सममित समष्टि: Difference between revisions
(Created page with "{{Use American English|date = March 2019}} {{Short description|A (pseudo-)Riemannian manifold whose geodesics are reversible.}} {{Other uses}} {{Lie groups |Homogeneous spaces...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|A (pseudo-)Riemannian manifold whose geodesics are reversible.}} | {{Short description|A (pseudo-)Riemannian manifold whose geodesics are reversible.}} | ||
{{Other uses}} | {{Other uses}} | ||
{{Lie groups |Homogeneous spaces}} | {{Lie groups |Homogeneous spaces}} | ||
गणित में, | गणित में, सममित स्थान [[स्यूडो-[[ रीमैनियन कई गुना ]]]] (या अधिक सामान्यतः, छद्म-रीमैनियन मैनिफोल्ड) होता है, जिसके समरूपता के समूह में प्रत्येक बिंदु के बारे में [[उलटा समरूपता]] होती है। इसका अध्ययन रीमैनियन ज्यामिति के उपकरणों के साथ किया जा सकता है, जिससे [[ holonomi |holonomi]] के सिद्धांत में परिणाम सामने आते हैं; या बीजगणितीय रूप से [[झूठ सिद्धांत]] के माध्यम से, जिसने एली कार्टन को पूर्ण वर्गीकरण देने की अनुमति दी। सममित स्थान आमतौर पर [[अंतर ज्यामिति]], [[प्रतिनिधित्व सिद्धांत]] और [[हार्मोनिक विश्लेषण]] में होते हैं। | ||
ज्यामितीय शब्दों में, | ज्यामितीय शब्दों में, पूर्ण, बस जुड़ा हुआ रीमानियन मैनिफोल्ड सममित स्थान है यदि और केवल अगर इसका वक्रता टेंसर समानांतर परिवहन के तहत अपरिवर्तनीय है। अधिक आम तौर पर, रिमेंनियन मैनिफोल्ड (''एम'', ''जी'') को सममित कहा जाता है अगर और केवल अगर, ''एम'' के प्रत्येक बिंदु ''पी'' के लिए, आइसोमेट्री मौजूद है। 'एम' 'पी' को ठीक करता है और स्पर्शरेखा स्थान पर अभिनय करता है <math>T_pM</math> शून्य से पहचान के रूप में (प्रत्येक सममित स्थान पूर्ण रूप से कई गुना है, क्योंकि किसी भी जियोडेसिक को समापन बिंदुओं के बारे में समरूपता के माध्यम से अनिश्चित काल तक बढ़ाया जा सकता है)। दोनों विवरणों को स्वाभाविक रूप से स्यूडो-रीमैनियन मैनिफोल्ड्स की सेटिंग तक बढ़ाया जा सकता है। | ||
लाई सिद्धांत के दृष्टिकोण से, | लाई सिद्धांत के दृष्टिकोण से, सममित स्थान लाई उपसमूह एच द्वारा जुड़े लाई समूह जी का भागफल जी/एच है जो जी के समावेशन (गणित) के अपरिवर्तनीय समूह का (एक जुड़ा हुआ घटक) है। यह परिभाषा में रिमेंनियन परिभाषा से अधिक शामिल है, और एच कॉम्पैक्ट होने पर इसे कम कर देता है। | ||
Riemannian सममित स्थान गणित और भौतिकी दोनों में विभिन्न प्रकार की स्थितियों में उत्पन्न होते हैं। होलोनॉमी के सिद्धांत में उनकी केंद्रीय भूमिका की खोज [[मार्सेल बर्जर]] ने की थी। वे प्रतिनिधित्व सिद्धांत और हार्मोनिक विश्लेषण के साथ-साथ अंतर ज्यामिति में अध्ययन की महत्वपूर्ण वस्तुएं हैं। | Riemannian सममित स्थान गणित और भौतिकी दोनों में विभिन्न प्रकार की स्थितियों में उत्पन्न होते हैं। होलोनॉमी के सिद्धांत में उनकी केंद्रीय भूमिका की खोज [[मार्सेल बर्जर]] ने की थी। वे प्रतिनिधित्व सिद्धांत और हार्मोनिक विश्लेषण के साथ-साथ अंतर ज्यामिति में अध्ययन की महत्वपूर्ण वस्तुएं हैं। | ||
== ज्यामितीय परिभाषा == | == ज्यामितीय परिभाषा == | ||
एम को | एम को जुड़ा हुआ रिमेंनियन मैनिफोल्ड और एम का बिंदु है। पी के पड़ोस के भिन्नता एफ को 'जियोडेसिक समरूपता' कहा जाता है यदि यह बिंदु पी को ठीक करता है और उस बिंदु के माध्यम से भूगर्भ विज्ञान को उलट देता है, यानी यदि γ भूगर्भीय है <math> \gamma(0)=p</math> तब <math>f(\gamma(t))=\gamma(-t).</math> यह इस प्रकार है कि पी पर मानचित्र एफ का व्युत्पन्न पी के [[स्पर्शरेखा स्थान]] पर पहचान मानचित्र घटा है। सामान्य रीमैनियन मैनिफोल्ड पर, f को आइसोमेट्रिक होने की आवश्यकता नहीं है, न ही इसे सामान्य रूप से, p के पड़ोस से M के सभी तक बढ़ाया जा सकता है। | ||
M को 'स्थानीय रूप से रिमेंनियन सममित' कहा जाता है यदि इसकी भूगणित समरूपता वास्तव में सममितीय है। यह वक्रता टेंसर के सहसंयोजक व्युत्पन्न के लुप्त होने के बराबर है। | M को 'स्थानीय रूप से रिमेंनियन सममित' कहा जाता है यदि इसकी भूगणित समरूपता वास्तव में सममितीय है। यह वक्रता टेंसर के सहसंयोजक व्युत्पन्न के लुप्त होने के बराबर है। | ||
Line 25: | Line 25: | ||
=== उदाहरण === | === उदाहरण === | ||
रिमेंनियन सममित रिक्त स्थान के मूल उदाहरण [[यूक्लिडियन अंतरिक्ष]], गोले, प्रक्षेपी स्थान और अतिपरवलयिक स्थान हैं, जिनमें से प्रत्येक अपने मानक रीमैनियन मैट्रिक्स के साथ हैं। अधिक उदाहरण कॉम्पैक्ट, अर्ध-सरल लाई समूहों द्वारा प्रदान किए जाते हैं जो | रिमेंनियन सममित रिक्त स्थान के मूल उदाहरण [[यूक्लिडियन अंतरिक्ष]], गोले, प्रक्षेपी स्थान और अतिपरवलयिक स्थान हैं, जिनमें से प्रत्येक अपने मानक रीमैनियन मैट्रिक्स के साथ हैं। अधिक उदाहरण कॉम्पैक्ट, अर्ध-सरल लाई समूहों द्वारा प्रदान किए जाते हैं जो द्वि-अपरिवर्तनीय रिमेंनियन मीट्रिक से लैस होते हैं। | ||
1 से अधिक जीनस की प्रत्येक कॉम्पैक्ट [[रीमैन सतह]] (निरंतर वक्रता -1 की अपनी सामान्य मीट्रिक के साथ) | 1 से अधिक जीनस की प्रत्येक कॉम्पैक्ट [[रीमैन सतह]] (निरंतर वक्रता -1 की अपनी सामान्य मीट्रिक के साथ) स्थानीय रूप से सममित स्थान है, लेकिन सममित स्थान नहीं है। | ||
प्रत्येक [[लेंस स्थान]] स्थानीय रूप से सममित है लेकिन सममित नहीं है, इसके अपवाद के साथ <math>L(2,1)</math> जो सममित है। लेंस रिक्त स्थान असतत आइसोमेट्री द्वारा 3-गोले के भागफल हैं जिनका कोई निश्चित बिंदु नहीं है। | प्रत्येक [[लेंस स्थान]] स्थानीय रूप से सममित है लेकिन सममित नहीं है, इसके अपवाद के साथ <math>L(2,1)</math> जो सममित है। लेंस रिक्त स्थान असतत आइसोमेट्री द्वारा 3-गोले के भागफल हैं जिनका कोई निश्चित बिंदु नहीं है। | ||
एक गैर-रिमेंनियन सममित स्थान का | एक गैर-रिमेंनियन सममित स्थान का उदाहरण [[एंटी-डी सिटर स्पेस]] है। | ||
== बीजगणितीय परिभाषा == | == बीजगणितीय परिभाषा == | ||
बता दें कि G | बता दें कि G कनेक्टेड लाइ ग्रुप है। फिर जी के लिए 'सममित स्थान' सजातीय स्थान जी/एच है जहां विशिष्ट बिंदु का स्टेबलाइज़र एच ऑट (जी) में इनवॉल्यूशन (गणित) σ के निश्चित बिंदु सेट का खुला उपसमूह है। इस प्रकार σ σ के साथ G का ऑटोमोर्फिज्म है<sup>2</sup> = आईडी<sub>''G''</sub> और एच अपरिवर्तनीय सेट का खुला उपसमूह है | ||
: <math> G^\sigma=\{ g\in G: \sigma(g) = g\}.</math> | : <math> G^\sigma=\{ g\in G: \sigma(g) = g\}.</math> | ||
क्योंकि H खुला है, यह G के घटकों का | क्योंकि H खुला है, यह G के घटकों का संघ है<sup>σ</sup> (बेशक, पहचान घटक सहित)। | ||
जी के ऑटोमोर्फिज्म के रूप में, σ पहचान तत्व को ठीक करता है, और इसलिए, पहचान में अंतर करके, यह लाई बीजगणित के ऑटोमोर्फिज्म को प्रेरित करता है। <math>\mathfrak g</math> G का, जिसे σ द्वारा भी निरूपित किया जाता है, जिसका वर्ग सर्वसमिका है। यह इस प्रकार है कि σ के eigenvalues ± 1 हैं। +1 आइगेनस्पेस लाई बीजगणित है <math>\mathfrak h</math> एच का (चूंकि यह जी का झूठ बीजगणित है<sup>σ</sup>), और −1 आइगेनस्पेस को दर्शाया जाएगा <math>\mathfrak m</math>. चूंकि σ का | जी के ऑटोमोर्फिज्म के रूप में, σ पहचान तत्व को ठीक करता है, और इसलिए, पहचान में अंतर करके, यह लाई बीजगणित के ऑटोमोर्फिज्म को प्रेरित करता है। <math>\mathfrak g</math> G का, जिसे σ द्वारा भी निरूपित किया जाता है, जिसका वर्ग सर्वसमिका है। यह इस प्रकार है कि σ के eigenvalues ± 1 हैं। +1 आइगेनस्पेस लाई बीजगणित है <math>\mathfrak h</math> एच का (चूंकि यह जी का झूठ बीजगणित है<sup>σ</sup>), और −1 आइगेनस्पेस को दर्शाया जाएगा <math>\mathfrak m</math>. चूंकि σ का स्वाकारीकरण है <math>\mathfrak g</math>, यह झूठ बीजगणित अपघटन का प्रत्यक्ष योग देता है | ||
:<math> \mathfrak g = \mathfrak h\oplus\mathfrak m</math> | :<math> \mathfrak g = \mathfrak h\oplus\mathfrak m</math> | ||
साथ | साथ | ||
:<math> [\mathfrak h,\mathfrak h]\subset \mathfrak h,\; [\mathfrak h,\mathfrak m]\subset \mathfrak m,\; [\mathfrak m,\mathfrak m]\subset \mathfrak h.</math> | :<math> [\mathfrak h,\mathfrak h]\subset \mathfrak h,\; [\mathfrak h,\mathfrak m]\subset \mathfrak m,\; [\mathfrak m,\mathfrak m]\subset \mathfrak h.</math> | ||
किसी भी सजातीय स्थान के लिए पहली स्थिति स्वचालित है: यह केवल अतिसूक्ष्म स्टेबलाइजर कहता है <math>\mathfrak h</math> का ले सबलजेब्रा है <math>\mathfrak g</math>. दूसरी शर्त का अर्थ है <math>\mathfrak m</math> | किसी भी सजातीय स्थान के लिए पहली स्थिति स्वचालित है: यह केवल अतिसूक्ष्म स्टेबलाइजर कहता है <math>\mathfrak h</math> का ले सबलजेब्रा है <math>\mathfrak g</math>. दूसरी शर्त का अर्थ है <math>\mathfrak m</math> <math>\mathfrak h</math>-अपरिवर्तनीय पूरक <math>\mathfrak h</math> में <math>\mathfrak g</math>. इस प्रकार कोई भी सममित स्थान [[रिडक्टिव सजातीय स्थान]] है, लेकिन कई रिडक्टिव सजातीय स्थान हैं जो सममित स्थान नहीं हैं। सममित रिक्त स्थान की मुख्य विशेषता तीसरी शर्त है कि <math>\mathfrak m</math> कोष्ठक में <math>\mathfrak h</math>. | ||
