बलोच क्षेत्र: Difference between revisions
No edit summary |
(text) |
||
Line 32: | Line 32: | ||
:<math>\mathbb{R}^3</math> इकाई क्षेत्र पर बिंदु निर्दिष्ट करें। | :<math>\mathbb{R}^3</math> इकाई क्षेत्र पर बिंदु निर्दिष्ट करें। | ||
[[मिश्रित अवस्था (भौतिकी)]] के लिए, एक [[घनत्व ऑपरेटर|घनत्व संचालक]] पर विचार करता है। कोई द्वि-आयामी घनत्व संचालक {{mvar|ρ}} {{mvar|I}} और [[हर्मिटियन मैट्रिक्स]], [[ट्रेस (रैखिक बीजगणित)]] [[पॉल मैट्रिसेस]] <math>\vec{\sigma}</math> अस्मिता का उपयोग करके विस्तारित किया जा सकता है, | [[मिश्रित अवस्था (भौतिकी)]] के लिए, एक [[घनत्व ऑपरेटर|घनत्व संचालक]] पर विचार करता है। कोई द्वि-आयामी घनत्व संचालक {{mvar|ρ}} {{mvar|I}} और [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]], [[ट्रेस (रैखिक बीजगणित)]] [[पॉल मैट्रिसेस|पॉल आव्यूह]] <math>\vec{\sigma}</math> अस्मिता का उपयोग करके विस्तारित किया जा सकता है, | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\rho &= \frac{1}{2}\left(I + \vec{a} \cdot \vec{\sigma}\right) \\ | \rho &= \frac{1}{2}\left(I + \vec{a} \cdot \vec{\sigma}\right) \\ | ||
Line 58: | Line 58: | ||
जहाँ <math>\vec{a} \in \mathbb{R}^3</math> बलोच सदिश कहा जाता है। | जहाँ <math>\vec{a} \in \mathbb{R}^3</math> बलोच सदिश कहा जाता है। | ||
यह सदिश क्षेत्र के भीतर उस बिंदु को इंगित करता है जो किसी दिए गए मिश्रित स्थिति से मेल खाता है। विशेष रूप से, पाउली सदिश की मूल विशेषता के रूप में, <math>\frac{1}{2}\left(1 \pm |\vec{a}|\right)</math> के अभिलक्षणिक मान {{mvar|ρ}} हैं। घनत्व संचालकों को सकारात्मक-अर्ध-परिमित होना चाहिए, इसलिए यह उसी <math>\left|\vec{a}\right| \le 1</math> का अनुसरण करता है। | |||
शुद्ध | शुद्ध अवस्था के लिए, एक के पास निम्न है | ||
:<math>\operatorname{tr}\left(\rho^2\right) = \frac{1}{2}\left(1 + \left|\vec{a}\right|^2 \right) = 1 \quad \Leftrightarrow \quad \left|\vec{a}\right| = 1 ~,</math> | :<math>\operatorname{tr}\left(\rho^2\right) = \frac{1}{2}\left(1 + \left|\vec{a}\right|^2 \right) = 1 \quad \Leftrightarrow \quad \left|\vec{a}\right| = 1 ~,</math> | ||
उपरोक्त के अनुरूप।<ref>The idempotent density matrix | उपरोक्त के अनुरूप।<ref>The idempotent density matrix | ||
Line 71: | Line 71: | ||
acts on the state eigenvector <math>(\cos\theta/2, e^{i\phi} \sin\theta/2)</math> with eigenvalue 1, so like a [[Projection (linear algebra)| projection operator]] for it.</ref> | acts on the state eigenvector <math>(\cos\theta/2, e^{i\phi} \sin\theta/2)</math> with eigenvalue 1, so like a [[Projection (linear algebra)| projection operator]] for it.</ref> | ||
== | नतीजतन, बलोच क्षेत्र की सतह द्वि-आयामी परिमाण प्रणाली के सभी शुद्ध अवस्था का प्रतिनिधित्व करती है, जबकि आंतरिक सभी मिश्रित अवस्था से मेल खाती है। | ||
बलोच सदिश <math>\vec{a} = (u,v,w)</math> घनत्व संचालक के संदर्भ में निम्नलिखित आधार | |||
