शेर्क सतह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Scherkassociatefamily.gif|thumb|शर्क की पहली और दूसरी सतह के एक दूसरे में बदलने का एनिमेशन: वे न्यूनतम सतहों के एक ही [[सहयोगी परिवार|संयुग्मी]] के सदस्य हैं।]]गणित में, शर्क सतह ([[हेनरिक शर्क]] के नाम पर) [[न्यूनतम सतह]] का एक उदाहरण है। शर्क ने 1834 में दो पूर्ण एम्बेडेड न्यूनतम सतहों का वर्णन किया; <ref>H.F. Scherk, Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen, Journal für die reine und angewandte Mathematik, Volume 13 (1835) pp. 185–208 [https://books.google.com/books?id=K5tGAAAAcAAJ&dq=%22Bemerkungen%20%C3%BCber%20die%20kleinste%20Fl%C3%A4che%20innerhalb%20gegebener%20Grenzen%22&pg=PA185]</ref> उसकी पहली सतह दोहरी आवधिक सतह है, उसकी दूसरी सतह एकल आवधिक है। वे न्यूनतम सतहों के तीसरे गैर-तुच्छ उदाहरण थे (पहले दो [[कैटेनॉइड]] और [[घुमावदार]] थे)। <ref>{{Cite web|url=http://www-history.mcs.st-andrews.ac.uk/Biographies/Scherk.html|title=Heinrich Scherk - Biography}}</ref> दो सतहें एक दूसरे के संयुग्मी हैं।
[[File:Scherkassociatefamily.gif|thumb|शर्क की पहली और दूसरी सतह के एक दूसरे में बदलने का एनिमेशन: वे न्यूनतम सतहों के एक ही [[सहयोगी परिवार|संयुग्मी]] के सदस्य हैं।]]गणित में, शर्क सतह ([[हेनरिक शर्क]] के नाम पर) [[न्यूनतम सतह]] का एक उदाहरण है। शर्क ने 1834 में दो पूर्ण एम्बेडेड न्यूनतम सतहों का वर्णन किया; <ref>H.F. Scherk, Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen, Journal für die reine und angewandte Mathematik, Volume 13 (1835) pp. 185–208 [https://books.google.com/books?id=K5tGAAAAcAAJ&dq=%22Bemerkungen%20%C3%BCber%20die%20kleinste%20Fl%C3%A4che%20innerhalb%20gegebener%20Grenzen%22&pg=PA185]</ref> उसकी पहली सतह दोहरी आवधिक सतह है, उसकी दूसरी सतह एकल आवधिक है। वे न्यूनतम सतहों के तीसरे गैर-तुच्छ उदाहरण थे (पहले दो [[कैटेनॉइड]] और [[घुमावदार]] थे)। <ref>{{Cite web|url=http://www-history.mcs.st-andrews.ac.uk/Biographies/Scherk.html|title=Heinrich Scherk - Biography}}</ref> दो सतह एक दूसरे के संयुग्मी हैं।


न्यूनतम सतह की समस्याओं को सीमित करने और [[ अतिशयोक्तिपूर्ण स्थान ]] के हार्मोनिक [[डिफियोमोर्फिज्म]] के अध्ययन में स्केर्क सतहें उत्पन्न होती हैं।
न्यूनतम सतह की समस्याओं को सीमित करने और [[ अतिशयोक्तिपूर्ण स्थान ]] के हार्मोनिक [[डिफियोमोर्फिज्म]] के अध्ययन में शर्क सतह उत्पन्न होती हैं।


'''जो दूसरे के लिए लंबकोणीय हैं, जो ब्रिजिंग आरशेज़ के चेकरबोर्ड पैटर्न में z = 0 के पास मिलते'''  
'''जो दूसरे के लिए लंबकोणीय हैं, जो ब्रिजिंग आरशेज़ के चेकरबोर्ड पैटर्न में z = 0 के पास मिलते'''  
Line 7: Line 7:
== शर्क की पहली सतह ==
== शर्क की पहली सतह ==