इसके विपरीत, कोई झूठ बीजगणित दिया गया है <math> \mathfrak g</math> इन तीन स्थितियों को संतुष्ट करने वाले प्रत्यक्ष योग अपघटन के साथ, रैखिक मानचित्र σ, पर पहचान के बराबर <math>\mathfrak h</math> और माइनस आइडेंटिटी ऑन <math>\mathfrak m</math>, | इसके विपरीत, कोई झूठ बीजगणित दिया गया है <math> \mathfrak g</math> इन तीन स्थितियों को संतुष्ट करने वाले प्रत्यक्ष योग अपघटन के साथ, रैखिक मानचित्र σ, पर पहचान के बराबर <math>\mathfrak h</math> और माइनस आइडेंटिटी ऑन <math>\mathfrak m</math>, समावेशी ऑटोमोर्फिज्म है। | ||
== रिमेंनियन सममित स्थान झूठ-सैद्धांतिक विशेषता == को संतुष्ट करते हैं | == रिमेंनियन सममित स्थान झूठ-सैद्धांतिक विशेषता == को संतुष्ट करते हैं | ||
यदि M | यदि M रिमेंनियन सममित स्थान है, तो M के आइसोमेट्री समूह का पहचान घटक G Lie समूह है जो M पर सकर्मक रूप से कार्य करता है (अर्थात, M Riemannian सजातीय है)। इसलिए, यदि हम M के कुछ बिंदु p को ठीक करते हैं, तो M भागफल G/K के लिए भिन्न है, जहाँ K, P पर M पर G की क्रिया के समस्थानिक समूह को दर्शाता है। p पर क्रिया को अवकलित करके हम T पर K की सममितीय क्रिया प्राप्त करते हैं<sub>''p''</sub>एम। यह क्रिया वफादार है (उदाहरण के लिए, कोस्टेंट के प्रमेय द्वारा, पहचान घटक में किसी भी आइसोमेट्री को इसके [[जेट बंडल]] द्वारा निर्धारित किया जाता है। किसी भी बिंदु पर 1-जेट) और इसलिए के टी के ऑर्थोगोनल समूह का उपसमूह है<sub>''p''</sub>एम, इसलिए कॉम्पैक्ट। इसके अलावा, अगर हम एस द्वारा निरूपित करते हैं<sub>''p''</sub>: M → M p पर M की जियोडेसिक समरूपता, मानचित्र | ||
:<math>\sigma: G \to G, h \mapsto s_p \circ h \circ s_p</math> | :<math>\sigma: G \to G, h \mapsto s_p \circ h \circ s_p</math> | ||
एक इनवोल्यूशन (गणित) झूठ समूह [[automorphism]] है जैसे कि आइसोट्रॉपी समूह K निश्चित बिंदु समूह के बीच समाहित है <math>G^\sigma</math> और इसका पहचान घटक (इसलिए | एक इनवोल्यूशन (गणित) झूठ समूह [[automorphism]] है जैसे कि आइसोट्रॉपी समूह K निश्चित बिंदु समूह के बीच समाहित है <math>G^\sigma</math> और इसका पहचान घटक (इसलिए खुला उपसमूह) <math>(G^\sigma)_o\,,</math> अधिक जानकारी के लिए पृष्ठ 209, अध्याय IV, हेल्गसन की डिफरेंशियल ज्योमेट्री, लाई ग्रुप्स, और सिमेट्रिक स्पेसेस में सेक्शन 3 पर परिभाषा और निम्नलिखित प्रस्ताव देखें। | ||
संक्षेप में, M कॉम्पैक्ट आइसोट्रॉपी समूह K के साथ | संक्षेप में, M कॉम्पैक्ट आइसोट्रॉपी समूह K के साथ सममित स्थान G/K है। इसके विपरीत, कॉम्पैक्ट आइसोट्रॉपी समूह के साथ सममित स्थान रीमैनियन सममित स्थान हैं, हालांकि यह अद्वितीय तरीके से जरूरी नहीं है। रिमेंनियन सममित स्थान संरचना प्राप्त करने के लिए हमें पहचान कोसेट eK पर G/K के स्पर्शरेखा स्थान पर K-invariant आंतरिक उत्पाद को ठीक करने की आवश्यकता है: ऐसा आंतरिक उत्पाद हमेशा औसत से मौजूद होता है, क्योंकि K कॉम्पैक्ट है, और G के साथ अभिनय करके , हम G/K पर G-invariant Riemannian मीट्रिक g प्राप्त करते हैं। | ||
यह दिखाने के लिए कि G/K रीमानियन सममित है, किसी भी बिंदु p = hK (K का | यह दिखाने के लिए कि G/K रीमानियन सममित है, किसी भी बिंदु p = hK (K का सहसमुच्चय, जहाँ h ∈ G) पर विचार करें और परिभाषित करें | ||
:<math>s_p: M \to M,\quad h'K \mapsto h \sigma(h^{-1}h')K</math> | :<math>s_p: M \to M,\quad h'K \mapsto h \sigma(h^{-1}h')K</math> | ||
जहां σ जी फिक्सिंग के का समावेश है। फिर कोई उस एस की जांच कर सकता है<sub>''p''</sub> (स्पष्ट रूप से) एस के साथ | जहां σ जी फिक्सिंग के का समावेश है। फिर कोई उस एस की जांच कर सकता है<sub>''p''</sub> (स्पष्ट रूप से) एस के साथ आइसोमेट्री है<sub>''p''</sub>(पी) = पी और (अंतर करके) डीएस<sub>''p''</sub> टी पर पहचान घटा के बराबर<sub>''p''</sub>एम। इस प्रकार एस<sub>''p''</sub> जियोडेसिक समरूपता है और, चूंकि p मनमाना था, M रिमेंनियन सममित स्थान है। | ||
यदि कोई | यदि कोई रिमेंनियन सममित स्थान M से शुरू करता है, और फिर इन दो निर्माणों को अनुक्रम में करता है, तो प्राप्त रिमेंनियन सममित स्थान मूल के लिए सममितीय है। इससे पता चलता है कि बीजगणितीय डेटा (जी, के, σ, जी) पूरी तरह से एम की संरचना का वर्णन करता है। | ||
== रीमानियन सममित रिक्त स्थान का वर्गीकरण== | == रीमानियन सममित रिक्त स्थान का वर्गीकरण== | ||
Line 65: | Line 65: | ||
1926 में रीमैनियन सममित स्थानों के बीजगणितीय विवरण ने एली कार्टन को उनका पूर्ण वर्गीकरण प्राप्त करने में सक्षम बनाया। | 1926 में रीमैनियन सममित स्थानों के बीजगणितीय विवरण ने एली कार्टन को उनका पूर्ण वर्गीकरण प्राप्त करने में सक्षम बनाया। | ||
किसी दिए गए रीमैनियन सममित स्थान एम के लिए (जी, के, σ, जी) इससे जुड़े बीजगणितीय डेटा हो। एम के संभावित आइसोमेट्री वर्गों को वर्गीकृत करने के लिए, पहले ध्यान दें कि | किसी दिए गए रीमैनियन सममित स्थान एम के लिए (जी, के, σ, जी) इससे जुड़े बीजगणितीय डेटा हो। एम के संभावित आइसोमेट्री वर्गों को वर्गीकृत करने के लिए, पहले ध्यान दें कि रिमेंनियन सममित स्थान का सार्वभौमिक कवर फिर से रीमैनियन सममित है, और कवरिंग मैप को इसके केंद्र के उपसमूह द्वारा कवरिंग के जुड़े आइसोमेट्री समूह जी को विभाजित करके वर्णित किया गया है। इसलिए, हम व्यापकता के नुकसान के बिना मान सकते हैं कि एम बस जुड़ा हुआ है। (इसका अर्थ है कि के कंपन के लंबे सटीक अनुक्रम से जुड़ा हुआ है, क्योंकि जी धारणा से जुड़ा हुआ है।) | ||
=== वर्गीकरण योजना === | === वर्गीकरण योजना === | ||
एक साधारण रूप से जुड़े हुए रिमेंनियन सममित स्थान को इरेड्यूसिबल कहा जाता है यदि यह दो या अधिक रीमैनियन सममित स्थानों का उत्पाद नहीं है। तब यह दिखाया जा सकता है कि कोई भी आसानी से जुड़ा हुआ रिमेंनियन सममित स्थान इर्रिडिएबल का रिमेंनियन उत्पाद है। इसलिए, हम खुद को इरेड्यूसिबल, बस जुड़े हुए रिमेंनियन सममित स्थानों को वर्गीकृत करने के लिए खुद को प्रतिबंधित कर सकते हैं। | एक साधारण रूप से जुड़े हुए रिमेंनियन सममित स्थान को इरेड्यूसिबल कहा जाता है यदि यह दो या अधिक रीमैनियन सममित स्थानों का उत्पाद नहीं है। तब यह दिखाया जा सकता है कि कोई भी आसानी से जुड़ा हुआ रिमेंनियन सममित स्थान इर्रिडिएबल का रिमेंनियन उत्पाद है। इसलिए, हम खुद को इरेड्यूसिबल, बस जुड़े हुए रिमेंनियन सममित स्थानों को वर्गीकृत करने के लिए खुद को प्रतिबंधित कर सकते हैं। | ||
अगला कदम यह दिखाना है कि कोई भी अप्रासंगिक, बस जुड़ा हुआ रिमेंनियन सममित स्थान ''एम'' निम्नलिखित तीन प्रकारों में से | अगला कदम यह दिखाना है कि कोई भी अप्रासंगिक, बस जुड़ा हुआ रिमेंनियन सममित स्थान ''एम'' निम्नलिखित तीन प्रकारों में से है: | ||
1. यूक्लिडियन प्रकार: ''M'' की वक्रता गायब हो जाती है, और इसलिए यह | 1. यूक्लिडियन प्रकार: ''M'' की वक्रता गायब हो जाती है, और इसलिए यह यूक्लिडियन अंतरिक्ष के लिए सममितीय है। | ||
2. कॉम्पैक्ट प्रकार: 'एम' में गैर-नकारात्मक (लेकिन समान रूप से शून्य नहीं) [[अनुभागीय वक्रता]] है। | 2. कॉम्पैक्ट प्रकार: 'एम' में गैर-नकारात्मक (लेकिन समान रूप से शून्य नहीं) [[अनुभागीय वक्रता]] है। | ||
Line 78: | Line 78: | ||
3. गैर-कॉम्पैक्ट प्रकार: 'एम' में गैर-सकारात्मक (लेकिन समान रूप से शून्य नहीं) अनुभागीय वक्रता है। | 3. गैर-कॉम्पैक्ट प्रकार: 'एम' में गैर-सकारात्मक (लेकिन समान रूप से शून्य नहीं) अनुभागीय वक्रता है। | ||
एक अधिक परिष्कृत अपरिवर्तनीय रैंक है, जो स्पर्शरेखा स्थान (किसी भी बिंदु पर) के | एक अधिक परिष्कृत अपरिवर्तनीय रैंक है, जो स्पर्शरेखा स्थान (किसी भी बिंदु पर) के उप-स्थान का अधिकतम आयाम है, जिस पर वक्रता समान रूप से शून्य है। रैंक हमेशा कम से कम है, समानता के साथ यदि अनुभागीय वक्रता सकारात्मक या नकारात्मक है। यदि वक्रता धनात्मक है, तो स्थान सघन प्रकार का है, और यदि ऋणात्मक है, तो यह असंहत प्रकार का है। यूक्लिडियन प्रकार के रिक्त स्थान उनके आयाम के बराबर रैंक रखते हैं और उस आयाम के यूक्लिडियन स्थान के लिए आइसोमेट्रिक हैं। इसलिए, यह कॉम्पैक्ट और गैर-कॉम्पैक्ट प्रकार के इरेड्यूसिबल, बस जुड़े हुए रिमेंनियन सममित रिक्त स्थान को वर्गीकृत करने के लिए बना हुआ है। दोनों ही मामलों में दो वर्ग हैं। | ||
ए '' जी '' | ए ''जी'' (वास्तविक) [[सरल झूठ समूह]] है; | ||
B. ''G'' या तो खुद के साथ | B. ''G'' या तो खुद के साथ कॉम्पैक्ट सिंपल लाइ ग्रुप (कॉम्पैक्ट टाइप) का उत्पाद है, या इस तरह के लाइ ग्रुप (नॉन-कॉम्पैक्ट टाइप) का जटिलता है। | ||
