रबी चक्र: Difference between revisions

From Vigyanwiki
(Text)
(Text)
Line 1: Line 1:
{{short description|Quantum mechanical phenomenon}}
{{short description|Quantum mechanical phenomenon}}
{{Technical|date=दिसंबर 2015}}
{{Technical|date=दिसंबर 2015}}
[[Image:Mplwp Rabi oscillations.svg|thumb|रबी दोलन, प्रारंभ में दो-स्तरीय प्रणाली की संभावना दिखा रहा है <math>|1\rangle</math> अंत करने के लिए <math>|2\rangle</math> विभिन्न विस्फोटों पर Δ.]]भौतिकी में, '''रबी चक्र''' (या '''रबी फ्लॉप''') दो-स्तरीय [[क्वांटम प्रणाली]] का चक्रीय व्यवहार है जो एक दोलनशील परिचालक क्षेत्र की उपस्थिति में होता है।[[ क्वांटम कम्प्यूटिंग | क्वांटम कम्प्यूटिंग]], [[संघनित पदार्थ भौतिकी]], परमाणु और आणविक भौतिकी के क्षेत्रों से संबंधित भौतिक प्रक्रियाओं की एक बड़ी विविधता को दो-स्तरीय क्वांटम यांत्रिक प्रणालियों के संदर्भ में आसानी से अध्ययन किया जा सकता है, और एक प्रकाशीय परिचालक क्षेत्र के साथ युग्मित होने पर रबी फ्लॉपिंग प्रदर्शित करता है। प्रभाव [[ क्वांटम प्रकाशिकी | क्वांटम प्रकाशिकी]], परमाणु चुंबकीय प्रतिध्वनि और क्वांटम कंप्यूटिंग में महत्वपूर्ण है, और इसका नाम [[इसिडोर इसहाक रब्बी]] के नाम पर रखा गया है।
[[Image:Mplwp Rabi oscillations.svg|thumb|रबी दोलन, प्रारंभ में दो-स्तरीय प्रणाली की संभावना दिखा रहा है <math>|1\rangle</math> अंत करने के लिए <math>|2\rangle</math> विभिन्न विस्वरण पर Δ.]]भौतिकी में, '''रबी चक्र''' (या '''रबी फ्लॉप''') दो-स्तरीय [[क्वांटम प्रणाली]] का चक्रीय व्यवहार है जो एक दोलनशील परिचालक क्षेत्र की उपस्थिति में होता है।[[ क्वांटम कम्प्यूटिंग | क्वांटम कम्प्यूटिंग]], [[संघनित पदार्थ भौतिकी]], परमाणु और आणविक भौतिकी के क्षेत्रों से संबंधित भौतिक प्रक्रियाओं की एक बड़ी विविधता को दो-स्तरीय क्वांटम यांत्रिक प्रणालियों के संदर्भ में आसानी से अध्ययन किया जा सकता है, और एक प्रकाशीय परिचालक क्षेत्र के साथ युग्मित होने पर रबी फ्लॉपिंग प्रदर्शित करता है। प्रभाव [[ क्वांटम प्रकाशिकी | क्वांटम प्रकाशिकी]], परमाणु चुंबकीय प्रतिध्वनि और क्वांटम कंप्यूटिंग में महत्वपूर्ण है, और इसका नाम [[इसिडोर इसहाक रब्बी]] के नाम पर रखा गया है।