शर्क की पहली सतह समानांतर विमानों के दो अनंत परिवारों के लिए स्पर्शोन्मुख है, जो एक दूसरे के लिए लंबकोणीय हैं, जो ब्रिजिंग आरशेज़ के चेकरबोर्ड स्वरूप में z = 0 के पास मिलते हैं। इसमें सीधी खड़ी रेखाओं की अनंत संख्या होती है।
शर्क की पहली सतह समानांतर तलों के दो अनंत परिवारों के लिए स्पर्शोन्मुख है, जो एक दूसरे के लिए लंबकोणीय हैं, जो ब्रिजिंग आरशेज़ के चेकरबोर्ड स्वरूप में z = 0 के पास मिलते हैं। इसमें सीधी खड़ी रेखाओं की अनंत संख्या होती है।


=== एक साधारण शर्क सतह का निर्माण ===
=== एक साधारण शर्क सतह का निर्माण ===
Line 34: Line 34:




=== अधिक सामान्य शर्क सतहें ===
=== अधिक सामान्य शर्क सतह ===


यूक्लिडियन विमान में अन्य चतुर्भुजों पर समान न्यूनतम सतह की समस्याओं पर विचार किया जा सकता है। अतिशयोक्तिपूर्ण तल में चतुर्भुजों पर भी इसी समस्या पर विचार किया जा सकता है। 2006 में, हेरोल्ड रोसेनबर्ग और पास्कल कोलिन ने अतिशयोक्तिपूर्ण प्लेन (अतिशयोक्तिपूर्ण मेट्रिक के साथ यूनिट डिस्क) पर कॉम्प्लेक्स प्लेन से हार्मोनिक डिफेओमोर्फिज्म बनाने के लिए अतिशयोक्तिपूर्ण स्केर्क सतहों का इस्तेमाल किया, जिससे स्कोएन-यॉ अनुमान को खारिज कर दिया।
यूक्लिडियन विमान में अन्य चतुर्भुजों पर समान न्यूनतम सतह की समस्याओं पर विचार किया जा सकता है। अतिशयोक्तिपूर्ण तल में चतुर्भुजों पर भी इसी समस्या पर विचार किया जा सकता है। 2006 में, हेरोल्ड रोसेनबर्ग और पास्कल कोलिन ने अतिशयोक्तिपूर्ण तल (अतिशयोक्तिपूर्ण मेट्रिक के साथ यूनिट डिस्क) पर कॉम्प्लेक्स तल से हार्मोनिक डिफेओमोर्फिज्म बनाने के लिए अतिशयोक्तिपूर्ण शर्क सतहों का इस्तेमाल किया, जिससे स्कोएन-यॉ अनुमान को खारिज कर दिया।


== शर्क की दूसरी सतह ==
== शर्क की दूसरी सतह ==


[[File:Scherk's second surface.png|thumb|शर्क की दूसरी सतह]]
[[File:Scherk's second surface.png|thumb|शर्क की दूसरी सतह]]
[[File:Scherk-2 surface unit cell.stl|thumb|दूसरी शर्क सतह की STL इकाई कोशिका]]शर्क की दूसरी सतह विश्व स्तर पर दो लंबकोणीय विमानों की तरह दिखती है, जिनके चौराहे में बारी-बारी से दिशाओं में सुरंगों का क्रम होता है। क्षैतिज विमानों के साथ इसके चौराहों में बारी-बारी से हाइपरबोलस होते हैं।
[[File:Scherk-2 surface unit cell.stl|thumb|दूसरी शर्क सतह की एसटीएल इकाई कोशिका]]शर्क की दूसरी सतह विश्व स्तर पर दो लंबकोणीय तलों की तरह दिखती है, जिनके चौराहे में बारी-बारी से दिशाओं में सुरंगों का क्रम होता है। क्षैतिज तलों के साथ इसके चौराहों में बारी-बारी से अतिशयोक्तिपूर्ण होते हैं।