कक्षा बी के उदाहरण पूरी तरह से सरल झूठ समूहों के वर्गीकरण द्वारा वर्णित हैं। कॉम्पैक्ट प्रकार के लिए, ''M'' | कक्षा बी के उदाहरण पूरी तरह से सरल झूठ समूहों के वर्गीकरण द्वारा वर्णित हैं। कॉम्पैक्ट प्रकार के लिए, ''M'' कॉम्पैक्ट बस जुड़ा हुआ सरल लाइ समूह है, ''G'' ''M''×''M'' है और ''K'' विकर्ण उपसमूह है। गैर-कॉम्पैक्ट प्रकार के लिए, ''जी'' सरल रूप से जुड़ा हुआ जटिल सरल लाइ समूह है और ''के'' इसका अधिकतम कॉम्पैक्ट उपसमूह है। दोनों ही मामलों में, रैंक लाई ग्रुप की रैंक है|''G'' की रैंक है। | ||
कॉम्पैक्ट बस जुड़े हुए झूठ समूह शास्त्रीय झूठ समूहों के सार्वभौमिक आवरण हैं <math>\mathrm{SO}(n)</math>, <math>\mathrm{SU}(n)</math>, <math>\mathrm{Sp}(n)</math> और पांच असाधारण झूठ समूह#असाधारण बीजगणित ई<sub>6</sub>, और<sub>7</sub>, और<sub>8</sub>, एफ<sub>4</sub>, जी<sub>2</sub>. | कॉम्पैक्ट बस जुड़े हुए झूठ समूह शास्त्रीय झूठ समूहों के सार्वभौमिक आवरण हैं <math>\mathrm{SO}(n)</math>, <math>\mathrm{SU}(n)</math>, <math>\mathrm{Sp}(n)</math> और पांच असाधारण झूठ समूह#असाधारण बीजगणित ई<sub>6</sub>, और<sub>7</sub>, और<sub>8</sub>, एफ<sub>4</sub>, जी<sub>2</sub>. | ||
कक्षा ए के उदाहरण पूरी तरह से गैर-कॉम्पैक्ट के वर्गीकरण द्वारा वास्तविक सरल झूठ समूहों से जुड़े हुए हैं। गैर-कॉम्पैक्ट प्रकार के लिए, G | कक्षा ए के उदाहरण पूरी तरह से गैर-कॉम्पैक्ट के वर्गीकरण द्वारा वास्तविक सरल झूठ समूहों से जुड़े हुए हैं। गैर-कॉम्पैक्ट प्रकार के लिए, G ऐसा समूह है और K इसका अधिकतम कॉम्पैक्ट उपसमूह है। इस तरह के प्रत्येक उदाहरण में कॉम्पैक्ट प्रकार का समान उदाहरण है, जी के जटिलता के अधिकतम कॉम्पैक्ट उपसमूह पर विचार करके जिसमें के शामिल है। संयुग्मन)। इस तरह के अंतर्विरोध G के जटिलीकरण के अंतर्वलन तक विस्तारित होते हैं, और ये बदले में G के गैर-कॉम्पैक्ट वास्तविक रूपों को वर्गीकृत करते हैं। | ||
कक्षा ए और कक्षा बी दोनों में कॉम्पैक्ट प्रकार और गैर-कॉम्पैक्ट प्रकार के सममित रिक्त स्थान के बीच | कक्षा ए और कक्षा बी दोनों में कॉम्पैक्ट प्रकार और गैर-कॉम्पैक्ट प्रकार के सममित रिक्त स्थान के बीच पत्राचार होता है। यह रिमेंनियन सममित रिक्त स्थान के लिए द्वैत के रूप में जाना जाता है। | ||
=== वर्गीकरण परिणाम === | === वर्गीकरण परिणाम === | ||
वर्ग ए और कॉम्पैक्ट प्रकार के रिमेंनियन सममित स्थानों के लिए विशेषज्ञता, कार्टन ने पाया कि निम्नलिखित सात अनंत श्रृंखलाएं और बारह असाधारण रीमानियन सममित स्थान जी / के हैं। वे यहाँ G और K के संदर्भ में दिए गए हैं, साथ में | वर्ग ए और कॉम्पैक्ट प्रकार के रिमेंनियन सममित स्थानों के लिए विशेषज्ञता, कार्टन ने पाया कि निम्नलिखित सात अनंत श्रृंखलाएं और बारह असाधारण रीमानियन सममित स्थान जी / के हैं। वे यहाँ G और K के संदर्भ में दिए गए हैं, साथ में ज्यामितीय व्याख्या के साथ, यदि आसानी से उपलब्ध हो। इन जगहों की लेबलिंग कार्टन द्वारा दी गई है। | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 240: | Line 240: | ||
=== ग्रासमैनियन के रूप में === | === ग्रासमैनियन के रूप में === | ||
एक और आधुनिक वर्गीकरण {{Harv|Huang|Leung|2010}} फ्रायडेंथल जादू वर्ग निर्माण के माध्यम से समान रूप से कॉम्पैक्ट और गैर-कॉम्पैक्ट दोनों, रिमेंनियन सममित रिक्त स्थान वर्गीकृत करता है। अलघुकरणीय कॉम्पैक्ट रीमैनियन सममित रिक्त स्थान, परिमित आवरण तक, या तो | एक और आधुनिक वर्गीकरण {{Harv|Huang|Leung|2010}} फ्रायडेंथल जादू वर्ग निर्माण के माध्यम से समान रूप से कॉम्पैक्ट और गैर-कॉम्पैक्ट दोनों, रिमेंनियन सममित रिक्त स्थान वर्गीकृत करता है। अलघुकरणीय कॉम्पैक्ट रीमैनियन सममित रिक्त स्थान, परिमित आवरण तक, या तो कॉम्पैक्ट सरल लाइ समूह, ग्रासमैनियन, [[Lagrangian Grassmannian]], या उप-स्थानों का [[डबल Lagrangian Grassmannian]] है। <math>(\mathbf A \otimes \mathbf B)^n,</math> नॉर्म्ड डिवीजन बीजगणित ए और बी के लिए। समान निर्माण इरेड्यूसिबल गैर-कॉम्पैक्ट रीमैनियन सममित रिक्त स्थान का उत्पादन करता है। | ||
== सामान्य सममित स्थान == | == सामान्य सममित स्थान == | ||
रिमेंनियन सममित रिक्त स्थान को सामान्य करने वाले सममित रिक्त स्थान का | रिमेंनियन सममित रिक्त स्थान को सामान्य करने वाले सममित रिक्त स्थान का महत्वपूर्ण वर्ग छद्म-रीमैनियन सममित स्थान है, जिसमें रीमैनियन मीट्रिक को [[छद्म-रीमैनियन मीट्रिक]] (प्रत्येक स्पर्शरेखा स्थान पर सकारात्मक निश्चित के बजाय नॉनजेनरेट) द्वारा प्रतिस्थापित किया जाता है। विशेष रूप से, लोरेंत्ज़ियन सममित स्थान, यानी, ''एन'' आयामी छद्म-रीमैनियन हस्ताक्षर के सममित स्थान (''एन'' - 1,1), [[सामान्य सापेक्षता]] में महत्वपूर्ण हैं, सबसे उल्लेखनीय उदाहरण मिंकोव्स्की अंतरिक्ष, डी सिटर हैं स्पेस और एंटी-[[डी सिटर स्पेस]] (क्रमशः शून्य, सकारात्मक और नकारात्मक वक्रता के साथ)। आयाम ''n'' के डी सिटर स्थान की पहचान आयाम ''n'' +1 के [[मिन्कोवस्की अंतरिक्ष]] में 1-शीट वाले हाइपरबोलॉइड से की जा सकती है। | ||
सममित और स्थानीय रूप से सममित रिक्त स्थान को सामान्य रूप से सममित सममित स्थान माना जा सकता है। यदि ''एम'' = ''जी''/''एच'' | सममित और स्थानीय रूप से सममित रिक्त स्थान को सामान्य रूप से सममित सममित स्थान माना जा सकता है। यदि ''एम'' = ''जी''/''एच'' सममित स्थान है, तो नोमिजु ने दिखाया कि ''जी''-अपरिवर्तनीय मरोड़-मुक्त संबंध संबंध है (अर्थात संबंध संबंध जिसका मरोड़ तनाव गायब हो जाता है) 'एम' पर जिसका कनेक्शन का वक्रता [[समानांतर परिवहन]] है। इसके विपरीत, इस तरह के कनेक्शन के साथ कई गुना स्थानीय रूप से सममित है (यानी, इसका सार्वभौमिक आवरण सममित स्थान है)। इस तरह के मैनिफोल्ड्स को उन एफाइन मैनिफोल्ड्स के रूप में भी वर्णित किया जा सकता है, जिनकी जियोडेसिक समरूपताएं विश्व स्तर पर परिभाषित एफिन डिफियोमोर्फिज्म हैं, जो रिमेंनियन और छद्म-रीमैनियन मामले को सामान्य करती हैं। | ||
=== वर्गीकरण परिणाम === | === वर्गीकरण परिणाम === | ||
रीमैनियन सममित रिक्त स्थान का वर्गीकरण सामान्य कारण के लिए सामान्य मामले में आसानी से विस्तार नहीं करता है कि | रीमैनियन सममित रिक्त स्थान का वर्गीकरण सामान्य कारण के लिए सामान्य मामले में आसानी से विस्तार नहीं करता है कि सममित स्थान का कोई सामान्य विभाजन इरेड्यूसिबल्स के उत्पाद में नहीं होता है। यहाँ लाई बीजगणित के साथ सममित स्थान G/H है | ||
:<math>\mathfrak g = \mathfrak h\oplus \mathfrak m</math> | :<math>\mathfrak g = \mathfrak h\oplus \mathfrak m</math> | ||
अप्रासंगिक कहा जाता है अगर <math>\mathfrak m</math> का [[अलघुकरणीय प्रतिनिधित्व]] है <math>\mathfrak h</math>. तब से | अप्रासंगिक कहा जाता है अगर <math>\mathfrak m</math> का [[अलघुकरणीय प्रतिनिधित्व]] है <math>\mathfrak h</math>. तब से <math>\mathfrak h</math> सामान्य रूप से सेमीसिम्पल (या यहां तक कि रिडक्टिव) नहीं है, इसमें अविघटनीय मॉड्यूल अभ्यावेदन हो सकते हैं जो इरेड्यूसेबल नहीं हैं। | ||
हालांकि, अलघुकरणीय सममित रिक्त स्थान वर्गीकृत किया जा सकता है। जैसा कि [[और अपरिष्कृत पानी]] द्वारा दिखाया गया है, | हालांकि, अलघुकरणीय सममित रिक्त स्थान वर्गीकृत किया जा सकता है। जैसा कि [[और अपरिष्कृत पानी]] द्वारा दिखाया गया है, द्विभाजन है: अलघुकरणीय सममित स्थान G/H या तो समतल है (अर्थात, सजातीय स्थान) या <math>\mathfrak g</math> अर्धसरल है। यह यूक्लिडियन रिक्त स्थान और कॉम्पैक्ट या गैर-कॉम्पैक्ट प्रकार के बीच रिमेंनियन द्विभाजन का एनालॉग है, और इसने एम. बर्जर को सेमीसिम्पल सममित रिक्त स्थान (यानी, वाले) को वर्गीकृत करने के लिए प्रेरित किया <math>\mathfrak g</math> सेमीसिंपल) और निर्धारित करें कि इनमें से कौन सा अलघुकरणीय है। बाद वाला प्रश्न रीमैनियन मामले की तुलना में अधिक सूक्ष्म है: भले ही <math>\mathfrak g</math> सरल है, G/H अलघुकरणीय नहीं हो सकता है। | ||
जैसा कि रीमानियन मामले में जी = एच × एच के साथ अर्ध-सरल सममित स्थान हैं। कोई भी अर्ध-सरल सममित स्थान सममित रिक्त स्थान के साथ इस रूप के सममित रिक्त स्थान का | जैसा कि रीमानियन मामले में जी = एच × एच के साथ अर्ध-सरल सममित स्थान हैं। कोई भी अर्ध-सरल सममित स्थान सममित रिक्त स्थान के साथ इस रूप के सममित रिक्त स्थान का उत्पाद है जैसे कि <math>\mathfrak g</math> साधारण है। यह बाद के मामले का वर्णन करने के लिए बनी हुई है। इसके लिए, (वास्तविक) सरल लाई बीजगणित के इनवोल्यूशन σ को वर्गीकृत करने की आवश्यकता है <math>\mathfrak g</math>. अगर <math>\mathfrak g^c</math> सरल नहीं है, तो <math>\mathfrak g</math> जटिल सरल लाई बीजगणित है, और संबंधित सममित रिक्त स्थान का रूप G/H है, जहां H, G का वास्तविक रूप है: ये Riemannian सममित रिक्त स्थान G/K के अनुरूप हैं, जिसमें G जटिल सरल लाई समूह है, और K अधिकतम कॉम्पैक्ट उपसमूह। | ||