== u, v, w प्रतिनिधित्व == | |||
बलोच सदिश <math>\vec{a} = (u,v,w)</math> घनत्व संचालक के संदर्भ में निम्नलिखित आधार <math>\rho</math> पर प्रतिनिधित्व किया जा सकता है :<ref>{{cite journal|last1=Feynman|first1=Richard|last2=Vernon|first2=Frank|last3=Hellwarth|first3=Robert|s2cid=36493808|title=Geometrical Representation of the Schrödinger Equation for Solving Maser Problems|journal=Journal of Applied Physics|date=January 1957|volume=28|issue=1|pages=49–52|doi=10.1063/1.1722572|bibcode = 1957JAP....28...49F }}</ref> | |||
:<math>u = \rho_{10} + \rho_{01} = 2 \operatorname{Re}(\rho_{01})</math> | :<math>u = \rho_{10} + \rho_{01} = 2 \operatorname{Re}(\rho_{01})</math> | ||
:<math>v = i(\rho_{01} - \rho_{10}) = 2 \operatorname{Im}(\rho_{10})</math> | :<math>v = i(\rho_{01} - \rho_{10}) = 2 \operatorname{Im}(\rho_{10})</math> | ||
Line 84: | Line 85: | ||
\frac{1}{2}\begin{pmatrix} 1+w & u-iv \\ u+iv & 1-w \end{pmatrix}. | \frac{1}{2}\begin{pmatrix} 1+w & u-iv \\ u+iv & 1-w \end{pmatrix}. | ||
</math> | </math> | ||
यह आधार | यह आधार प्रायः [[ लेज़र |लेज़र]] सिद्धांत में प्रयोग किया जाता है, जहां <math>w</math> जनसंख्या व्युत्क्रमण के रूप में जाना जाता है। <ref>{{cite book|last1=Milonni|first1=Peter W.|author-link1=Peter W. Milonni|last2=Eberly|first2=Joseph|title=लेजर|date=1988|publisher=Wiley|location=New York|isbn=978-0471627319|page=340}}</ref> इस आधार पर, संख्याएँ <math>u, v, w</math> तीन पाउली आव्यूह की अपेक्षाएं <math>X, Y, Z</math> हैं, एक को xy और z अक्षों के साथ तीन निर्देशांकों की सर्वसमिका की अनुमति देता है। | ||
== शुद्ध अवस्थाएँ == | == शुद्ध अवस्थाएँ == | ||
एक | एक n-स्तर परिमाण यांत्रिक प्रणाली पर विचार करें। इस प्रणाली का वर्णन n-विमीय हिल्बर्ट अन्तराल h<sub>''n''</sub> द्वारा किया गया है परिभाषा के अनुसार शुद्ध अवस्था स्थान H<sub>''n''</sub> की 1-आयामी अर्धरेखा का समुच्चय है। | ||
'''प्रमेय.''' U(N)|U(''n'') आकार ''n'' के एकात्मक आव्यूह का लाइ समूह होने दें। फिर 'H<sub>''n''</sub>' का शुद्ध स्थिति स्थान सघन सह समुच्चय स्थल के साथ पहचाना जा सकता है | |||
:<math> \operatorname{U}(n) /(\operatorname{U}(n - 1) \times \operatorname{U}(1)). </math> | :<math> \operatorname{U}(n) /(\operatorname{U}(n - 1) \times \operatorname{U}(1)). </math> | ||
इस तथ्य को सिद्ध करने के लिए, ध्यान दें कि H की अवस्थाओं के समुच्चय पर U(n) की एक प्राकृतिक रूपांतरण [[समूह क्रिया (गणित)]] है। | इस तथ्य को सिद्ध करने के लिए, ध्यान दें कि H<sub>''n''</sub> की अवस्थाओं के समुच्चय पर U(n) की एक प्राकृतिक रूपांतरण [[समूह क्रिया (गणित)]] है। यह क्रिया शुद्ध अवस्थाओं पर निरंतर और [[सकर्मक समूह क्रिया]] है। किसी भी स्थिति <math>|\psi\rangle</math> के लिए, का [[आइसोट्रॉपी समूह|समदैशिकता समूह]] <math>|\psi\rangle</math>, (तत्वों के सम्मुच्चय के रूप में परिभाषित <math>g</math> u (n) की ऐसी है कि <math>g |\psi\rangle = |\psi\rangle</math>) उत्पाद समूह के लिए समरूपी है | ||