इसका निहित समीकरण है:
इसका निहित समीकरण है:
:<math>\sin(z) - \sinh(x)\sinh(y)=0</math>
:<math>\sin(z) - \sinh(x)\sinh(y)=0</math>
:
इसमें वीयरस्ट्रैस-एनीपर पैरामीटराइजेशन है
इसमें वीयरस्ट्रैस-एनीपर पैरामीटराइजेशन है
<math>f(z) = \frac{4}{1-z^4}</math>, <math>g(z) = iz</math>
<math>f(z) = \frac{4}{1-z^4}</math>, <math>g(z) = iz</math>
और पैरामीट्रिज्ड किया जा सकता है:<ref>Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., CRC press 2002</ref>
और पैरामीट्रिज्ड किया जा सकता है:<ref>Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., CRC press 2002</ref>
:<math>x(r,\theta) = 2 \Re ( \ln(1+re^{i \theta}) - \ln(1-re^{i \theta}) ) = \ln \left( \frac{1+r^2+2r \cos \theta}{1+r^2-2r \cos \theta} \right)</math>
:<math>x(r,\theta) = 2 \Re ( \ln(1+re^{i \theta}) - \ln(1-re^{i \theta}) ) = \ln \left( \frac{1+r^2+2r \cos \theta}{1+r^2-2r \cos \theta} \right)</math>
:<math>y(r,\theta) = \Re ( 4i \tan^{-1}(re^{i \theta})) = \ln \left( \frac{1+r^2-2r \sin\theta}{1+r^2+2r \sin \theta} \right)</math>
:<math>y(r,\theta) = \Re ( 4i \tan^{-1}(re^{i \theta})) = \ln \left( \frac{1+r^2-2r \sin\theta}{1+r^2+2r \sin \theta} \right)</math>
:<math>z(r,\theta) = \Re ( 2i(-\ln(1-r^2e^{2i \theta}) + \ln(1+r^2e^{2i \theta}) ) = 2 \tan^{-1}\left( \frac{2 r^2 \sin 2\theta}{r^4-1} \right)</math>
:<math>z(r,\theta) = \Re ( 2i(-\ln(1-r^2e^{2i \theta}) + \ln(1+r^2e^{2i \theta}) ) = 2 \tan^{-1}\left( \frac{2 r^2 \sin 2\theta}{r^4-1} \right)</math>
के लिए <math>\theta \in [0, 2\pi)</math> और <math>r \in (0,1)</math>. यह सतह की एक अवधि देता है, जिसे समरूपता द्वारा जेड-दिशा में बढ़ाया जा सकता है।
<math>\theta \in [0, 2\pi)</math> और <math>r \in (0,1)</math> के लिए. यह सतह की एक अवधि देता है, जिसे समरूपता द्वारा जेड-दिशा में बढ़ाया जा सकता है।


समय-समय पर न्यूनतम सतहों के [[सैडल टॉवर]] परिवार में एच। करचर द्वारा सतह को सामान्यीकृत किया गया है।
समय-समय पर न्यूनतम सतहों के [[सैडल टॉवर]] परिवार में एच करचर द्वारा सतह को सामान्यीकृत किया गया है।