एक दो-स्तरीय प्रणाली वह है जिसमें दो संभावित ऊर्जा स्तर होते हैं। ये दो स्तर कम ऊर्जा वाली जमीनी अवस्था और उच्च ऊर्जा वाली "उत्तेजित" अवस्था हैं। यदि ऊर्जा के स्तर पतित नहीं हैं (अर्थात समान ऊर्जा नहीं हैं), तो सिस्टम ऊर्जा की एक [[मात्रा]] को अवशोषित कर सकता है और जमीनी अवस्था से उत्तेजित अवस्था में संक्रमण कर सकता है। जब एक परमाणु (या कुछ अन्य दो-स्तरीय प्रणाली) को फोटॉन के सुसंगत बीम द्वारा प्रकाशित किया जाता है, यह फोटॉनों को चक्रीय रूप से अवशोषित करेगा और उत्तेजित उत्सर्जन द्वारा उन्हें फिर से उत्सर्जित करेगा। ऐसे ही एक चक्र को रबी चक्र कहा जाता है, और इसकी अवधि का व्युत्क्रम [[फोटोन]] बीम की [[रबी आवृत्ति]] है। जेनेस-कमिंग्स मॉडल और [[बलोच वेक्टर]] औपचारिकता का उपयोग करके प्रभाव का प्रारूप बनाया जा सकता है।
एक दो-स्तरीय प्रणाली वह है जिसमें दो संभावित ऊर्जा स्तर होते हैं। ये दो स्तर कम ऊर्जा वाली जमीनी अवस्था और उच्च ऊर्जा वाली "उत्तेजित" अवस्था हैं। यदि ऊर्जा के स्तर पतित नहीं हैं (अर्थात समान ऊर्जा नहीं हैं), तो सिस्टम ऊर्जा की एक [[मात्रा]] को अवशोषित कर सकता है और जमीनी अवस्था से उत्तेजित अवस्था में संक्रमण कर सकता है। जब एक परमाणु (या कुछ अन्य दो-स्तरीय प्रणाली) को फोटॉन के सुसंगत बीम द्वारा प्रकाशित किया जाता है, यह फोटॉनों को चक्रीय रूप से अवशोषित करेगा और उत्तेजित उत्सर्जन द्वारा उन्हें फिर से उत्सर्जित करेगा। ऐसे ही एक चक्र को रबी चक्र कहा जाता है, और इसकी अवधि का व्युत्क्रम [[फोटोन]] बीम की [[रबी आवृत्ति]] है। जेनेस-कमिंग्स मॉडल और [[बलोच वेक्टर]] औपचारिकता का उपयोग करके प्रभाव का प्रारूप बनाया जा सकता है।

Revision as of 13:00, 10 May 2023

रबी दोलन, प्रारंभ में दो-स्तरीय प्रणाली की संभावना दिखा रहा है अंत करने के लिए विभिन्न विस्वरण पर Δ.

भौतिकी में, रबी चक्र (या रबी फ्लॉप) दो-स्तरीय क्वांटम प्रणाली का चक्रीय व्यवहार है जो एक दोलनशील परिचालक क्षेत्र की उपस्थिति में होता है। क्वांटम कम्प्यूटिंग, संघनित पदार्थ भौतिकी, परमाणु और आणविक भौतिकी के क्षेत्रों से संबंधित भौतिक प्रक्रियाओं की एक बड़ी विविधता को दो-स्तरीय क्वांटम यांत्रिक प्रणालियों के संदर्भ में आसानी से अध्ययन किया जा सकता है, और एक प्रकाशीय परिचालक क्षेत्र के साथ युग्मित होने पर रबी फ्लॉपिंग प्रदर्शित करता है। प्रभाव क्वांटम प्रकाशिकी, परमाणु चुंबकीय प्रतिध्वनि और क्वांटम कंप्यूटिंग में महत्वपूर्ण है, और इसका नाम इसिडोर इसहाक रब्बी के नाम पर रखा गया है।

एक दो-स्तरीय प्रणाली वह है जिसमें दो संभावित ऊर्जा स्तर होते हैं। ये दो स्तर कम ऊर्जा वाली जमीनी अवस्था और उच्च ऊर्जा वाली "उत्तेजित" अवस्था हैं। यदि ऊर्जा के स्तर पतित नहीं हैं (अर्थात समान ऊर्जा नहीं हैं), तो सिस्टम ऊर्जा की एक मात्रा को अवशोषित कर सकता है और जमीनी अवस्था से उत्तेजित अवस्था में संक्रमण कर सकता है। जब एक परमाणु (या कुछ अन्य दो-स्तरीय प्रणाली) को फोटॉन के सुसंगत बीम द्वारा प्रकाशित किया जाता है, यह फोटॉनों को चक्रीय रूप से अवशोषित करेगा और उत्तेजित उत्सर्जन द्वारा उन्हें फिर से उत्सर्जित करेगा। ऐसे ही एक चक्र को रबी चक्र कहा जाता है, और इसकी अवधि का व्युत्क्रम फोटोन बीम की रबी आवृत्ति है। जेनेस-कमिंग्स मॉडल और बलोच वेक्टर औपचारिकता का उपयोग करके प्रभाव का प्रारूप बनाया जा सकता है।

