रेये विन्यास: Difference between revisions
m (Sugatha moved page रे विन्यास to रेये विन्यास without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Geometric configuration of 12 points and 6 lines}} | {{short description|Geometric configuration of 12 points and 6 lines}} | ||
[[File:Reye configuration.svg|thumb|रेये विन्यास|183x183px]][[ज्यामिति]] में, थियोडोर | [[File:Reye configuration.svg|thumb|रेये विन्यास|183x183px]][[ज्यामिति]] में, थियोडोर रेये (1882) द्वारा पेश किया गया '''रेये विन्यास''', 12 बिंदुओं और 16 रेखाओं का विन्यास है। [[विन्यास (ज्यामिति)|विन्यास]] का प्रत्येक बिंदु चार पंक्तियों का है, और प्रत्येक पंक्ति में तीन बिंदु हैं। इसलिए, विन्यासों के संकेतन में, रेये विन्यास को {{math|12{{sub|4}}16{{sub|3}}}} के रूप में लिखा जाता है। | ||
== प्रतीति == | == प्रतीति == | ||
रेये विन्यास को त्रि-आयामी प्रोजेक्टिव स्पेस में लाइनों को 12 किनारों और घन के चार लंबे विकर्णों के रूप में ले कर, और अंक को घन के आठ कोने, उसके केंद्र और तीन बिंदु जहां चार समानांतर घन किनारों के समूह समतल को अनंत पर मिलते हैं। घन के भीतर दो नियमित टेट्राहेड्रा अंकित किए जा सकते हैं, जिससे स्टेला [[अष्टकोणीय तारा|अष्टकोणीय]] बनता है; ये दो चतुष्फलक चार अलग-अलग तरीकों से एक-दूसरे के लिए परिप्रेक्ष्य के आंकड़े हैं, और विन्यास के अन्य चार बिंदु उनके परिप्रेक्ष्य के केंद्र हैं। ये दो चतुष्फलक शेष 4 बिंदुओं के चतुष्फलक के साथ मिलकर तीन चतुष्फलक की [[डेस्मिक प्रणाली]] बनाते हैं। | |||
त्रि-आयामी अंतरिक्ष में किन्हीं दो असम्बद्ध क्षेत्रों में, अलग-अलग त्रिज्याओं के साथ, दो द्विस्पर्शी द्विशंकु होते हैं, जिनमें से शीर्षों को समरूपता के केंद्र कहा जाता है। यदि तीन गोले दिए गए हैं, जिनके केंद्र असंरेखी हैं, तो उनके छह सादृश्य केंद्र [[पूर्ण चतुर्भुज]] के छह बिंदु बनाते हैं, जिनमें से चार रेखाओं को समरूपता के अक्ष कहा जाता है। और यदि चार गोले दिए गए हैं, उनके केंद्र गैर-समतलीय हैं, तो वे समरूपता के 12 केंद्र और समानता के 16 अक्ष निर्धारित करते हैं, जो एक साथ रेये विन्यास (हिल्बर्ट एंड कोह्न-वोसन 1952) का एक उदाहरण बनाते हैं। | त्रि-आयामी अंतरिक्ष में किन्हीं दो असम्बद्ध क्षेत्रों में, अलग-अलग त्रिज्याओं के साथ, दो द्विस्पर्शी द्विशंकु होते हैं, जिनमें से शीर्षों को समरूपता के केंद्र कहा जाता है। यदि तीन गोले दिए गए हैं, जिनके केंद्र असंरेखी हैं, तो उनके छह सादृश्य केंद्र [[पूर्ण चतुर्भुज]] के छह बिंदु बनाते हैं, जिनमें से चार रेखाओं को समरूपता के अक्ष कहा जाता है। और यदि चार गोले दिए गए हैं, उनके केंद्र गैर-समतलीय हैं, तो वे समरूपता के 12 केंद्र और समानता के 16 अक्ष निर्धारित करते हैं, जो एक साथ रेये विन्यास (हिल्बर्ट एंड कोह्न-वोसन 1952) का एक उदाहरण बनाते हैं। |