इस प्रकार हम मान सकते हैं <math>\mathfrak g^c</math> साधारण है। असली सबलजेब्रा <math>\mathfrak g</math> के | इस प्रकार हम मान सकते हैं <math>\mathfrak g^c</math> साधारण है। असली सबलजेब्रा <math>\mathfrak g</math> के जटिल [[एंटीलाइनर]] इनवोल्यूशन τ के निश्चित बिंदु सेट के रूप में देखा जा सकता है <math>\mathfrak g^c</math>, जबकि σ जटिल एंटीलाइनर इनवोल्यूशन तक फैला हुआ है <math>\mathfrak g^c</math> τ के साथ आ रहा है और इसलिए जटिल रैखिक आक्रमण σ∘τ भी है। | ||
इसलिए वर्गीकरण | इसलिए वर्गीकरण जटिल लाई बीजगणित के एंटीलाइनियर इन्वोल्यूशन के आने वाले जोड़े के वर्गीकरण को कम कर देता है। समग्र σ∘τ जटिल सममित स्थान निर्धारित करता है, जबकि τ वास्तविक रूप निर्धारित करता है। इससे किसी दिए गए के लिए सममित रिक्त स्थान की सारणी बनाना आसान है <math>\mathfrak g^c</math>, और इसके अलावा, σ और τ का आदान-प्रदान करके स्पष्ट द्वैत दिया जाता है। यह रिमेंनियन मामले से कॉम्पैक्ट/गैर-कॉम्पैक्ट द्वंद्व को बढ़ाता है, जहां या तो σ या τ [[कार्टन इनवोल्यूशन]] है, यानी, इसका निश्चित बिंदु सेट अधिकतम कॉम्पैक्ट सबलजेब्रा है। | ||
=== टेबल्स === | === टेबल्स === | ||
Line 454: | Line 454: | ||
| E<sub>8(−24)</sub>/E<sub>7</sub>×Sp(1) | | E<sub>8(−24)</sub>/E<sub>7</sub>×Sp(1) | ||
| E<sub>8(−24)</sub>/SO(12,4) or E<sub>8(−24)</sub>/Sk(8,'''H''') | | E<sub>8(−24)</sub>/SO(12,4) or E<sub>8(−24)</sub>/Sk(8,'''H''') | ||
| E<sub>8(−24)</sub>/E<sub>7(−5)</sub>×SU(2) or | | E<sub>8(−24)</sub>/E<sub>7(−5)</sub>×SU(2) or E<sub>8(−24)</sub>/E<sub>7(−25)</sub>×SL(2,'''R''') | ||
|} | |} | ||
Line 460: | Line 460: | ||
== कमजोर सममित रीमानियन रिक्त स्थान == | == कमजोर सममित रीमानियन रिक्त स्थान == | ||
{{main|Weakly symmetric space}} | {{main|Weakly symmetric space}} | ||
1950 के दशक में [[एटले सेलबर्ग]] ने कार्टन की सममित स्थान की परिभाषा को कमजोर सममित रिमेंनियन स्थान या वर्तमान शब्दावली में कमजोर सममित स्थान तक विस्तारित किया। इन्हें Riemannian manifolds ''M'' के रूप में परिभाषित किया गया है, जो कि isometrics ''G'' के | 1950 के दशक में [[एटले सेलबर्ग]] ने कार्टन की सममित स्थान की परिभाषा को कमजोर सममित रिमेंनियन स्थान या वर्तमान शब्दावली में कमजोर सममित स्थान तक विस्तारित किया। इन्हें Riemannian manifolds ''M'' के रूप में परिभाषित किया गया है, जो कि isometrics ''G'' के सकर्मक जुड़े हुए समूह के साथ है और isometry σ normalizing ''G'' जैसे कि ''x'', ''y'' में दिया गया है। 'M'' ''G'' में आइसोमेट्री ''s'' है जैसे कि ''sx'' = σ''y'' और ''sy'' = σ''x''। (सेलबर्ग की धारणा है कि σ<sup>2</sup> जी का तत्व होना चाहिए जिसे बाद में [[अर्नेस्ट विनबर्ग]] द्वारा अनावश्यक दिखाया गया था।) सेलबर्ग ने साबित किया कि कमजोर सममित स्थान गेलफैंड जोड़े को जन्म देते हैं, इसलिए विशेष रूप से एल पर जी का [[एकात्मक प्रतिनिधित्व]]<sup>2</sup>(M) बहुलता मुक्त है।'' | ||
सेल्बर्ग की परिभाषा को जियोडेसिक समरूपता के सामान्यीकरण के संदर्भ में समान रूप से अभिव्यक्त किया जा सकता है। यह आवश्यक है कि M में प्रत्येक बिंदु x और x पर स्पर्शरेखा सदिश X के लिए, x और X पर निर्भर करते हुए, M की | सेल्बर्ग की परिभाषा को जियोडेसिक समरूपता के सामान्यीकरण के संदर्भ में समान रूप से अभिव्यक्त किया जा सकता है। यह आवश्यक है कि M में प्रत्येक बिंदु x और x पर स्पर्शरेखा सदिश X के लिए, x और X पर निर्भर करते हुए, M की आइसोमेट्री s है, जैसे कि | ||
* एस फिक्स एक्स; | * एस फिक्स एक्स; | ||
*x पर s का डेरिवेटिव X को –X को भेजता है। | *x पर s का डेरिवेटिव X को –X को भेजता है। | ||
जब s, X से स्वतंत्र होता है, तो M | जब s, X से स्वतंत्र होता है, तो M सममित स्थान होता है। | ||
जटिल सेमीसिंपल लाई बीजगणित के आवधिक ऑटोमोर्फिज्म के वर्गीकरण के आधार पर, अख़ीज़र और विनबर्ग द्वारा कमजोर सममित रिक्त स्थान और उनके वर्गीकरण का विवरण दिया गया है। {{harvtxt|Wolf|2007}}. | जटिल सेमीसिंपल लाई बीजगणित के आवधिक ऑटोमोर्फिज्म के वर्गीकरण के आधार पर, अख़ीज़र और विनबर्ग द्वारा कमजोर सममित रिक्त स्थान और उनके वर्गीकरण का विवरण दिया गया है। {{harvtxt|Wolf|2007}}. | ||
Line 475: | Line 475: | ||
=== [[मीट्रिक टेंसर]] उठाना === | === [[मीट्रिक टेंसर]] उठाना === | ||
रीमैनियन मैनिफोल्ड पर मीट्रिक टेंसर <math>M</math> | रीमैनियन मैनिफोल्ड पर मीट्रिक टेंसर <math>M</math> स्केलर उत्पाद पर उठाया जा सकता है <math>G</math> इसे [[ मारक रूप |मारक रूप]] के साथ जोड़कर। यह परिभाषित करके किया जाता है | ||
:<math>\langle X,Y\rangle_\mathfrak{g}=\begin{cases} | :<math>\langle X,Y\rangle_\mathfrak{g}=\begin{cases} | ||
Line 485: | Line 485: | ||
=== गुणनखंड === | === गुणनखंड === | ||
स्पर्शरेखा स्थान <math>\mathfrak{m}</math> किलिंग फॉर्म द्वारा वर्गीकृत ईजेनस्पेस में आगे फैक्टर किया जा सकता है।<ref>Jurgen Jost, (2002) "Riemannian Geometry and Geometric Analysis", Third edition, Springer ''(See section 5.3, page 256)''</ref> यह | स्पर्शरेखा स्थान <math>\mathfrak{m}</math> किलिंग फॉर्म द्वारा वर्गीकृत ईजेनस्पेस में आगे फैक्टर किया जा सकता है।<ref>Jurgen Jost, (2002) "Riemannian Geometry and Geometric Analysis", Third edition, Springer ''(See section 5.3, page 256)''</ref> यह निकटवर्ती मानचित्र को परिभाषित करके पूरा किया जाता है <math>\mathfrak{m}\to\mathfrak{m}</math> ले रहा <math>Y\mapsto Y^\#</math> जैसा | ||
:<math>\langle X,Y^\# \rangle = B(X,Y)</math> | :<math>\langle X,Y^\# \rangle = B(X,Y)</math> | ||
कहाँ <math>\langle \cdot,\cdot \rangle</math> रिमेंनियन मीट्रिक चालू है <math>\mathfrak{m}</math> और <math>B(\cdot,\cdot)</math> संहार रूप है। इस मानचित्र को कभी-कभी सामान्यीकृत स्थानांतरण कहा जाता है, जैसा कि ऑर्थोगोनल समूहों के लिए स्थानांतरण और एकात्मक समूहों के लिए हर्मिटियन संयुग्म से मेल खाता है। यह | कहाँ <math>\langle \cdot,\cdot \rangle</math> रिमेंनियन मीट्रिक चालू है <math>\mathfrak{m}</math> और <math>B(\cdot,\cdot)</math> संहार रूप है। इस मानचित्र को कभी-कभी सामान्यीकृत स्थानांतरण कहा जाता है, जैसा कि ऑर्थोगोनल समूहों के लिए स्थानांतरण और एकात्मक समूहों के लिए हर्मिटियन संयुग्म से मेल खाता है। यह रेखीय कार्यात्मक है, और यह स्व-संलग्न है, और इसलिए कोई यह निष्कर्ष निकालता है कि अलौकिक आधार है <math>Y_1,\ldots,Y_n</math> का <math>\mathfrak{m}</math> साथ | ||
:<math>Y^\#_i=\lambda_iY_i</math> | :<math>Y^\#_i=\lambda_iY_i</math> | ||
इसमें मीट्रिक के संबंध में ये ऑर्थोगोनल हैं | इसमें मीट्रिक के संबंध में ये ऑर्थोगोनल हैं | ||
Line 498: | Line 498: | ||
के लिए <math>i\ne j</math>. के मामले के लिए <math>\mathfrak{g}</math> सेमीसिंपल, ताकि किलिंग फॉर्म नॉन-डिजनरेट हो, मेट्रिक इसी तरह फ़ैक्टराइज़ करता है: | के लिए <math>i\ne j</math>. के मामले के लिए <math>\mathfrak{g}</math> सेमीसिंपल, ताकि किलिंग फॉर्म नॉन-डिजनरेट हो, मेट्रिक इसी तरह फ़ैक्टराइज़ करता है: | ||
:<math>\langle\cdot,\cdot\rangle=\frac{1}{\lambda_1}\left.B\right|_{\mathfrak{m}_1}+\cdots +\frac{1}{\lambda_d}\left.B\right|_{\mathfrak{m}_d}</math> | :<math>\langle\cdot,\cdot\rangle=\frac{1}{\lambda_1}\left.B\right|_{\mathfrak{m}_1}+\cdots +\frac{1}{\lambda_d}\left.B\right|_{\mathfrak{m}_d}</math> | ||
कुछ व्यावहारिक अनुप्रयोगों में, इस गुणनखंड की व्याख्या ऑपरेटरों के स्पेक्ट्रम के रूप में की जा सकती है, उदा। हाइड्रोजन परमाणु का स्पेक्ट्रम, | कुछ व्यावहारिक अनुप्रयोगों में, इस गुणनखंड की व्याख्या ऑपरेटरों के स्पेक्ट्रम के रूप में की जा सकती है, उदा। हाइड्रोजन परमाणु का स्पेक्ट्रम, कक्षीय के कोणीय गति के विभिन्न मूल्यों के अनुरूप किलिंग फॉर्म के eigenvalues के साथ (यानी किलिंग फॉर्म [[कासिमिर संचालक]] है जो विभिन्न अभ्यावेदन को वर्गीकृत कर सकता है जिसके तहत विभिन्न ऑर्बिटल्स रूपांतरित होते हैं।) | ||
सिमिट्रिक स्पेस का वर्गीकरण इस आधार पर आगे बढ़ता है कि किलिंग फॉर्म सकारात्मक/नकारात्मक निश्चित है या नहीं। | सिमिट्रिक स्पेस का वर्गीकरण इस आधार पर आगे बढ़ता है कि किलिंग फॉर्म सकारात्मक/नकारात्मक निश्चित है या नहीं। | ||
Line 507: | Line 507: | ||
{{main|Holonomy group}} | {{main|Holonomy group}} | ||
यदि | यदि बिंदु पर होलोनॉमी समूह का पहचान घटक # रीमैनियन मैनिफोल्ड का रीमैनियन होलोनॉमी टेंगेंट स्पेस पर इरेड्यूसिव रूप से कार्य करता है, तो या तो मैनिफोल्ड स्थानीय रूप से रिमेंनियन सममित स्थान है, या यह होलोनॉमी समूह # द बर्जर वर्गीकरण में से है। | ||