गणितीय विवरण

प्रभाव का विस्तृत गणितीय विवरण रबी समस्या के पृष्ठ पर पाया जा सकता है। उदाहरण के लिए, दो-स्तरीय परमाणु (एक परमाणु जिसमें एक इलेक्ट्रॉन या तो उत्तेजित या जमीनी अवस्था में हो सकता है) के लिए एक विद्युत चुम्बकीय क्षेत्र में उत्तेजना ऊर्जा के लिए आवृत्ति के साथ, परमाणु के उत्तेजित अवस्था में पाए जाने की संभावना बलोच समीकरणों से पाई जाती है

जहाँ रबी आवृत्ति है।

प्रायः अधिक, कोई ऐसी प्रणाली पर विचार कर सकता है जहां विचाराधीन दो स्तर ऊर्जा आइजेनस्टेट नहीं हैं। इसलिए, यदि सिस्टम को इन स्तरों में से किसी एक में प्रारंभ किया गया है, तो समय विकास प्रत्येक स्तर की संख्या को कुछ विशिष्ट आवृत्ति के साथ दोलन करेगा, जिसकी कोणीय आवृत्ति[1] इसे रबी आवृत्ति के रूप में भी जाना जाता है। दो-स्तरीय क्वांटम प्रणाली की स्थिति को द्वि-आयामी हिल्बर्ट स्पेस के वैक्टर के रूप में दर्शाया जा सकता है, जिसका अर्थ है कि प्रत्येक क्वांटम अवस्था को जटिल निर्देशांक द्वारा दर्शाया गया है:

कहाँ और निर्देशांक हैं।[2]

यदि वैक्टर सामान्यीकृत हैं, और से संबंधित हैं। आधार वैक्टर और के रूप में प्रतिनिधित्व किया जाएगा।

इस सिस्टम से जुड़ी सभी अवलोकन योग्य भौतिक परिमाण 2 × 2 हर्मिटियन मेट्रिसेस हैं, जिसका अर्थ है कि सिस्टम का हैमिल्टनियन भी एक समान मैट्रिक्स है।

प्रक्रिया

निम्नलिखित चरणों के माध्यम से एक दोलन प्रयोग का निर्माण किया जा सकता है:[3]

  1. सिस्टम को एक निश्चित अवस्था में तैयार करें; उदाहरण के लिए,
  2. समय टी के लिए हैमिल्टनियन एच के तहत अवस्था को स्वतंत्र रूप से विकसित होने दें
  3. संभावना खोजें , कि किस अवस्था में है

अगर H का एक आइजेनस्टेट है, और कोई दोलन नहीं होगा। इसके अलावा अगर दोनों अवस्थाएँ और पतित हैं, सहित हर अवस्था H का आइजेनस्टेट है। इसके परिणामस्वरूप, कोई दोलन नहीं होगा।

दूसरी ओर, यदि एच में कोई अपभ्रंश आइजेनस्टेट नहीं है, और प्रारंभिक अवस्था एक आइजेनस्टेट नहीं है, तो दोलन होंगे। दो-स्तरीय प्रणाली के हैमिल्टनियन का सबसे सामान्य रूप दिया गया है

यहाँ, और वास्तविक संख्याएँ हैं। इस मैट्रिक्स को इस तरह विघटित किया जा सकता है,

मैट्रिक्स 2 2 है पहचान मैट्रिक्स और मैट्रिक्स पाउली मैट्रिसेस हैं। यह अपघटन विशेष रूप से समय-स्वतंत्र स्थिति में प्रणाली के विश्लेषण को सरल बनाता है जहां और के मान स्थिरांक हैं। एक चुंबकीय क्षेत्र में स्पिन-1/2 कण की स्थिति पर विचार करें। इस प्रणाली के लिए हैमिल्टनियन अन्तःक्रिया है

,

कहाँ कण के चुंबकीय क्षण का परिमाण है, जाइरोमैग्नेटिक अनुपात है और पाउली मेट्रिसेस का वेक्टर है। यहाँ हेमिल्टनियन के आइजेनस्टेट के आइजेनस्टेट हैं , वह और हैं, के संगत आइजेनवैल्यूज ​​​​ के साथ हैं। संभावना है कि एक प्रणाली यादृच्छिक अवस्था में पायी जा सकती है जो द्वारा दी गई है।

माना अवस्था में समय पर सिस्टम तैयार किया जाए। ध्यान दें कि का एक आइजेनस्टेट है :

यहाँ हैमिल्टनियन समय स्वतंत्र है। इस प्रकार स्थिर श्रोडिंगर समीकरण को हल करके, समय के बाद की स्थिति t द्वारा

सिस्टम की कुल ऊर्जा के साथ दी गई है। अतः समय t के बाद की स्थिति इस प्रकार दी गई है:

.