:<math> \operatorname{U}(n - 1) \times \operatorname{U}(1). </math> | :<math> \operatorname{U}(n - 1) \times \operatorname{U}(1). </math> | ||
रैखिक बीजगणित के संदर्भ में, इसे निम्नानुसार उचित ठहराया जा सकता है। कोई <math>g</math> | रैखिक बीजगणित के संदर्भ में, इसे निम्नानुसार उचित ठहराया जा सकता है। कोई <math>g</math> u (n) का जो <math>|\psi\rangle</math> छोड़ देता है। एक [[आइजन्वेक्टर|अभिलक्षणिक सदिश]] के रूप में अपरिवर्तनीय <math>|\psi\rangle</math> होना चाहिए। चूंकि संबंधित अभिलक्षणिक मान मापांक 1 की एक सम्मिश्र संख्या होनी चाहिए, यह समदैशिकता समूह का U(1) कारक देता है। समदैशिकता समूह के दूसरे भाग को आयतीय पूरक पर एकात्मक आव्यूह द्वारा <math>|\psi\rangle</math> प्राचलीकरण किया गया है, जो U(n − 1) के लिए तुल्याकारी है। इससे प्रमेय का अभिकथन सघन समूहों के सकर्मक समूह कार्यों के बारे में बुनियादी तथ्यों से होता है। | ||
ऊपर ध्यान देने योग्य महत्वपूर्ण तथ्य यह है कि एकात्मक समूह शुद्ध अवस्थाओं पर सकर्मक रूप से कार्य करता है। | ऊपर ध्यान देने योग्य महत्वपूर्ण तथ्य यह है कि एकात्मक समूह शुद्ध अवस्थाओं पर सकर्मक रूप से कार्य करता है। | ||
अब U(n) का (वास्तविक) [[आयाम]] n | अब U(n) का (वास्तविक) [[आयाम]] n<sup>2 है। घातीय मानचित्र के बाद से यह देखना आसान है | ||
:<math> A \mapsto e^{i A} </math> | :<math> A \mapsto e^{i A} </math> | ||
स्व-संलग्न जटिल | स्व-संलग्न जटिल आव्यूह के स्थान से u (n) तक एक स्थानीय होमोमोर्फिज्म है। स्व-संलग्न जटिल आव्यूहों के स्थान का वास्तविक आयाम n<sup>2 है। | ||
'''परिणाम.''' 'H<sub>''n''</sub>' के शुद्ध स्थिति स्थान का वास्तविक आयाम 2n - 2 है। | |||
वास्तव में, | वास्तव में, | ||
:<math> n^2 - \left((n - 1)^2 + 1\right) = 2n - 2. \quad </math> | :<math> n^2 - \left((n - 1)^2 + 1\right) = 2n - 2. \quad </math> | ||
आइए इसे m | आइए इसे m क्यूबिट परिमाण क्यूबिट के वास्तविक आयाम पर विचार करने के लिए लागू करें। संबंधित हिल्बर्ट स्पेस का आयाम 2 है. | ||
[[क्वांटम रजिस्टर|परिमाण क्यूबिट]] के शुद्ध अवस्था स्थान का वास्तविक आयाम 2<sup>m+1</sup> − 2 है। | |||
== | == त्रिविम प्रक्षेपण के माध्यम से शुद्ध दो-स्पाइनर स्थिति आलेखन करना == | ||
[[File:Riemann Spin2States.jpg|thumb|upright=1.3| | [[File:Riemann Spin2States.jpg|thumb|upright=1.3|<math>\mathbb{R}^3</math> बलोच क्षेत्र के मूल पर केंद्रित है। उस पर बिंदुओं की एक जोड़ी, <math>\left|\uparrow\right\rangle</math> और <math>\left|\downarrow\right\rangle</math> आधार के रूप में चुना गया है। गणितीय रूप से वे आयतीय हैं, हालांकि लेखाचित्रीय रूप से उनके बीच का कोण π है। <math>\mathbb{R}^3</math> में उन बिंदुओं के निर्देशांक (0,0,1) और (0,0,−1) हैं। एक स्वेच्छाचारी स्पाइनर <math>\left|\nearrow\right\rangle</math> बलोच क्षेत्र पर दो आधार घूर्णक के एक अद्वितीय रैखिक संयोजन