=== हर्मिटियन सममित स्थान === | === हर्मिटियन सममित स्थान === | ||
{{main|Hermitian symmetric space}} | {{main|Hermitian symmetric space}} | ||
एक रिमेंनियन सममित स्थान जो अतिरिक्त रूप से रीमैनियन मीट्रिक के साथ संगत समानांतर जटिल संरचना से सुसज्जित है, | एक रिमेंनियन सममित स्थान जो अतिरिक्त रूप से रीमैनियन मीट्रिक के साथ संगत समानांतर जटिल संरचना से सुसज्जित है, [[हर्मिटियन सममित स्थान]] कहलाता है। कुछ उदाहरण जटिल सदिश स्थान और जटिल प्रक्षेपी स्थान हैं, दोनों अपने सामान्य रिमेंनियन मीट्रिक के साथ, और उपयुक्त मीट्रिक के साथ जटिल इकाई गेंदें ताकि वे पूर्ण और रीमैनियन सममित हो जाएं। | ||
एक अलघुकरणीय सममित स्थान G/K हर्मिटियन है यदि और केवल यदि K में | एक अलघुकरणीय सममित स्थान G/K हर्मिटियन है यदि और केवल यदि K में केंद्रीय वृत्त है। इस वृत्त द्वारा चौथाई मोड़ पहचान कोसेट पर स्पर्शरेखा स्थान पर i से गुणा के रूप में कार्य करता है। इस प्रकार हर्मिटियन सममित स्थान वर्गीकरण से आसानी से पढ़े जाते हैं। कॉम्पैक्ट और गैर-कॉम्पैक्ट दोनों मामलों में यह पता चला है कि चार अनंत श्रृंखलाएं हैं, अर्थात् AIII, BDI p = 2, DIII और CI के साथ, और दो असाधारण स्थान, अर्थात् EIII और EVII। गैर-कॉम्पैक्ट हर्मिटियन सममित रिक्त स्थान को जटिल वेक्टर रिक्त स्थान में बंधे हुए सममित डोमेन के रूप में महसूस किया जा सकता है। | ||
=== क्वाटरनियन-कहलर सममित स्थान === | === क्वाटरनियन-कहलर सममित स्थान === | ||
Line 521: | Line 521: | ||
एक रिमेंनियन सममित स्थान जो प्रत्येक बिंदु पर काल्पनिक चतुर्भुजों के लिए एंड (टीएम) आइसोमोर्फिक के समानांतर सबबंडल से सुसज्जित है, और रीमैनियन मीट्रिक के साथ संगत है, जिसे क्वाटरनियन-कहलर सममित स्थान कहा जाता है। | एक रिमेंनियन सममित स्थान जो प्रत्येक बिंदु पर काल्पनिक चतुर्भुजों के लिए एंड (टीएम) आइसोमोर्फिक के समानांतर सबबंडल से सुसज्जित है, और रीमैनियन मीट्रिक के साथ संगत है, जिसे क्वाटरनियन-कहलर सममित स्थान कहा जाता है। | ||
एक अलघुकरणीय सममित स्थान G/K चतुष्कोणीय-कहलर है यदि और केवल यदि K के समदैशिक निरूपण में | एक अलघुकरणीय सममित स्थान G/K चतुष्कोणीय-कहलर है यदि और केवल यदि K के समदैशिक निरूपण में Sp(1) योग होता है और चतुर्भुज सदिश स्थान पर [[इकाई चतुष्कोण]]ों की तरह कार्य करता है। इस प्रकार चतुष्कोणीय-कहलर सममित स्थान वर्गीकरण से आसानी से पढ़े जाते हैं। कॉम्पैक्ट और गैर-कॉम्पैक्ट दोनों मामलों में यह पता चला है कि प्रत्येक जटिल सरल लाई समूह के लिए बिल्कुल है, अर्थात् पी = 2 या क्यू = 2 के साथ एआई (ये आइसोमोर्फिक हैं), पी = 4 या क्यू = 4 के साथ बीडीआई , सीआईआई पी = 1 या क्यू = 1, ईआईआई, ईवीआई, ईआईएक्स, एफआई और जी के साथ। | ||
=== बॉटल आवधिकता प्रमेय === | === बॉटल आवधिकता प्रमेय === |
Revision as of 00:29, 26 April 2023
Lie groups |
---|
गणित में, सममित स्थान [[स्यूडो-रीमैनियन कई गुना ]] (या अधिक सामान्यतः, छद्म-रीमैनियन मैनिफोल्ड) होता है, जिसके समरूपता के समूह में प्रत्येक बिंदु के बारे में उलटा समरूपता होती है। इसका अध्ययन रीमैनियन ज्यामिति के उपकरणों के साथ किया जा सकता है, जिससे holonomi के सिद्धांत में परिणाम सामने आते हैं; या बीजगणितीय रूप से झूठ सिद्धांत के माध्यम से, जिसने एली कार्टन को पूर्ण वर्गीकरण देने की अनुमति दी। सममित स्थान आमतौर पर अंतर ज्यामिति, प्रतिनिधित्व सिद्धांत और हार्मोनिक विश्लेषण में होते हैं।
ज्यामितीय शब्दों में, पूर्ण, बस जुड़ा हुआ रीमानियन मैनिफोल्ड सममित स्थान है यदि और केवल अगर इसका वक्रता टेंसर समानांतर परिवहन के तहत अपरिवर्तनीय है। अधिक आम तौर पर, रिमेंनियन मैनिफोल्ड (एम, जी) को सममित कहा जाता है अगर और केवल अगर, एम के प्रत्येक बिंदु पी के लिए, आइसोमेट्री मौजूद है। 'एम' 'पी' को ठीक करता है और स्पर्शरेखा स्थान पर अभिनय करता है शून्य से पहचान के रूप में (प्रत्येक सममित स्थान पूर्ण रूप से कई गुना है, क्योंकि किसी भी जियोडेसिक को समापन बिंदुओं के बारे में समरूपता के माध्यम से अनिश्चित काल तक बढ़ाया जा सकता है)। दोनों विवरणों को स्वाभाविक रूप से स्यूडो-रीमैनियन मैनिफोल्ड्स की सेटिंग तक बढ़ाया जा सकता है।
लाई सिद्धांत के दृष्टिकोण से, सममित स्थान लाई उपसमूह एच द्वारा जुड़े लाई समूह जी का भागफल जी/एच है जो जी के समावेशन (गणित) के अपरिवर्तनीय समूह का (एक जुड़ा हुआ घटक) है। यह परिभाषा में रिमेंनियन परिभाषा से अधिक शामिल है, और एच कॉम्पैक्ट होने पर इसे कम कर देता है।
Riemannian सममित स्थान गणित और भौतिकी दोनों में विभिन्न प्रकार की स्थितियों में उत्पन्न होते हैं। होलोनॉमी के सिद्धांत में उनकी केंद्रीय भूमिका की खोज मार्सेल बर्जर ने की थी। वे प्रतिनिधित्व सिद्धांत और हार्मोनिक विश्लेषण के साथ-साथ अंतर ज्यामिति में अध्ययन की महत्वपूर्ण वस्तुएं हैं।
ज्यामितीय परिभाषा
एम को जुड़ा हुआ रिमेंनियन मैनिफोल्ड और एम का बिंदु है। पी के पड़ोस के भिन्नता एफ को 'जियोडेसिक समरूपता' कहा जाता है यदि यह बिंदु पी को ठीक करता है और उस बिंदु के माध्यम से भूगर्भ विज्ञान को उलट देता है, यानी यदि γ भूगर्भीय है तब यह इस प्रकार है कि पी पर मानचित्र एफ का व्युत्पन्न पी के स्पर्शरेखा स्थान पर पहचान मानचित्र घटा है। सामान्य रीमैनियन मैनिफोल्ड पर, f को आइसोमेट्रिक होने की आवश्यकता नहीं है, न ही इसे सामान्य रूप से, p के पड़ोस से M के सभी तक बढ़ाया जा सकता है।
M को 'स्थानीय रूप से रिमेंनियन सममित' कहा जाता है यदि इसकी भूगणित समरूपता वास्तव में सममितीय है। यह वक्रता टेंसर के सहसंयोजक व्युत्पन्न के लुप्त होने के बराबर है। एक स्थानीय रूप से सममित स्थान को '(वैश्विक रूप से) सममित स्थान' कहा जाता है, यदि इसके अलावा इसके जियोडेसिक समरूपता को सभी एम पर आइसोमेट्री तक बढ़ाया जा सकता है।
मूल गुण
कार्टन-एम्ब्रोस-हिक्स प्रमेय का अर्थ है कि एम स्थानीय रूप से रिमेंनियन सममित है यदि और केवल अगर इसका वक्रता टेंसर सहसंयोजक व्युत्पन्न है, और इसके अलावा यह कि प्रत्येक सरल रूप से जुड़ा हुआ, पूर्ण स्थान स्थानीय रूप से रीमैनियन सममित स्थान वास्तव में रीमैनियन सममित है।
प्रत्येक रिमेंनियन सममित स्थान M पूर्ण है और रीमैनियन सजातीय स्थान (जिसका अर्थ है कि M का आइसोमेट्री समूह M पर सकर्मक रूप से कार्य करता है)। वास्तव में, आइसोमेट्री समूह का पहले से ही पहचान घटक एम पर सकर्मक रूप से कार्य करता है (क्योंकि एम जुड़ा हुआ है)।
स्थानीय रूप से रिमेंनियन सममित रिक्त स्थान जो रिमेंनियन सममित नहीं हैं, को रीमैनियन सममित रिक्त स्थान के भागफल के रूप में आइसोमेट्री के असतत समूहों द्वारा बिना किसी निश्चित बिंदु के, और (स्थानीय रूप से) रीमैनियन सममित रिक्त स्थान के खुले उपसमुच्चय के रूप में बनाया जा सकता है।
उदाहरण
रिमेंनियन सममित रिक्त स्थान के मूल उदाहरण यूक्लिडियन अंतरिक्ष, गोले, प्रक्षेपी स्थान और अतिपरवलयिक स्थान हैं, जिनमें से प्रत्येक अपने मानक रीमैनियन मैट्रिक्स के साथ हैं। अधिक उदाहरण कॉम्पैक्ट, अर्ध-सरल लाई समूहों द्वारा प्रदान किए जाते हैं जो द्वि-अपरिवर्तनीय रिमेंनियन मीट्रिक से लैस होते हैं।
1 से अधिक जीनस की प्रत्येक कॉम्पैक्ट रीमैन सतह (निरंतर वक्रता -1 की अपनी सामान्य मीट्रिक के साथ) स्थानीय रूप से सममित स्थान है, लेकिन सममित स्थान नहीं है।
प्रत्येक लेंस स्थान स्थानीय रूप से सममित है लेकिन सममित नहीं है, इसके अपवाद के साथ जो सममित है। लेंस रिक्त स्थान असतत आइसोमेट्री द्वारा 3-गोले के भागफल हैं जिनका कोई निश्चित बिंदु नहीं है।
एक गैर-रिमेंनियन सममित स्थान का उदाहरण एंटी-डी सिटर स्पेस है।
बीजगणितीय परिभाषा
बता दें कि G कनेक्टेड लाइ ग्रुप है। फिर जी के लिए 'सममित स्थान' सजातीय स्थान जी/एच है जहां विशिष्ट बिंदु का स्टेबलाइज़र एच ऑट (जी) में इनवॉल्यूशन (गणित) σ के निश्चित बिंदु सेट का खुला उपसमूह है। इस प्रकार σ σ के साथ G का ऑटोमोर्फिज्म है2 = आईडीG और एच अपरिवर्तनीय सेट का खुला उपसमूह है
क्योंकि H खुला है, यह G के घटकों का संघ हैσ (बेशक, पहचान घटक सहित)।
जी के ऑटोमोर्फिज्म के रूप में, σ पहचान तत्व को ठीक करता है, और इसलिए, पहचान में अंतर करके, यह लाई बीजगणित के ऑटोमोर्फिज्म को प्रेरित करता है। G का, जिसे σ द्वारा भी निरूपित किया जाता है, जिसका वर्ग सर्वसमिका है। यह इस प्रकार है कि σ के eigenvalues ± 1 हैं। +1 आइगेनस्पेस लाई बीजगणित है एच का (चूंकि यह जी का झूठ बीजगणित हैσ), और −1 आइगेनस्पेस को दर्शाया जाएगा . चूंकि σ का स्वाकारीकरण है , यह झूठ बीजगणित अपघटन का प्रत्यक्ष योग देता है
साथ
किसी भी सजातीय स्थान के लिए पहली स्थिति स्वचालित है: यह केवल अतिसूक्ष्म स्टेबलाइजर कहता है का ले सबलजेब्रा है . दूसरी शर्त का अर्थ है -अपरिवर्तनीय पूरक में . इस प्रकार कोई भी सममित स्थान रिडक्टिव सजातीय स्थान है, लेकिन कई रिडक्टिव सजातीय स्थान हैं जो सममित स्थान नहीं हैं। सममित रिक्त स्थान की मुख्य विशेषता तीसरी शर्त है कि कोष्ठक में .
