन। और सावरे, जी। (2005). मेट्रिक स्पेस और स्पेस ऑफ़ प्रोबेबिलिटी मेज़र्स में ग्रेडिएंट फ्लो. ईटीएच ज्यूरिख, बिरखौसर वेरलाग, बासेल. p. 24. ISBN 3-7643-2428-7.
{{cite book}}
: CS1 maint: multiple names: authors list (link)