के रूप में प्रतिनिधित्व करने योग्य है, जिसमें गुणांक जटिल संख्याओं की एक जोड़ी है; उन्हें α और β कहते हैं। उनका अनुपात <math>u = {\beta \over \alpha}</math> होने दें, जो एक सम्मिश्र संख्या <math>u_x + i u_y</math> भी है। समतल z = 0 पर विचार करें, गोले का विषुवतीय तल, जैसा कि यह था, एक जटिल तल है और बिंदु u को इस रूप में क्षेत्रक किया गया है <math>(u_x, u_y, 0)</math>. परियोजना बिन्दु u स्टैरियोग्राफिक रूप से बलोच क्षेत्र पर दक्षिण ध्रुव से दूर - जैसा कि - (0,0,-1) था। प्रक्षेपण गोले पर चिह्नित बिंदु <math>\left|\nearrow\right\rangle</math> पर है .]]शुद्ध अवस्था प्रदान की | ||
: <math> \alpha \left|\uparrow \right\rangle + \beta \left|\downarrow \right\rangle = \left|\nearrow \right\rangle </math> | : <math> \alpha \left|\uparrow \right\rangle + \beta \left|\downarrow \right\rangle = \left|\nearrow \right\rangle </math> | ||
जहाँ <math>\alpha</math> और <math>\beta</math> जटिल संख्याएँ हैं जिन्हें सामान्यीकृत किया जाता है ताकि | जहाँ <math>\alpha</math> और <math>\beta</math> जटिल संख्याएँ हैं जिन्हें सामान्यीकृत किया जाता है ताकि | ||
: <math> |\alpha|^2 + |\beta|^2 = \alpha^* \alpha + \beta^* \beta = 1</math> | : <math> |\alpha|^2 + |\beta|^2 = \alpha^* \alpha + \beta^* \beta = 1</math> | ||
और ऐसा है <math>\langle\downarrow | \uparrow\rangle = 0</math> और <math>\langle\downarrow | \downarrow\rangle = \langle\uparrow | \uparrow\rangle = 1</math>, | और ऐसा है <math>\langle\downarrow | \uparrow\rangle = 0</math> और <math>\langle\downarrow | \downarrow\rangle = \langle\uparrow | \uparrow\rangle = 1</math>, | ||
अर्थात्, ऐसा कि <math>\left|\uparrow\right\rangle</math> और <math>\left|\downarrow\right\rangle</math> एक आधार बनाते हैं और बलोच क्षेत्र पर बिल्कुल विपरीत प्रतिनिधित्व करते हैं, फिर | |||
अर्थात्, ऐसा कि <math>\left|\uparrow\right\rangle</math> और <math>\left|\downarrow\right\rangle</math> एक आधार बनाते हैं और बलोच क्षेत्र पर बिल्कुल विपरीत प्रतिनिधित्व करते हैं, फिर मान लीजिये | |||
:<math> u = {\beta \over \alpha} = {\alpha^* \beta \over \alpha^* \alpha} = {\alpha^* \beta \over |\alpha|^2} = u_x + i u_y</math> | :<math> u = {\beta \over \alpha} = {\alpha^* \beta \over \alpha^* \alpha} = {\alpha^* \beta \over |\alpha|^2} = u_x + i u_y</math> | ||
उनका अनुपात हो। | उनका अनुपात हो। | ||
यदि बलोच क्षेत्र | यदि बलोच क्षेत्र <math>\mathbb{R}^3</math> को अंतर्निहित माना जाता है। मूल में इसके केंद्र के साथ और त्रिज्या एक के साथ, फिर तल z = 0 (जो बलोच क्षेत्र को एक बड़े वृत्त पर काटता है; गोले का भूमध्य रेखा, जैसा कि था) को [[अरगंड आरेख]] के रूप में माना जा सकता है। इस तल में क्षेत्रक बिंदु u - ताकि अंदर <math>\mathbb{R}^3</math> इसके निर्देशांक <math>(u_x, u_y, 0)</math> हैं। | ||