इसके विपरीत, कोई झूठ बीजगणित दिया गया है इन तीन स्थितियों को संतुष्ट करने वाले प्रत्यक्ष योग अपघटन के साथ, रैखिक मानचित्र σ, पर पहचान के बराबर और माइनस आइडेंटिटी ऑन , समावेशी ऑटोमोर्फिज्म है।
== रिमेंनियन सममित स्थान झूठ-सैद्धांतिक विशेषता == को संतुष्ट करते हैं यदि M रिमेंनियन सममित स्थान है, तो M के आइसोमेट्री समूह का पहचान घटक G Lie समूह है जो M पर सकर्मक रूप से कार्य करता है (अर्थात, M Riemannian सजातीय है)। इसलिए, यदि हम M के कुछ बिंदु p को ठीक करते हैं, तो M भागफल G/K के लिए भिन्न है, जहाँ K, P पर M पर G की क्रिया के समस्थानिक समूह को दर्शाता है। p पर क्रिया को अवकलित करके हम T पर K की सममितीय क्रिया प्राप्त करते हैंpएम। यह क्रिया वफादार है (उदाहरण के लिए, कोस्टेंट के प्रमेय द्वारा, पहचान घटक में किसी भी आइसोमेट्री को इसके जेट बंडल द्वारा निर्धारित किया जाता है। किसी भी बिंदु पर 1-जेट) और इसलिए के टी के ऑर्थोगोनल समूह का उपसमूह हैpएम, इसलिए कॉम्पैक्ट। इसके अलावा, अगर हम एस द्वारा निरूपित करते हैंp: M → M p पर M की जियोडेसिक समरूपता, मानचित्र
एक इनवोल्यूशन (गणित) झूठ समूह automorphism है जैसे कि आइसोट्रॉपी समूह K निश्चित बिंदु समूह के बीच समाहित है और इसका पहचान घटक (इसलिए खुला उपसमूह) अधिक जानकारी के लिए पृष्ठ 209, अध्याय IV, हेल्गसन की डिफरेंशियल ज्योमेट्री, लाई ग्रुप्स, और सिमेट्रिक स्पेसेस में सेक्शन 3 पर परिभाषा और निम्नलिखित प्रस्ताव देखें।
संक्षेप में, M कॉम्पैक्ट आइसोट्रॉपी समूह K के साथ सममित स्थान G/K है। इसके विपरीत, कॉम्पैक्ट आइसोट्रॉपी समूह के साथ सममित स्थान रीमैनियन सममित स्थान हैं, हालांकि यह अद्वितीय तरीके से जरूरी नहीं है। रिमेंनियन सममित स्थान संरचना प्राप्त करने के लिए हमें पहचान कोसेट eK पर G/K के स्पर्शरेखा स्थान पर K-invariant आंतरिक उत्पाद को ठीक करने की आवश्यकता है: ऐसा आंतरिक उत्पाद हमेशा औसत से मौजूद होता है, क्योंकि K कॉम्पैक्ट है, और G के साथ अभिनय करके , हम G/K पर G-invariant Riemannian मीट्रिक g प्राप्त करते हैं।
यह दिखाने के लिए कि G/K रीमानियन सममित है, किसी भी बिंदु p = hK (K का सहसमुच्चय, जहाँ h ∈ G) पर विचार करें और परिभाषित करें
जहां σ जी फिक्सिंग के का समावेश है। फिर कोई उस एस की जांच कर सकता हैp (स्पष्ट रूप से) एस के साथ आइसोमेट्री हैp(पी) = पी और (अंतर करके) डीएसp टी पर पहचान घटा के बराबरpएम। इस प्रकार एसp जियोडेसिक समरूपता है और, चूंकि p मनमाना था, M रिमेंनियन सममित स्थान है।
यदि कोई रिमेंनियन सममित स्थान M से शुरू करता है, और फिर इन दो निर्माणों को अनुक्रम में करता है, तो प्राप्त रिमेंनियन सममित स्थान मूल के लिए सममितीय है। इससे पता चलता है कि बीजगणितीय डेटा (जी, के, σ, जी) पूरी तरह से एम की संरचना का वर्णन करता है।
रीमानियन सममित रिक्त स्थान का वर्गीकरण
1926 में रीमैनियन सममित स्थानों के बीजगणितीय विवरण ने एली कार्टन को उनका पूर्ण वर्गीकरण प्राप्त करने में सक्षम बनाया।
किसी दिए गए रीमैनियन सममित स्थान एम के लिए (जी, के, σ, जी) इससे जुड़े बीजगणितीय डेटा हो। एम के संभावित आइसोमेट्री वर्गों को वर्गीकृत करने के लिए, पहले ध्यान दें कि रिमेंनियन सममित स्थान का सार्वभौमिक कवर फिर से रीमैनियन सममित है, और कवरिंग मैप को इसके केंद्र के उपसमूह द्वारा कवरिंग के जुड़े आइसोमेट्री समूह जी को विभाजित करके वर्णित किया गया है। इसलिए, हम व्यापकता के नुकसान के बिना मान सकते हैं कि एम बस जुड़ा हुआ है। (इसका अर्थ है कि के कंपन के लंबे सटीक अनुक्रम से जुड़ा हुआ है, क्योंकि जी धारणा से जुड़ा हुआ है।)
वर्गीकरण योजना
एक साधारण रूप से जुड़े हुए रिमेंनियन सममित स्थान को इरेड्यूसिबल कहा जाता है यदि यह दो या अधिक रीमैनियन सममित स्थानों का उत्पाद नहीं है। तब यह दिखाया जा सकता है कि कोई भी आसानी से जुड़ा हुआ रिमेंनियन सममित स्थान इर्रिडिएबल का रिमेंनियन उत्पाद है। इसलिए, हम खुद को इरेड्यूसिबल, बस जुड़े हुए रिमेंनियन सममित स्थानों को वर्गीकृत करने के लिए खुद को प्रतिबंधित कर सकते हैं।
अगला कदम यह दिखाना है कि कोई भी अप्रासंगिक, बस जुड़ा हुआ रिमेंनियन सममित स्थान एम निम्नलिखित तीन प्रकारों में से है:
1. यूक्लिडियन प्रकार: M की वक्रता गायब हो जाती है, और इसलिए यह यूक्लिडियन अंतरिक्ष के लिए सममितीय है।
2. कॉम्पैक्ट प्रकार: 'एम' में गैर-नकारात्मक (लेकिन समान रूप से शून्य नहीं) अनुभागीय वक्रता है।
3. गैर-कॉम्पैक्ट प्रकार: 'एम' में गैर-सकारात्मक (लेकिन समान रूप से शून्य नहीं) अनुभागीय वक्रता है।
एक अधिक परिष्कृत अपरिवर्तनीय रैंक है, जो स्पर्शरेखा स्थान (किसी भी बिंदु पर) के उप-स्थान का अधिकतम आयाम है, जिस पर वक्रता समान रूप से शून्य है। रैंक हमेशा कम से कम है, समानता के साथ यदि अनुभागीय वक्रता सकारात्मक या नकारात्मक है। यदि वक्रता धनात्मक है, तो स्थान सघन प्रकार का है, और यदि ऋणात्मक है, तो यह असंहत प्रकार का है। यूक्लिडियन प्रकार के रिक्त स्थान उनके आयाम के बराबर रैंक रखते हैं और उस आयाम के यूक्लिडियन स्थान के लिए आइसोमेट्रिक हैं। इसलिए, यह कॉम्पैक्ट और गैर-कॉम्पैक्ट प्रकार के इरेड्यूसिबल, बस जुड़े हुए रिमेंनियन सममित रिक्त स्थान को वर्गीकृत करने के लिए बना हुआ है। दोनों ही मामलों में दो वर्ग हैं।
ए जी (वास्तविक) सरल झूठ समूह है;
B. G या तो खुद के साथ कॉम्पैक्ट सिंपल लाइ ग्रुप (कॉम्पैक्ट टाइप) का उत्पाद है, या इस तरह के लाइ ग्रुप (नॉन-कॉम्पैक्ट टाइप) का जटिलता है।
कक्षा बी के उदाहरण पूरी तरह से सरल झूठ समूहों के वर्गीकरण द्वारा वर्णित हैं। कॉम्पैक्ट प्रकार के लिए, M कॉम्पैक्ट बस जुड़ा हुआ सरल लाइ समूह है, G M×M है और K विकर्ण उपसमूह है। गैर-कॉम्पैक्ट प्रकार के लिए, जी सरल रूप से जुड़ा हुआ जटिल सरल लाइ समूह है और के इसका अधिकतम कॉम्पैक्ट उपसमूह है। दोनों ही मामलों में, रैंक लाई ग्रुप की रैंक है|G की रैंक है।
कॉम्पैक्ट बस जुड़े हुए झूठ समूह शास्त्रीय झूठ समूहों के सार्वभौमिक आवरण हैं , , और पांच असाधारण झूठ समूह#असाधारण बीजगणित ई6, और7, और8, एफ4, जी2.