अब मान लीजिए स्पिन को समय t पर x-दिशा में मापा जाता है। स्पिन-अप खोजने की संभावना निम्न द्वारा दी गई है:

जहाँ विशेष कोणीय आवृत्ति द्वारा दी गई है , जहां यह माना गया है।[4] जब सिस्टम का स्पिन दिशा में प्रारंभ होता है तो इस स्थिति में एक्स-दिशा में स्पिन-अप खोजने की संभावना समय में दोलनशील है। इसी तरह, अगर हम स्पिन को -दिशा में मापते हैं, स्पिन को मापने की संभावना सिस्टम का है। पतित स्थिति में जहां , विशेष आवृत्ति 0 है और कोई दोलन नहीं है।

ध्यान दें कि यदि कोई सिस्टम किसी दिए गए हैमिल्टनियन के आइजेनस्टेट में है, तो सिस्टम उसी स्थिति में रहता है।

यह समय पर निर्भर हैमिल्टोनियंस के लिए भी सत्य है। उदाहरण के लिए ; यदि सिस्टम की प्रारंभिक स्पिन अवस्था है , तो संभावना है कि वाई-दिशा में स्पिन का माप समय पर परिणाम देता है।[5]

पाउली मेट्रिसेस के माध्यम से गैर-विक्षोभक प्रक्रिया का उपयोग करके व्युत्पत्ति

फॉर्म के हैमिल्टनियन पर विचार करें

इस मैट्रिक्स के आइजेनवैल्यूज ​​द्वारा दिया जाता है
जहाँ और , तो हम ले सकते हैं .


अब, के लिएआइजेनवेक्टर्स समीकरण से पाया जा सकता है

इसलिए
आइजेनवेक्टर्स पर सामान्यीकरण की स्थिति को लागू करना, . इसलिए
माना और . इसलिए .


तो हम प्राप्त करते हैं। वह है, पहचान का उपयोग करना .

के सापेक्ष का चरण होना चाहिए .

का वास्तविक होने के लिए चयन, आइजेनवैल्यू के लिए आइजेनवेक्टर्स द्वारा दिया गया है

इसी तरह, आइजेनएनर्जी के लिए आइजेनवेक्टर है
इन दो समीकरणों से हम लिख सकते हैं
मान लीजिए कि सिस्टम अवस्था में समय पर प्रारम्भ होता है ; वह है,
एक समय-स्वतंत्र हैमिल्टनियन के लिए, समय टी के बाद, अवस्था निम्न के रूप में विकसित होती है
यदि सिस्टम या किसी एक आइजेनस्टेट में है, यह वही स्थिति रहेगी। हालांकि, ऊपर दिखाए गए समय-निर्भर हैमिल्टनियन और एक सामान्य प्रारंभिक अवस्था के लिए, समय विकास गैर तुच्छ है। रबी दोलन के लिए परिणामी सूत्र मान्य है क्योंकि स्पिन की स्थिति को एक संदर्भ फ्रेम में देखा जा सकता है जो क्षेत्र के साथ घूमता है।[6] अवस्था में समय t पर सिस्टम को खोजने की प्रायिकता आयाम द्वारा दिया गया है।

अब संभावना है कि अवस्था में एक प्रणाली अवस्था में पाया जाएगा जो निम्न द्वारा दिया गया है

इसे सरल बनाया जा सकता है

 

 

 

 

(1)

इससे पता चलता है कि स्थिति में सिस्टम को खोजने की एक सीमित संभावना है जब प्रणाली मूल रूप से स्थिति में है। संभाव्यता कोणीय आवृत्ति के साथ दोलनशील है, जो सिस्टम की अनूठी बोर आवृत्ति है और इसे रबी आवृत्ति भी कहा जाता है। सूत्र (1) इसिडोर इसाक रबी सूत्र के रूप में जाना जाता है। अब t समय के बाद संभावना है कि सिस्टम स्थिति द्वारा दिया गया है, जो दोलनशील भी है।