u के माध्यम से और प्रतिनिधित्व करने वाले गोले पर बिंदु के माध्यम से एक सीधी रेखा <math>\left|\downarrow\right\rangle</math> खींचें। (चलो (0,0,1) प्रतिनिधित्व करते हैं <math>\left|\uparrow\right\rangle</math> और (0,0,−1) <math>\left|\downarrow\right\rangle</math> प्रतिनिधित्व करते हैं .) यह रेखा गोले को इसके अलावा एक अन्य बिंदु पर काटती है <math>\left|\downarrow\right\rangle</math>। (एकमात्र अपवाद है जब <math>u = \infty</math>, यानी जब <math>\alpha = 0</math> और <math>\beta \ne 0</math>।) इस बिंदु को P कहते हैं। समतल z = 0 पर बिंदु u बलोच क्षेत्र पर बिंदु P का त्रिविमीय प्रक्षेपण है। मूल बिंदु पर पूंछ और पी पर टिप वाला सदिश स्पाइनर के अनुरूप 3-डी अंतरिक्ष में दिशा है <math>\left|\nearrow\right\rangle</math>. P के निर्देशांक हैं | |||
:<math> P_x = {2 u_x \over 1 + u_x^2 + u_y^2} </math> | :<math> P_x = {2 u_x \over 1 + u_x^2 + u_y^2} </math> | ||
Line 128: | Line 130: | ||
:<math> P_z = {1 - u_x^2 - u_y^2 \over 1 + u_x^2 + u_y^2} </math>. | :<math> P_z = {1 - u_x^2 - u_y^2 \over 1 + u_x^2 + u_y^2} </math>. | ||
गणितीय रूप से दो- | गणितीय रूप से दो-स्पाइनर स्थिति के लिए बलोच क्षेत्र को रीमैन क्षेत्र या एक जटिल 2-आयामी प्रक्षेपीय हिल्बर्ट स्पेस में मानचित्र किया जा सकता है, जिसे <math>\mathbb{P} \mathbf{H}^2</math> निरूपित किया जा सकता है जटिल द्वि-आयामी हिल्बर्ट अंतरिक्ष <math>\mathbf{H}^2</math> (जिसका कि <math>\mathbb{P} \mathbf{H}^2</math> एक प्रक्षेपण है) [[SO(3)]] का प्रतिनिधित्व स्थान है।<ref>{{cite book |last=Penrose |first=Roger |author-link=Roger Penrose |title=The Road to Reality : A Complete Guide to the Laws of the Universe |location=New York |year=2007 |orig-year=2004 |publisher=Vintage Books (Random House, Inc.)|page=554 |isbn=978-0-679-77631-4}}</ref> | ||
== घनत्व संचालक == | == घनत्व संचालक == | ||
पृथक प्रणालियों के लिए शुद्ध अवस्थाओं के संदर्भ में परिमाण यांत्रिकी के सूत्रीकरण पर्याप्त हैं; [[घनत्व मैट्रिक्स]] के संदर्भ में सामान्य परिमाण यांत्रिक प्रणालियों में वर्णित करने की आवश्यकता है। बलोच क्षेत्र न केवल शुद्ध अवस्थाओं बल्कि 2-स्तरीय प्रणालियों के लिए मिश्रित अवस्थाओं का | पृथक प्रणालियों के लिए शुद्ध अवस्थाओं के संदर्भ में परिमाण यांत्रिकी के सूत्रीकरण पर्याप्त हैं; [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] के संदर्भ में सामान्य परिमाण यांत्रिक प्रणालियों में वर्णित करने की आवश्यकता है। बलोच क्षेत्र न केवल शुद्ध अवस्थाओं बल्कि 2-स्तरीय प्रणालियों के लिए मिश्रित अवस्थाओं का प्राचलिक करता है। 2-स्तरीय परिमाण प्रणाली (क्यूबिट) के मिश्रित-स्थिति का वर्णन करने वाला घनत्व संचालक निम्नलिखित निर्देशांक के साथ बलोच क्षेत्र के अंदर एक बिंदु से मेल खाता है: | ||
:<math> \left( \sum p_i x_i, \sum p_i y_i, \sum p_i z_i \right),</math> | :<math> \left( \sum p_i x_i, \sum p_i y_i, \sum p_i z_i \right),</math> | ||