Revision as of 15:43, 10 May 2023
ज्यामिति में, थियोडोर रेये (1882) द्वारा पेश किया गया रेये विन्यास, 12 बिंदुओं और 16 रेखाओं का विन्यास है। विन्यास का प्रत्येक बिंदु चार पंक्तियों का है, और प्रत्येक पंक्ति में तीन बिंदु हैं। इसलिए, विन्यासों के संकेतन में, रेये विन्यास को 124163 के रूप में लिखा जाता है।
प्रतीति
रेये विन्यास को त्रि-आयामी प्रोजेक्टिव स्पेस में लाइनों को 12 किनारों और घन के चार लंबे विकर्णों के रूप में ले कर, और अंक को घन के आठ कोने, उसके केंद्र और तीन बिंदु जहां चार समानांतर घन किनारों के समूह समतल को अनंत पर मिलते हैं। घन के भीतर दो नियमित टेट्राहेड्रा अंकित किए जा सकते हैं, जिससे स्टेला अष्टकोणीय बनता है; ये दो चतुष्फलक चार अलग-अलग तरीकों से एक-दूसरे के लिए परिप्रेक्ष्य के आंकड़े हैं, और विन्यास के अन्य चार बिंदु उनके परिप्रेक्ष्य के केंद्र हैं। ये दो चतुष्फलक शेष 4 बिंदुओं के चतुष्फलक के साथ मिलकर तीन चतुष्फलक की डेस्मिक प्रणाली बनाते हैं।
त्रि-आयामी अंतरिक्ष में किन्हीं दो असम्बद्ध क्षेत्रों में, अलग-अलग त्रिज्याओं के साथ, दो द्विस्पर्शी द्विशंकु होते हैं, जिनमें से शीर्षों को समरूपता के केंद्र कहा जाता है। यदि तीन गोले दिए गए हैं, जिनके केंद्र असंरेखी हैं, तो उनके छह सादृश्य केंद्र पूर्ण चतुर्भुज के छह बिंदु बनाते हैं, जिनमें से चार रेखाओं को समरूपता के अक्ष कहा जाता है। और यदि चार गोले दिए गए हैं, उनके केंद्र गैर-समतलीय हैं, तो वे समरूपता के 12 केंद्र और समानता के 16 अक्ष निर्धारित करते हैं, जो एक साथ रेये विन्यास (हिल्बर्ट एंड कोह्न-वोसन 1952) का एक उदाहरण बनाते हैं।
तीन-बिंदु परिप्रेक्ष्य में त्रि-आयामी विन्यास को चित्रित करके, यूक्लिडियन प्लेन में बिंदुओं और रेखाओं द्वारा री विन्यास को भी महसूस किया जा सकता है। वास्तविक प्रोजेक्टिव प्लेन में आठ बिंदुओं का 83122 विन्यास और उन्हें जोड़ने वाली 12 रेखायें, क्यूब के संपर्क पैटर्न के साथ, रेये विन्यास बनाने के लिए विस्तारित की जा सकती हैं यदि और केवल आठ बिंदु समानांतर चतुर्भुज का परिप्रेक्ष्य प्रक्षेपण हैं (सर्वैटियस एंड सर्वैटियस 2010)
अंकों के 24 क्रमपरिवर्तन चार-आयामी यूक्लिडियन अंतरिक्ष के मूल पर केंद्रित 24-सेल के शीर्ष बनाते हैं। ये 24 बिंदु जड़ प्रणाली में 24 मूल भी बनाते हैं। उन्हें मूल बिंदु से होकर रेखा पर एक दूसरे के विपरीत बिंदुओं के जोड़े में बांटा जा सकता है। चार-आयामी यूक्लिडियन अंतरिक्ष की उत्पत्ति के माध्यम से रेखाओं और प्लेनों में त्रि-आयामी प्रोजेक्टिव स्पेस के बिंदुओं और रेखाओं की ज्यामिति होती है, और इस त्रि-आयामी प्रोजेक्टिव स्पेस में, इन 24 बिंदुओं और केंद्रीय प्लेनों के विपरीत जोड़े के माध्यम से रेखाएं इन बिंदुओं के माध्यम से रेये विन्यास के बिंदु और रेखाएँ बन जाती हैं (मैनिवेल 2006)। के क्रमचय इस विन्यास में 12 बिंदुओं के समरूप निर्देशांक बनाते हैं।