दो-स्तरीय प्रणालियों के इस प्रकार के दोलन रबी दोलन कहलाते हैं, जो कई समस्याओं जैसे न्यूट्रिनो दोलन, आयनित हाइड्रोजन अणु, क्वांटम कंप्यूटिंग, अमोनिया मेसर आदि में उत्पन्न होते हैं।

क्वांटम कंप्यूटिंग में

किसी भी दो-स्तरीय क्वांटम प्रणाली का उपयोग एक क्युबिट को प्रतिरूपण करने के लिए किया जा सकता है। एक स्पिन - पर विचार करें जो चुंबकीय क्षण के साथ प्रणाली एक चिरप्रतिष्ठित चुंबकीय क्षेत्रमें रखा गया। माना सिस्टम के लिए जाइरोमैग्नेटिक अनुपात हो। चुंबकीय क्षण इस प्रकार है। इस प्रणाली का हैमिल्टन तब द्वारा दिया जाता है जहाँ और है। उपर्युक्त प्रक्रिया द्वारा इस हैमिल्टनियन के आइजेनवैल्यू और आइजेनवेक्टर का पता लगाया जा सकता है। अब, क्युबिट को समय पर स्थिति में रहने दें। फिर, समय पर, स्थिति में इसके पाए जाने की संभावना द्वारा दिया गया है जहाँ है। इस घटना को रबी दोलन कहा जाता है। इस प्रकार, क्युबिट और स्थितियों के बीच दोलन करता है। दोलन के लिए अधिकतम आयाम प्राप्त किया जाता है, जो अनुकंपन की स्थिति है। अनुकंपन पर, संक्रमण संभावना द्वारा दिया जाता है। से स्थिति तक जाना यह समय को समायोजित करने के लिए पर्याप्त है जिसके दौरान घूर्णन क्षेत्र ऐसा या कार्य करता है। इसे पल्स कहा जाता है। यदि समय 0 और के मध्यवर्ती चुना जाता है, हम और अधिस्थापन प्राप्त करते हैं। विशेष रूप से के लिए, हमारे पास एक पल्स है, जो इस प्रकार कार्य करती है: । क्वांटम कंप्यूटिंग में इस ऑपरेशन का महत्वपूर्ण महत्व है। लेजर के क्षेत्र में दो स्तर के परमाणु की स्थिति में समीकरण अनिवार्य रूप से समान होते हैं जब प्रायः अच्छी तरह से संतुष्ट घूर्णन तरंग सन्निकटन किया जाता है। तब दो परमाणु स्तरों के बीच ऊर्जा अंतर है, लेजर तरंग और रबी आवृत्ति की आवृत्ति है परमाणु के संक्रमण विद्युत द्विध्रुव आघूर्ण के गुणनफल के समानुपाती होता है और विद्युत क्षेत्र लेजर तरंग की जो है है। सारांश में, रबी दोलनों में हेरफेर करने के लिए उपयोग की जाने वाली मूल प्रक्रिया है। ये दोलन उचित रूप से समायोजित समय अंतराल के दौरान आवधिक विद्युत या चुंबकीय क्षेत्र में क्यूबिट्स को उजागर करके प्राप्त किए जाते हैं।[7]


यह भी देखें

संदर्भ

  1. Rabi oscillations, Rabi frequency, stimulated emission. Encyclopedia of Laser Physics and Technology.
  2. Griffiths, David (2005). क्वांटम यांत्रिकी का परिचय (2nd ed.). p. 341.
  3. Sourendu Gupta (27 August 2013). "The physics of 2-state systems" (PDF). Tata Institute of Fundamental Research.
  4. Griffiths, David (2012). Introduction to Quantum Mechanics (2nd ed.) p. 191.
  5. Griffiths, David (2012). Introduction to Quantum Mechanics (2nd ed.) p. 196 ISBN 978-8177582307
  6. Merlin, R. (2021). "Rabi oscillations, Floquet states, Fermi's golden rule, and all that: Insights from an exactly solvable two-level model". American Journal of Physics. 89 (1): 26–34. Bibcode:2021AmJPh..89...26M. doi:10.1119/10.0001897. S2CID 234321681.
  7. A Short Introduction to Quantum Information and Quantum Computation by Michel Le Bellac, ISBN 978-0521860567