जहाँ <math>p_i</math> पहनावा के भीतर अलग-अलग | जहाँ <math>p_i</math> पहनावा के भीतर अलग-अलग स्तिथि की संभावना है और <math>x_i, y_i, z_i</math> अलग-अलग स्तिथि के निर्देशांक हैं (बलोच क्षेत्र की सतह पर)। बलोच वृत्त पर और अंदर सभी बिंदुओं के सम्मुच्चय को बलोच गोलक के रूप में जाना जाता है। | ||
उच्च आयाम वाले | उच्च आयाम वाले स्तिथि के लिए इसे मिश्रित स्तिथि तक विस्तारित करने में कठिनाई होती है। सांस्थितिक विवरण इस तथ्य से जटिल है कि एकात्मक समूह घनत्व संचालकों पर सकर्मक रूप से कार्य नहीं करता है। इसके अलावा, कक्षाएँ अत्यंत विविध हैं, जैसा कि निम्नलिखित अवलोकन से पता चलता है: | ||
'प्रमेय' | '''प्रमेय'''. मान लीजिए A एक n स्तर परिमाण यांत्रिक प्रणाली पर घनत्व संचालक है जिसका अलग-अलग आइगेनमान μ<sub>1</sub>, ..., μ<sub>''k''</sub> गुणन के साथ n<sub>1</sub>, ..., n<sub>''k''</sub> हैं। | ||
फिर एकात्मक संकारकों का समूह V ऐसा कि V A V* = A समरूपी (एक लाइ समूह के रूप में) है | |||
:<math>\operatorname{U}(n_1) \times \cdots \times \operatorname{U}(n_k).</math> | :<math>\operatorname{U}(n_1) \times \cdots \times \operatorname{U}(n_k).</math> | ||
विशेष रूप से | विशेष रूप से a की कक्षा समरूपी है | ||
:<math>\operatorname{U}(n)/\left(\operatorname{U}(n_1) \times \cdots \times \operatorname{U}(n_k)\right).</math> | :<math>\operatorname{U}(n)/\left(\operatorname{U}(n_1) \times \cdots \times \operatorname{U}(n_k)\right).</math> | ||
बलोच गेंद के निर्माण को 2 से बड़े आयामों के लिए सामान्यीकृत करना संभव है, लेकिन ऐसे बलोच शरीर की ज्यामिति गेंद की तुलना में अधिक जटिल होती है।<ref>{{cite journal|last=Appleby |first=D.M. |title=मनमाना रैंक के सममित सूचनात्मक रूप से पूर्ण माप|arxiv=quant-ph/0611260 |journal=[[Optics and Spectroscopy]] |year=2007 |volume=103 |issue=3 |pages=416–428 |doi=10.1134/S0030400X07090111|bibcode=2007OptSp.103..416A |s2cid=17469680 }}</ref> | बलोच गेंद के निर्माण को 2 से बड़े आयामों के लिए सामान्यीकृत करना संभव है, लेकिन ऐसे बलोच शरीर की ज्यामिति गेंद की तुलना में अधिक जटिल होती है।<ref>{{cite journal|last=Appleby |first=D.M. |title=मनमाना रैंक के सममित सूचनात्मक रूप से पूर्ण माप|arxiv=quant-ph/0611260 |journal=[[Optics and Spectroscopy]] |year=2007 |volume=103 |issue=3 |pages=416–428 |doi=10.1134/S0030400X07090111|bibcode=2007OptSp.103..416A |s2cid=17469680 }}</ref> | ||
Line 146: | Line 150: | ||
== परिक्रमण == | == परिक्रमण == | ||
बलोच क्षेत्र के प्रतिनिधित्व का एक उपयोगी लाभ यह है कि बलोच क्षेत्र के घुमावों द्वारा क्वबिट स्थिति का विकास वर्णित है। ऐसा क्यों है, इसकी सबसे संक्षिप्त व्याख्या यह है कि एकात्मक और हर्मिटियन | बलोच क्षेत्र के प्रतिनिधित्व का एक उपयोगी लाभ यह है कि बलोच क्षेत्र के घुमावों द्वारा क्वबिट स्थिति का विकास वर्णित है। ऐसा क्यों है, इसकी सबसे संक्षिप्त व्याख्या यह है कि एकात्मक और हर्मिटियन आव्यूह के समूह के लिए [[झूठ बीजगणित|लाइ बीजगणित]] <math>SU(2)</math> तीन आयामी घुमावों के समूह के लाई बीजगणित <math>SO(3)</math> के लिए समरूपी है। <ref>D.B. Westra 2008, "SU(2) and SO(3)", https://www.mat.univie.ac.at/~westra/so3su2.pdf </ref> | ||