आवेदन
अरविंद (2000) ने बताया कि रेये विन्यास बेल-कोचेन-स्पीकर प्रमेय के कुछ प्रमाणों को रेखांकित करता है, जो क्वांटम यांत्रिकी में छिपे हुए चरों के अस्तित्व के विषय में है।
संबंधित विन्यास
पप्पस विन्यास दो त्रिभुजों से बन सकता है जो तीन अलग-अलग तरीकों से एक दूसरे के लिए परिप्रेक्ष्य के आंकड़े हैं, डेस्मिक टेट्राहेड्रा से जुड़े रे विन्यास की व्याख्या के समान हैं।
यदि तीन आयामी अंतरिक्ष में घन से रे विन्यास का गठन किया जाता है, तो 12 प्लेन होते हैं जिनमें से प्रत्येक में चार रेखाएं होती हैं: घन के छह चेहरे वाले प्लेन, और छः प्लेन घन के विपरीत किनारों के जोड़े के माध्यम से होते हैं। इन 12 समतलों और 16 रेखाओं को सामान्य स्थिति में अन्य तल के साथ प्रतिच्छेद करने पर 163124 विन्यास उत्पन्न होता है, जो रेये विन्यास का दोहरा है। मूल रेये विन्यास और इसके दोहरे मिलकर 284284 विन्यास (ग्रुनबाउम और रिग्बी 1990) बनाते हैं।
124163 प्रकार के 574 अलग-अलग विन्यास हैं (बेटन एंड बेटन 2005)।
संदर्भ
- Aravind, P. K. (2000), "How Reye's configuration helps in proving the Bell-Kochen-Specker theorem: a curious geometrical tale" (PDF), Foundations of Physics Letters, 13 (6): 499–519, doi:10.1023/A:1007863413622, MR 1814009
- Berger, Marcel (2010), Geometry revealed, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-540-70997-8, ISBN 978-3-540-70996-1, MR 2724440
- Betten, Anton; Betten, Dieter (2005), "More on regular linear spaces" (PDF), Journal of Combinatorial Designs, 13 (6): 441–461, doi:10.1002/jcd.20055, MR 2221852.
- Grünbaum, Branko; Rigby, J. F. (1990), "The real configuration (214)", Journal of the London Mathematical Society, Second Series, 41 (2): 336–346, doi:10.1112/jlms/s2-41.2.336, MR 1067273.
- Hilbert, David; Cohn-Vossen, Stephan (1952), "22. Reye's configuration", Geometry and the Imagination (2nd ed.), New York: Chelsea, pp. 134–143, ISBN 978-0-8284-1087-8. See also pp. 154–157.
- Manivel, L. (2006), "Configurations of lines and models of Lie algebras", Journal of Algebra, 304 (1): 457–486, arXiv:math/0507118, doi:10.1016/j.jalgebra.2006.04.029, MR 2256401. See in particular section 2.1, "The Reye configuration and triality", pp. 460–461.
- Reye, Th. (1882), "Das Problem der Configurationen", Acta Mathematica (in German), 1 (1): 93–96, doi:10.1007/BF02391837, MR 1554576
{{citation}}
: CS1 maint: unrecognized language (link). - Servatius, Brigitte; Servatius, Herman (2010), "The generalized Reye configuration", Ars Mathematica Contemporanea, 3 (1): 21–27, doi:10.26493/1855-3974.108.423, MR 2592512.