कुछ भ्रामक रूप से, इस सतह को कभी-कभी साहित्य में शर्क की पांचवीं सतह कहा जाता है। <ref>Nikolaos Kapuoleas, Constructions of minimal surfaces by glueing minimal immersions. In Global Theory of Minimal Surfaces: Proceedings of the Clay Mathematics Institute 2001 Summer School, Mathematical Sciences Research Institute, Berkeley, California, June 25-July 27, 2001 p. 499</ref><ref>David Hoffman and William H. Meeks, Limits of minimal surfaces and Scherk's Fifth Surface, Archive for rational mechanics and analysis, Volume 111, Number 2 (1990)</ref> भ्रम को कम करने के लिए इसे शर्क की एकल आवधिक सतह या शर्क-टॉवर के रूप में संदर्भित करना उपयोगी है।
कुछ अस्पष्टत रूप से, इस सतह को कभी-कभी साहित्य में शर्क की पांचवीं सतह कहा जाता है। <ref>Nikolaos Kapuoleas, Constructions of minimal surfaces by glueing minimal immersions. In Global Theory of Minimal Surfaces: Proceedings of the Clay Mathematics Institute 2001 Summer School, Mathematical Sciences Research Institute, Berkeley, California, June 25-July 27, 2001 p. 499</ref><ref>David Hoffman and William H. Meeks, Limits of minimal surfaces and Scherk's Fifth Surface, Archive for rational mechanics and analysis, Volume 111, Number 2 (1990)</ref> अस्तव्यस्तता को कम करने के लिए इसे शर्क की एकल आवधिक सतह या शर्क-टॉवर के रूप में संदर्भित करना उपयोगी है।


==बाहरी संबंध==
==बाहरी संबंध==
* {{springerEOM | title=Scherk surface | first=I.Kh. | last=Sabitov | oldid=15282 }}
* {{springerEOM | title=शर्क सतह | first=I.Kh. | last=सबितोव | oldid=15282 }}
* शर्क's first surface in MSRI Geometry [https://web.archive.org/web/20151030203706/http://archive.msri.org/about/sgp/jim/geom/minimal/library/scherk1/index.html]
* एमएसआरआई ज्यामिति में शार्क की पहली सतह [1]
* शर्क's second surface in MSRI Geometry [https://web.archive.org/web/20151030205051/http://archive.msri.org/about/sgp/jim/geom/minimal/library/scherk2/index.html]
* एमएसआरआई ज्यामिति में शार्क की दूसरी सतह [1]
* शर्क's minimal surfaces in Mathworld [http://mathworld.wolfram.com/ScherksMinimalSurfaces.html]
* मैथवर्ल्ड में शार्क की न्यूनतम सतह [1]
 
 
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}

Revision as of 11:19, 23 April 2023

शर्क की पहली और दूसरी सतह के एक दूसरे में बदलने का एनिमेशन: वे न्यूनतम सतहों के एक ही संयुग्मी के सदस्य हैं।

गणित में, शर्क सतह (हेनरिक शर्क के नाम पर) न्यूनतम सतह का एक उदाहरण है। शर्क ने 1834 में दो पूर्ण एम्बेडेड न्यूनतम सतहों का वर्णन किया; [1] उसकी पहली सतह दोहरी आवधिक सतह है, उसकी दूसरी सतह एकल आवधिक है। वे न्यूनतम सतहों के तीसरे गैर-तुच्छ उदाहरण थे (पहले दो कैटेनॉइड और घुमावदार थे)। [2] दो सतह एक दूसरे के संयुग्मी हैं।

न्यूनतम सतह की समस्याओं को सीमित करने और अतिशयोक्तिपूर्ण स्थान के हार्मोनिक डिफियोमोर्फिज्म के अध्ययन में शर्क सतह उत्पन्न होती हैं।

जो दूसरे के लिए लंबकोणीय हैं, जो ब्रिजिंग आरशेज़ के चेकरबोर्ड पैटर्न में z = 0 के पास मिलते

शर्क की पहली सतह

शर्क की पहली सतह समानांतर तलों के दो अनंत परिवारों के लिए स्पर्शोन्मुख है, जो एक दूसरे के लिए लंबकोणीय हैं, जो ब्रिजिंग आरशेज़ के चेकरबोर्ड स्वरूप में z = 0 के पास मिलते हैं। इसमें सीधी खड़ी रेखाओं की अनंत संख्या होती है।

एक साधारण शर्क सतह का निर्माण

File:Scherk-1 surface unit cell.stl

पांच इकाई कोशिकाओं को एक साथ रखा गया

यूक्लिडियन विमान में एक वर्ग पर निम्न न्यूनतम सतह समस्या पर विचार करें: प्राकृतिक संख्या n के लिए, किसी फ़ंक्शन के ग्राफ़ के रूप में न्यूनतम सतह Σn खोजें |