कक्षा ए के उदाहरण पूरी तरह से गैर-कॉम्पैक्ट के वर्गीकरण द्वारा वास्तविक सरल झूठ समूहों से जुड़े हुए हैं। गैर-कॉम्पैक्ट प्रकार के लिए, G ऐसा समूह है और K इसका अधिकतम कॉम्पैक्ट उपसमूह है। इस तरह के प्रत्येक उदाहरण में कॉम्पैक्ट प्रकार का समान उदाहरण है, जी के जटिलता के अधिकतम कॉम्पैक्ट उपसमूह पर विचार करके जिसमें के शामिल है। संयुग्मन)। इस तरह के अंतर्विरोध G के जटिलीकरण के अंतर्वलन तक विस्तारित होते हैं, और ये बदले में G के गैर-कॉम्पैक्ट वास्तविक रूपों को वर्गीकृत करते हैं।
कक्षा ए और कक्षा बी दोनों में कॉम्पैक्ट प्रकार और गैर-कॉम्पैक्ट प्रकार के सममित रिक्त स्थान के बीच पत्राचार होता है। यह रिमेंनियन सममित रिक्त स्थान के लिए द्वैत के रूप में जाना जाता है।
वर्गीकरण परिणाम
वर्ग ए और कॉम्पैक्ट प्रकार के रिमेंनियन सममित स्थानों के लिए विशेषज्ञता, कार्टन ने पाया कि निम्नलिखित सात अनंत श्रृंखलाएं और बारह असाधारण रीमानियन सममित स्थान जी / के हैं। वे यहाँ G और K के संदर्भ में दिए गए हैं, साथ में ज्यामितीय व्याख्या के साथ, यदि आसानी से उपलब्ध हो। इन जगहों की लेबलिंग कार्टन द्वारा दी गई है।
Label | G | K | Dimension | Rank | Geometric interpretation |
---|---|---|---|---|---|
AI | Space of real structures on which leave the complex determinant invariant | ||||
AII | Space of quaternionic structures on compatible with the Hermitian metric | ||||
AIII | Grassmannian of complex p-dimensional subspaces of | ||||
BDI | Grassmannian of oriented real p-dimensional subspaces of | ||||
DIII | Space of orthogonal complex structures on | ||||
CI | Space of complex structures on compatible with the inner product | ||||
CII | Grassmannian of quaternionic p-dimensional subspaces of | ||||
EI | 42 | 6 | |||
EII | 40 | 4 | Space of symmetric subspaces of isometric to | ||
EIII | 32 | 2 | Complexified Cayley projective plane | ||
EIV | 26 | 2 | Space of symmetric subspaces of isometric to | ||
EV | 70 | 7 | |||
EVI | 64 | 4 | Rosenfeld projective plane over | ||
EVII | 54 | 3 | Space of symmetric subspaces of isomorphic to | ||
EVIII | 128 | 8 | Rosenfeld projective plane | ||
EIX | 112 | 4 | Space of symmetric subspaces of isomorphic to | ||
FI | 28 | 4 | Space of symmetric subspaces of isomorphic to | ||
FII | 16 | 1 | Cayley projective plane | ||
G | 8 | 2 | Space of subalgebras of the octonion algebra which are isomorphic to the quaternion algebra |
ग्रासमैनियन के रूप में
एक और आधुनिक वर्गीकरण (Huang & Leung 2010) फ्रायडेंथल जादू वर्ग निर्माण के माध्यम से समान रूप से कॉम्पैक्ट और गैर-कॉम्पैक्ट दोनों, रिमेंनियन सममित रिक्त स्थान वर्गीकृत करता है। अलघुकरणीय कॉम्पैक्ट रीमैनियन सममित रिक्त स्थान, परिमित आवरण तक, या तो कॉम्पैक्ट सरल लाइ समूह, ग्रासमैनियन, Lagrangian Grassmannian, या उप-स्थानों का डबल Lagrangian Grassmannian है। नॉर्म्ड डिवीजन बीजगणित ए और बी के लिए। समान निर्माण इरेड्यूसिबल गैर-कॉम्पैक्ट रीमैनियन सममित रिक्त स्थान का उत्पादन करता है।
सामान्य सममित स्थान
रिमेंनियन सममित रिक्त स्थान को सामान्य करने वाले सममित रिक्त स्थान का महत्वपूर्ण वर्ग छद्म-रीमैनियन सममित स्थान है, जिसमें रीमैनियन मीट्रिक को छद्म-रीमैनियन मीट्रिक (प्रत्येक स्पर्शरेखा स्थान पर सकारात्मक निश्चित के बजाय नॉनजेनरेट) द्वारा प्रतिस्थापित किया जाता है। विशेष रूप से, लोरेंत्ज़ियन सममित स्थान, यानी, एन आयामी छद्म-रीमैनियन हस्ताक्षर के सममित स्थान (एन - 1,1), सामान्य सापेक्षता में महत्वपूर्ण हैं, सबसे उल्लेखनीय उदाहरण मिंकोव्स्की अंतरिक्ष, डी सिटर हैं स्पेस और एंटी-डी सिटर स्पेस (क्रमशः शून्य, सकारात्मक और नकारात्मक वक्रता के साथ)। आयाम n के डी सिटर स्थान की पहचान आयाम n +1 के मिन्कोवस्की अंतरिक्ष में 1-शीट वाले हाइपरबोलॉइड से की जा सकती है।
सममित और स्थानीय रूप से सममित रिक्त स्थान को सामान्य रूप से सममित सममित स्थान माना जा सकता है। यदि एम = जी/एच सममित स्थान है, तो नोमिजु ने दिखाया कि जी-अपरिवर्तनीय मरोड़-मुक्त संबंध संबंध है (अर्थात संबंध संबंध जिसका मरोड़ तनाव गायब हो जाता है) 'एम' पर जिसका कनेक्शन का वक्रता समानांतर परिवहन है। इसके विपरीत, इस तरह के कनेक्शन के साथ कई गुना स्थानीय रूप से सममित है (यानी, इसका सार्वभौमिक आवरण सममित स्थान है)। इस तरह के मैनिफोल्ड्स को उन एफाइन मैनिफोल्ड्स के रूप में भी वर्णित किया जा सकता है, जिनकी जियोडेसिक समरूपताएं विश्व स्तर पर परिभाषित एफिन डिफियोमोर्फिज्म हैं, जो रिमेंनियन और छद्म-रीमैनियन मामले को सामान्य करती हैं।
वर्गीकरण परिणाम
रीमैनियन सममित रिक्त स्थान का वर्गीकरण सामान्य कारण के लिए सामान्य मामले में आसानी से विस्तार नहीं करता है कि सममित स्थान का कोई सामान्य विभाजन इरेड्यूसिबल्स के उत्पाद में नहीं होता है। यहाँ लाई बीजगणित के साथ सममित स्थान G/H है
अप्रासंगिक कहा जाता है अगर का अलघुकरणीय प्रतिनिधित्व है . तब से सामान्य रूप से सेमीसिम्पल (या यहां तक कि रिडक्टिव) नहीं है, इसमें अविघटनीय मॉड्यूल अभ्यावेदन हो सकते हैं जो इरेड्यूसेबल नहीं हैं।
हालांकि, अलघुकरणीय सममित रिक्त स्थान वर्गीकृत किया जा सकता है। जैसा कि और अपरिष्कृत पानी द्वारा दिखाया गया है, द्विभाजन है: अलघुकरणीय सममित स्थान G/H या तो समतल है (अर्थात, सजातीय स्थान) या अर्धसरल है। यह यूक्लिडियन रिक्त स्थान और कॉम्पैक्ट या गैर-कॉम्पैक्ट प्रकार के बीच रिमेंनियन द्विभाजन का एनालॉग है, और इसने एम. बर्जर को सेमीसिम्पल सममित रिक्त स्थान (यानी, वाले) को वर्गीकृत करने के लिए प्रेरित किया सेमीसिंपल) और निर्धारित करें कि इनमें से कौन सा अलघुकरणीय है। बाद वाला प्रश्न रीमैनियन मामले की तुलना में अधिक सूक्ष्म है: भले ही सरल है, G/H अलघुकरणीय नहीं हो सकता है।
जैसा कि रीमानियन मामले में जी = एच × एच के साथ अर्ध-सरल सममित स्थान हैं। कोई भी अर्ध-सरल सममित स्थान सममित रिक्त स्थान के साथ इस रूप के सममित रिक्त स्थान का उत्पाद है जैसे कि साधारण है। यह बाद के मामले का वर्णन करने के लिए बनी हुई है। इसके लिए, (वास्तविक) सरल लाई बीजगणित के इनवोल्यूशन σ को वर्गीकृत करने की आवश्यकता है . अगर सरल नहीं है, तो जटिल सरल लाई बीजगणित है, और संबंधित सममित रिक्त स्थान का रूप G/H है, जहां H, G का वास्तविक रूप है: ये Riemannian सममित रिक्त स्थान G/K के अनुरूप हैं, जिसमें G जटिल सरल लाई समूह है, और K अधिकतम कॉम्पैक्ट उपसमूह।
इस प्रकार हम मान सकते हैं साधारण है। असली सबलजेब्रा के जटिल एंटीलाइनर इनवोल्यूशन τ के निश्चित बिंदु सेट के रूप में देखा जा सकता है , जबकि σ जटिल एंटीलाइनर इनवोल्यूशन तक फैला हुआ है τ के साथ आ रहा है और इसलिए जटिल रैखिक आक्रमण σ∘τ भी है।
इसलिए वर्गीकरण जटिल लाई बीजगणित के एंटीलाइनियर इन्वोल्यूशन के आने वाले जोड़े के वर्गीकरण को कम कर देता है। समग्र σ∘τ जटिल सममित स्थान निर्धारित करता है, जबकि τ वास्तविक रूप निर्धारित करता है। इससे किसी दिए गए के लिए सममित रिक्त स्थान की सारणी बनाना आसान है , और इसके अलावा, σ और τ का आदान-प्रदान करके स्पष्ट द्वैत दिया जाता है। यह रिमेंनियन मामले से कॉम्पैक्ट/गैर-कॉम्पैक्ट द्वंद्व को बढ़ाता है, जहां या तो σ या τ कार्टन इनवोल्यूशन है, यानी, इसका निश्चित बिंदु सेट अधिकतम कॉम्पैक्ट सबलजेब्रा है।
टेबल्स
निम्न तालिका प्रत्येक शास्त्रीय और असाधारण जटिल सरल झूठ समूह के लिए जटिल सममित रिक्त स्थान और वास्तविक रूपों द्वारा वास्तविक सममित रिक्त स्थान को अनुक्रमित करती है।
Gc = SL(n,C) | Gc/SO(n,C) | Gc/S(GL(k,C)×GL(ℓ,C)), k + ℓ = n | Gc/Sp(n,C), n even |
---|---|---|---|
G = SL(n,R) | G/SO(k,l) | G/S(GL(k,R)×GL(l,R)) or G/GL(n/2,C), n even |
G/Sp(n,R), n even |
G = SU(p,q), p + q = n | G/SO(p,q) or SU(p,p)/Sk(p,H) |
G/S(U(kp,kq)×U(lp,lq)) or SU(p,p)/GL(p,C) |
G/Sp(p/2,q/2), p,q even or SU(p,p)/Sp(2p,R) |
G=SL(n/2,H), n even | G/Sk(n/2,H) | G/S(GL(k/2,H)×GL(ℓ/2,H)), k,ℓ even or G/GL(n/2,C) |
G/Sp(k/2,ℓ/2), k,ℓ even, k + ℓ = n |
Gc=SO(n,C) | Gc/SO(k,C)×SO(ℓ,C), k + ℓ = n | Gc/GL(n/2,C), n even |
---|---|---|
G=SO(p,q) | G/SO(kp,kq)×SO(ℓp,lq) or SO(n,n)/SO(n,C) |
G/U(p/2,q/2), p,q even or SO(n,n)/GL(n,R) |
G = Sk(n/2,H), n even | G/Sk(k/2,ℓ/2), k,ℓ even or G/SO(n/2,C) |
G/U(k/2,ℓ/2), k,ℓ even or G/SL(n/4,H) |
Gc = Sp(2n,C) | Gc/Sp(2k,C)×Sp(2ℓ,C), k + ℓ = n | Gc/GL(n,C) |
---|---|---|
G = Sp(p,q), p + q = n | G/Sp(kp,kq)×Sp(ℓp,ℓq) or Sp(n,n)/Sp(n,C) |
G/U(p,q) or Sp(p,p)/GL(p,H) |
G = Sp(2n,R) | G/Sp(2k,R)×Sp(2l,R) or G/Sp(n,C) |
G/U(k,ℓ), k + ℓ = n or G/GL(n,R) |
असाधारण सरल झूठ समूहों के लिए, रिमेंनियन मामले को स्पष्ट रूप से नीचे शामिल किया गया है, जिससे σ को पहचान का समावेश (डैश द्वारा इंगित) किया जा सके। उपरोक्त तालिकाओं में यह स्पष्ट रूप से केस kl = 0 द्वारा कवर किया गया है।
G2c | – | G2c/SL(2,C)× SL(2,C) |
---|---|---|
G2 | – | G2/SU(2)×SU(2) |
G2(2) | G2(2)/SU(2)×SU(2) | G2(2)/SL(2,R)× SL(2,R) |
F4c | – | F4c/Sp(6,C)×Sp(2,C) | F4c/SO(9,C) |
---|---|---|---|
F4 | – | F4/Sp(3)×Sp(1) | F4/SO(9) |
F4(4) | F4(4)/Sp(3)×Sp(1) | F4(4)/Sp(6,R)×Sp(2,R) or F4(4)/Sp(2,1)×Sp(1) |
F4(4)/SO(5,4) |
F4(−20) | F4(−20)/SO(9) | F4(−20)/Sp(2,1)×Sp(1) | F4(−20)/SO(8,1) |
E6c | – | E6c/Sp(8,C) | E6c/SL(6,C)×SL(2,C) | E6c/SO(10,C)×SO(2,C) | E6c/F4c |
---|---|---|---|---|---|
E6 | – | E6/Sp(4) | E6/SU(6)×SU(2) | E6/SO(10)×SO(2) | E6/F4 |
E6(6) | E6(6)/Sp(4) | E6(6)/Sp(2,2) or E6(6)/Sp(8,R) |
E6(6)/SL(6,R)×SL(2,R) or E6(6)/SL(3,H)×SU(2) |
E6(6)/SO(5,5)×SO(1,1) | E6(6)/F4(4) |
E6(2) | E6(2)/SU(6)×SU(2) | E6(2)/Sp(3,1) or E6(2)/Sp(8,R) |
E6(2)/SU(4,2)×SU(2) or E6(2)/SU(3,3)×SL(2,R) |
E6(2)/SO(6,4)×SO(2) or E6(2)/Sk(5,H)×SO(2) |
E6(2)/F4(4) |
E6(−14) | E6(−14)/SO(10)×SO(2) | E6(−14)/Sp(2,2) | E6(−14)/SU(4,2)×SU(2) or E6(−14)/SU(5,1)×SL(2,R) |
E6(−14)/SO(8,2)×SO(2) or Sk(5,H)×SO(2) |
E6(−14)/F4(−20) |
E6(−26) | E6(−26)/F4 | E6(−26)/Sp(3,1) | E6(−26)/SL(3,H)×Sp(1) | E6(−26)/SO(9,1)×SO(1,1) | E6(−26)/F4(−20) |
E7c | – | E7c/SL(8,C) | E7c/SO(12,C)×Sp(2,C) | E7c/E6c×SO(2,C) |
---|---|---|---|---|
E7 | – | E7/SU(8) | E7/SO(12)× Sp(1) | E7/E6× SO(2) |
E7(7) | E7(7)/SU(8) | E7(7)/SU(4,4) or E7(7)/SL(8,R) or E7(7)/SL(4,H) |
E7(7)/SO(6,6)×SL(2,R) or E7(7)/Sk(6,H)×Sp(1) |
E7(7)/E6(6)×SO(1,1) or E7(7)/E6(2)×SO(2) |
E7(−5) | E7(−5)/SO(12)× Sp(1) | E7(−5)/SU(4,4) or E7(−5)/SU(6,2) |
E7(−5)/SO(8,4)×SU(2) or E7(−5)/Sk(6,H)×SL(2,R) |
E7(−5)/E6(2)×SO(2) or E7(−5)/E6(−14)×SO(2) |
E7(−25) | E7(−25)/E6× SO(2) | E7(−25)/SL(4,H) or E7(−25)/SU(6,2) |
E7(−25)/SO(10,2)×SL(2,R) or E7(−25)/Sk(6,H)×Sp(1) |
E7(−25)/E6(−14)×SO(2) or E7(−25)/E6(−26)×SO(1,1) |
E8c | – | E8c/SO(16,C) | E8c/E7c×Sp(2,C) |
---|---|---|---|
E8 | – | E8/SO(16) | E8/E7×Sp(1) |
E8(8) | E8(8)/SO(16) | E8(8)/SO(8,8) or E8(8)/Sk(8,H) | E8(8)/E7(7)×SL(2,R) or E8(8)/E7(−5)×SU(2) |
E8(−24) | E8(−24)/E7×Sp(1) | E8(−24)/SO(12,4) or E8(−24)/Sk(8,H) | E8(−24)/E7(−5)×SU(2) or E8(−24)/E7(−25)×SL(2,R) |
कमजोर सममित रीमानियन रिक्त स्थान
1950 के दशक में एटले सेलबर्ग ने कार्टन की सममित स्थान की परिभाषा को कमजोर सममित रिमेंनियन स्थान या वर्तमान शब्दावली में कमजोर सममित स्थान तक विस्तारित किया। इन्हें Riemannian manifolds M के रूप में परिभाषित किया गया है, जो कि isometrics G के सकर्मक जुड़े हुए समूह के साथ है और isometry σ normalizing G जैसे कि x, y में दिया गया है। 'M G में आइसोमेट्री s है जैसे कि sx = σy और sy = σx। (सेलबर्ग की धारणा है कि σ2 जी का तत्व होना चाहिए जिसे बाद में अर्नेस्ट विनबर्ग द्वारा अनावश्यक दिखाया गया था।) सेलबर्ग ने साबित किया कि कमजोर सममित स्थान गेलफैंड जोड़े को जन्म देते हैं, इसलिए विशेष रूप से एल पर जी का एकात्मक प्रतिनिधित्व2(M) बहुलता मुक्त है।
सेल्बर्ग की परिभाषा को जियोडेसिक समरूपता के सामान्यीकरण के संदर्भ में समान रूप से अभिव्यक्त किया जा सकता है। यह आवश्यक है कि M में प्रत्येक बिंदु x और x पर स्पर्शरेखा सदिश X के लिए, x और X पर निर्भर करते हुए, M की आइसोमेट्री s है, जैसे कि
- एस फिक्स एक्स;
- x पर s का डेरिवेटिव X को –X को भेजता है।
जब s, X से स्वतंत्र होता है, तो M सममित स्थान होता है।
जटिल सेमीसिंपल लाई बीजगणित के आवधिक ऑटोमोर्फिज्म के वर्गीकरण के आधार पर, अख़ीज़र और विनबर्ग द्वारा कमजोर सममित रिक्त स्थान और उनके वर्गीकरण का विवरण दिया गया है। Wolf (2007).