=== बलोच आधार के बारे में | === बलोच आधार के बारे में क्रमावर्तन संचालक === | ||
बलोच आधार में कार्तीय | बलोच आधार में कार्तीय अक्ष के बारे में बलोच क्षेत्र के क्रमावर्तन द्वारा दिया जाता है<ref>Nielsen and Chuang 2010, "Quantum Computation and Information," pg 174</ref> | ||
:<math>\begin{align} | :<math>\begin{align} | ||
R_x(\theta) &= e^{(-i \theta X/2)} = \cos(\theta /2)I - i\sin(\theta/2)X = | R_x(\theta) &= e^{(-i \theta X/2)} = \cos(\theta /2)I - i\sin(\theta/2)X = | ||
Line 170: | Line 174: | ||
=== एक सामान्य अक्ष के चारों ओर | === एक सामान्य अक्ष के चारों ओर घूर्णन === | ||
अगर <math> \hat{n} = (n_x, n_y, n_z) </math> तीन आयामों में एक वास्तविक इकाई सदिश है, इस अक्ष के बारे में बलोच क्षेत्र का | अगर <math> \hat{n} = (n_x, n_y, n_z) </math> तीन आयामों में एक वास्तविक इकाई सदिश है, इस अक्ष के बारे में बलोच क्षेत्र का क्रमावर्तन निम्न द्वारा दिया गया है: | ||
:<math> R_{\hat{n}}(\theta) = \exp\left(-i\theta\hat{n} \cdot \frac{1}{2}\vec{\sigma}\right) </math> | :<math> R_{\hat{n}}(\theta) = \exp\left(-i\theta\hat{n} \cdot \frac{1}{2}\vec{\sigma}\right) </math> | ||
ध्यान देने वाली एक | ध्यान देने वाली एक रोचक बात यह है कि यह अभिव्यक्ति चतुष्कोणों और स्थानिक घुमाव के लिए विस्तारित यूलर सूत्र के पुन: वर्गीकरण के समान है। | ||
:<math> \mathbf{q} = | :<math> \mathbf{q} = | ||
Line 181: | Line 185: | ||
</math> | </math> | ||
=== बलोच क्रमावर्तन जनित्र की व्युत्पत्ति === | |||
बैलेंटाइन <ref>Ballentine 2014, "Quantum Mechanics - A Modern Development", Chapter 3</ref> अतिसूक्ष्म एकात्मक परिवर्तन के लिए एक सहज व्युत्पत्ति प्रस्तुत करता है। यह समझने के लिए महत्वपूर्ण है कि बलोच क्षेत्रों के घूर्णन पाउली आव्यूह के रैखिक संयोजनों के घातीय क्यों हैं। अतः इसका संक्षिप्त उपचार यहाँ दिया जा रहा है। परिमाण यांत्रिक संदर्भ में एक अधिक पूर्ण विवरण [[रोटेशन ऑपरेटर (क्वांटम यांत्रिकी)|क्रमावर्तन संचालक (परिमाण यांत्रिकी)]] पाया जा सकता है। | |||
एकात्मक संचालकों के एक वर्ग पर विचार करें <math>U</math> किसी अक्ष के परितः घूर्णन को निरूपित करता है। चूंकि क्रमावर्तन में स्वतंत्रता की एक घात होती है, संचालक अदिश <math>S</math> के क्षेत्र में इस प्रकार कार्य करता है कि: | |||
एकात्मक संचालकों के एक | |||
:<math> U(0) = I </math> | :<math> U(0) = I </math> | ||
:<math> U(s_1 + s_2) = U(s_1)U(s_2) </math> | :<math> U(s_1 + s_2) = U(s_1)U(s_2) </math> | ||
जहाँ <math> 0, s_1, s_2, \in S </math> | जहाँ <math> 0, s_1, s_2, \in S </math> | ||
हम असीम एकात्मक को परिभाषित करते हैं क्योंकि टेलर का विस्तार दूसरे क्रम में छोटा है। | हम असीम एकात्मक को परिभाषित करते हैं क्योंकि टेलर का विस्तार दूसरे क्रम में छोटा है। | ||