चूकि

यानी यूn न्यूनतम सतह समीकरण को संतुष्ट करता है

और

क्या, अगर कुछ भी, सीमांत सतह है क्योंकि n अनंत की ओर जाता है? उत्तर 1834 में एच. शर्क द्वारा दिया गया था: सीमांत सतह Σ का ग्राफ है |

अर्थात्, वर्ग के ऊपर शर्क सतह है |


अधिक सामान्य शर्क सतह

यूक्लिडियन विमान में अन्य चतुर्भुजों पर समान न्यूनतम सतह की समस्याओं पर विचार किया जा सकता है। अतिशयोक्तिपूर्ण तल में चतुर्भुजों पर भी इसी समस्या पर विचार किया जा सकता है। 2006 में, हेरोल्ड रोसेनबर्ग और पास्कल कोलिन ने अतिशयोक्तिपूर्ण तल (अतिशयोक्तिपूर्ण मेट्रिक के साथ यूनिट डिस्क) पर कॉम्प्लेक्स तल से हार्मोनिक डिफेओमोर्फिज्म बनाने के लिए अतिशयोक्तिपूर्ण शर्क सतहों का इस्तेमाल किया, जिससे स्कोएन-यॉ अनुमान को खारिज कर दिया।

शर्क की दूसरी सतह

शर्क की दूसरी सतह

File:Scherk-2 surface unit cell.stlशर्क की दूसरी सतह विश्व स्तर पर दो लंबकोणीय तलों की तरह दिखती है, जिनके चौराहे में बारी-बारी से दिशाओं में सुरंगों का क्रम होता है। क्षैतिज तलों के साथ इसके चौराहों में बारी-बारी से अतिशयोक्तिपूर्ण होते हैं।

इसका निहित समीकरण है:

इसमें वीयरस्ट्रैस-एनीपर पैरामीटराइजेशन है


,


और पैरामीट्रिज्ड किया जा सकता है:[3]

और के लिए. यह सतह की एक अवधि देता है, जिसे समरूपता द्वारा जेड-दिशा में बढ़ाया जा सकता है।

समय-समय पर न्यूनतम सतहों के सैडल टॉवर परिवार में एच करचर द्वारा सतह को सामान्यीकृत किया गया है।

कुछ अस्पष्टत रूप से, इस सतह को कभी-कभी साहित्य में शर्क की पांचवीं सतह कहा जाता है। [4][5] अस्तव्यस्तता को कम करने के लिए इसे शर्क की एकल आवधिक सतह या शर्क-टॉवर के रूप में संदर्भित करना उपयोगी है।

बाहरी संबंध

  • सबितोव, I.Kh. (2001) [1994], "शर्क सतह", Encyclopedia of Mathematics, EMS Press
  • एमएसआरआई ज्यामिति में शार्क की पहली सतह [1]
  • एमएसआरआई ज्यामिति में शार्क की दूसरी सतह [1]
  • मैथवर्ल्ड में शार्क की न्यूनतम सतह [1]

संदर्भ

  1. H.F. Scherk, Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen, Journal für die reine und angewandte Mathematik, Volume 13 (1835) pp. 185–208 [1]
  2. "Heinrich Scherk - Biography".
  3. Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., CRC press 2002
  4. Nikolaos Kapuoleas, Constructions of minimal surfaces by glueing minimal immersions. In Global Theory of Minimal Surfaces: Proceedings of the Clay Mathematics Institute 2001 Summer School, Mathematical Sciences Research Institute, Berkeley, California, June 25-July 27, 2001 p. 499
  5. David Hoffman and William H. Meeks, Limits of minimal surfaces and Scherk's Fifth Surface, Archive for rational mechanics and analysis, Volume 111, Number 2 (1990)