गुण
सममित स्थानों के कुछ गुणों और रूपों पर ध्यान दिया जा सकता है।
मीट्रिक टेंसर उठाना
रीमैनियन मैनिफोल्ड पर मीट्रिक टेंसर स्केलर उत्पाद पर उठाया जा सकता है इसे मारक रूप के साथ जोड़कर। यह परिभाषित करके किया जाता है
यहाँ, रिमेंनियन मीट्रिक पर परिभाषित किया गया है , और संहार रूप है। माइनस साइन दिखाई देता है क्योंकि किलिंग फॉर्म नेगेटिव-डेफिनेट ऑन है यह बनाता है सकारात्मक रूप से निश्चित।
गुणनखंड
स्पर्शरेखा स्थान किलिंग फॉर्म द्वारा वर्गीकृत ईजेनस्पेस में आगे फैक्टर किया जा सकता है।[1] यह निकटवर्ती मानचित्र को परिभाषित करके पूरा किया जाता है ले रहा जैसा
कहाँ रिमेंनियन मीट्रिक चालू है और संहार रूप है। इस मानचित्र को कभी-कभी सामान्यीकृत स्थानांतरण कहा जाता है, जैसा कि ऑर्थोगोनल समूहों के लिए स्थानांतरण और एकात्मक समूहों के लिए हर्मिटियन संयुग्म से मेल खाता है। यह रेखीय कार्यात्मक है, और यह स्व-संलग्न है, और इसलिए कोई यह निष्कर्ष निकालता है कि अलौकिक आधार है का साथ
इसमें मीट्रिक के संबंध में ये ऑर्थोगोनल हैं
चूंकि किलिंग फॉर्म सममित है। यह गुणनखंड करता है ईजेनस्पेस में
साथ
के लिए . के मामले के लिए सेमीसिंपल, ताकि किलिंग फॉर्म नॉन-डिजनरेट हो, मेट्रिक इसी तरह फ़ैक्टराइज़ करता है:
कुछ व्यावहारिक अनुप्रयोगों में, इस गुणनखंड की व्याख्या ऑपरेटरों के स्पेक्ट्रम के रूप में की जा सकती है, उदा। हाइड्रोजन परमाणु का स्पेक्ट्रम, कक्षीय के कोणीय गति के विभिन्न मूल्यों के अनुरूप किलिंग फॉर्म के eigenvalues के साथ (यानी किलिंग फॉर्म कासिमिर संचालक है जो विभिन्न अभ्यावेदन को वर्गीकृत कर सकता है जिसके तहत विभिन्न ऑर्बिटल्स रूपांतरित होते हैं।)
सिमिट्रिक स्पेस का वर्गीकरण इस आधार पर आगे बढ़ता है कि किलिंग फॉर्म सकारात्मक/नकारात्मक निश्चित है या नहीं।
अनुप्रयोग और विशेष मामले
सममित स्थान और समरूपता
यदि बिंदु पर होलोनॉमी समूह का पहचान घटक # रीमैनियन मैनिफोल्ड का रीमैनियन होलोनॉमी टेंगेंट स्पेस पर इरेड्यूसिव रूप से कार्य करता है, तो या तो मैनिफोल्ड स्थानीय रूप से रिमेंनियन सममित स्थान है, या यह होलोनॉमी समूह # द बर्जर वर्गीकरण में से है।
हर्मिटियन सममित स्थान
एक रिमेंनियन सममित स्थान जो अतिरिक्त रूप से रीमैनियन मीट्रिक के साथ संगत समानांतर जटिल संरचना से सुसज्जित है, हर्मिटियन सममित स्थान कहलाता है। कुछ उदाहरण जटिल सदिश स्थान और जटिल प्रक्षेपी स्थान हैं, दोनों अपने सामान्य रिमेंनियन मीट्रिक के साथ, और उपयुक्त मीट्रिक के साथ जटिल इकाई गेंदें ताकि वे पूर्ण और रीमैनियन सममित हो जाएं।
एक अलघुकरणीय सममित स्थान G/K हर्मिटियन है यदि और केवल यदि K में केंद्रीय वृत्त है। इस वृत्त द्वारा चौथाई मोड़ पहचान कोसेट पर स्पर्शरेखा स्थान पर i से गुणा के रूप में कार्य करता है। इस प्रकार हर्मिटियन सममित स्थान वर्गीकरण से आसानी से पढ़े जाते हैं। कॉम्पैक्ट और गैर-कॉम्पैक्ट दोनों मामलों में यह पता चला है कि चार अनंत श्रृंखलाएं हैं, अर्थात् AIII, BDI p = 2, DIII और CI के साथ, और दो असाधारण स्थान, अर्थात् EIII और EVII। गैर-कॉम्पैक्ट हर्मिटियन सममित रिक्त स्थान को जटिल वेक्टर रिक्त स्थान में बंधे हुए सममित डोमेन के रूप में महसूस किया जा सकता है।
क्वाटरनियन-कहलर सममित स्थान
एक रिमेंनियन सममित स्थान जो प्रत्येक बिंदु पर काल्पनिक चतुर्भुजों के लिए एंड (टीएम) आइसोमोर्फिक के समानांतर सबबंडल से सुसज्जित है, और रीमैनियन मीट्रिक के साथ संगत है, जिसे क्वाटरनियन-कहलर सममित स्थान कहा जाता है।
एक अलघुकरणीय सममित स्थान G/K चतुष्कोणीय-कहलर है यदि और केवल यदि K के समदैशिक निरूपण में Sp(1) योग होता है और चतुर्भुज सदिश स्थान पर इकाई चतुष्कोणों की तरह कार्य करता है। इस प्रकार चतुष्कोणीय-कहलर सममित स्थान वर्गीकरण से आसानी से पढ़े जाते हैं। कॉम्पैक्ट और गैर-कॉम्पैक्ट दोनों मामलों में यह पता चला है कि प्रत्येक जटिल सरल लाई समूह के लिए बिल्कुल है, अर्थात् पी = 2 या क्यू = 2 के साथ एआई (ये आइसोमोर्फिक हैं), पी = 4 या क्यू = 4 के साथ बीडीआई , सीआईआई पी = 1 या क्यू = 1, ईआईआई, ईवीआई, ईआईएक्स, एफआई और जी के साथ।
बॉटल आवधिकता प्रमेय
बॉटल आवधिकता प्रमेय में, स्थिर ऑर्थोगोनल समूह के लूप रिक्त स्थान को रिडक्टिव सममित रिक्त स्थान के रूप में व्याख्या किया जा सकता है।
यह भी देखें
- ओर्थोगोनल सिमेट्रिक ले बीजगणित
- सापेक्ष जड़ प्रणाली
- सटेक आरेख
- कार्टन इनवोल्यूशन
संदर्भ
- ↑ Jurgen Jost, (2002) "Riemannian Geometry and Geometric Analysis", Third edition, Springer (See section 5.3, page 256)
- Akhiezer, D. N.; Vinberg, E. B. (1999), "Weakly symmetric spaces and spherical varieties", Transf. Groups, 4: 3–24, doi:10.1007/BF01236659
- van den Ban, E. P.; Flensted-Jensen, M.; Schlichtkrull, H. (1997), Harmonic analysis on semisimple symmetric spaces: A survey of some general results, in Representation Theory and Automorphic Forms: Instructional Conference, International Centre for Mathematical Sciences, March 1996, Edinburgh, Scotland, American Mathematical Society, ISBN 978-0-8218-0609-8
- Berger, Marcel (1957), "Les espaces symétriques noncompacts", Annales Scientifiques de l'École Normale Supérieure, 74 (2): 85–177, doi:10.24033/asens.1054
- Besse, Arthur Lancelot (1987), Einstein Manifolds, Springer-Verlag, ISBN 0-387-15279-2 Contains a compact introduction and many tables.
- Borel, Armand (2001), Essays in the History of Lie Groups and Algebraic Groups, American Mathematical Society, ISBN 0-8218-0288-7
- Cartan, Élie (1926), "Sur une classe remarquable d'espaces de Riemann, I", Bulletin de la Société Mathématique de France, 54: 214–216, doi:10.24033/bsmf.1105
- Cartan, Élie (1927), "Sur une classe remarquable d'espaces de Riemann, II", Bulletin de la Société Mathématique de France, 55: 114–134, doi:10.24033/bsmf.1113
- Flensted-Jensen, Mogens (1986), Analysis on Non-Riemannian Symmetric Spaces, CBMS Regional Conference, American Mathematical Society, ISBN 978-0-8218-0711-8
- Helgason, Sigurdur (1978), Differential geometry, Lie groups and symmetric spaces, Academic Press, ISBN 0-12-338460-5 The standard book on Riemannian symmetric spaces.
- Helgason, Sigurdur (1984), Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, ISBN 0-12-338301-3
- Huang, Yongdong; Leung, Naichung Conan (2010). "A uniform description of compact symmetric spaces as Grassmannians using the magic square" (PDF). Mathematische Annalen. 350 (1): 79–106. doi:10.1007/s00208-010-0549-8.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, Volume II, Wiley Classics Library edition, ISBN 0-471-15732-5 Chapter XI contains a good introduction to Riemannian symmetric spaces.
- Loos, Ottmar (1969), Symmetric spaces I: General Theory, Benjamin
- Loos, Ottmar (1969), Symmetric spaces II: Compact Spaces and Classification, Benjamin
- Nomizu, K. (1954), "Invariant affine connections on homogeneous spaces", Amer. J. Math., 76 (1): 33–65, doi:10.2307/2372398, JSTOR 2372398
- Selberg, Atle (1956), "Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces, with applications to Dirichlet series", J. Indian Math. Society, 20: 47–87
- Wolf, Joseph A. (1999), Spaces of constant curvature (5th ed.), McGraw–Hill
- Wolf, Joseph A. (2007), Harmonic Analysis on Commutative Spaces, American Mathematical Society, ISBN 978-0-8218-4289-8