:<math> U(s) = I + \frac{dU}{ds} \Bigg|_{s=0} s + O\left(s^2\right) </math> | :<math> U(s) = I + \frac{dU}{ds} \Bigg|_{s=0} s + O\left(s^2\right) </math> | ||
Line 195: | Line 199: | ||
इस तरह | इस तरह | ||
:<math> U^{\dagger}U = I + s\left(\frac{dU}{ds}\Bigg|_{s=0} + \frac{dU^{\dagger}}{ds}\Bigg|_{s=0}\right) + O\left(s^2\right) = I </math> | :<math> U^{\dagger}U = I + s\left(\frac{dU}{ds}\Bigg|_{s=0} + \frac{dU^{\dagger}}{ds}\Bigg|_{s=0}\right) + O\left(s^2\right) = I </math> | ||
इस समानता को सत्य मानने के लिए ( | इस समानता को सत्य मानने के लिए (यह मानते हुए कि <math>O\left(s^2\right)</math> नगण्य है), हमें चाहिए | ||
: <math>\frac{dU}{ds} \Bigg|_{s=0} + \frac{dU^{\dagger}}{ds} \Bigg|_{s=0}= 0</math>. | : <math>\frac{dU}{ds} \Bigg|_{s=0} + \frac{dU^{\dagger}}{ds} \Bigg|_{s=0}= 0</math>. | ||
इसका परिणाम | इसका परिणाम स्वरुप के समाधान में होता है: | ||
:<math> \frac{dU}{ds} \Bigg|_{s=0} = iK </math> | :<math> \frac{dU}{ds} \Bigg|_{s=0} = iK </math> | ||
जहाँ <math>K</math> कोई हर्मिटियन परिवर्तन है, और इसे एकात्मक | जहाँ <math>K</math> कोई हर्मिटियन परिवर्तन है, और इसे एकात्मक वर्ग का जनक कहा जाता है। | ||
इस तरह: | इस तरह: | ||
:<math> U(s) = e^{iKs} </math> | :<math> U(s) = e^{iKs} </math> | ||
पाउली | पाउली आव्यूह के बाद से <math>(\sigma_x, \sigma_y, \sigma_z)</math> एकात्मक हर्मिटियन आव्यूह हैं और बलोच आधार <math>(\hat{x}, \hat{y}, \hat{z})</math> के अनुरूप अभिलक्षणिक सदिश हैं, हम स्वाभाविक रूप से देख सकते हैं कि कैसे बलोच का घूर्णन एक स्वेच्छाचारी अक्ष <math>\hat{n}</math> के बारे में निम्नलिखित द्वारा वर्णित है | ||
:<math> R_{\hat{n}}(\theta) = \exp(-i \theta \hat{n} \cdot \vec{\sigma}/2) </math> | :<math> R_{\hat{n}}(\theta) = \exp(-i \theta \hat{n} \cdot \vec{\sigma}/2) </math> | ||
<math>K = \hat{n} \cdot \vec{\sigma}/2 </math> द्वारा दिए गए क्रमावर्तन जनित्र के साथ वर्णित है। | |||
Line 212: | Line 216: | ||
{{Commonscat|Bloch spheres}} | {{Commonscat|Bloch spheres}} | ||
* [[परमाणु इलेक्ट्रॉन संक्रमण]] | * [[परमाणु इलेक्ट्रॉन संक्रमण]] | ||
* [[जायरोवेक्टर स्पेस]] | * [[जायरोवेक्टर स्पेस|घूर्णिका सदिश स्थल]] | ||
* पोंकारे क्षेत्र (प्रकाशिकी) | * पोंकारे क्षेत्र (प्रकाशिकी) | ||
* वर्सेज | * वर्सेज | ||
* बलोच क्षेत्र के विशिष्ट कार्यान्वयनों की गणना | * बलोच क्षेत्र के विशिष्ट कार्यान्वयनों की गणना भौतिक कार्यान्वयन लेख के अंतर्गत की गई है। | ||
== संदर्भ == | == संदर्भ == |
Revision as of 14:45, 10 May 2023
परिमाण यांत्रिकी और परिमाण कम्प्यूटिंग में, बलोच क्षेत्र एक दो-स्तरीय प्रणाली के शुद्ध अवस्था स्थान का एक ज्यामितीय प्रतिनिधित्व है। दो-स्तरीय परिमाण यांत्रिक तन्त्र (क्विबिट), जिसका नाम भौतिक विज्ञानी फेलिक्स बलोच के नाम पर रखा गया है।[1]
परिमाण यांत्रिकी गणितीय रूप से हिल्बर्ट स्थल अथवा प्रक्षेपीय हिल्बर्ट स्थल अंतरिक्ष में तैयार की गई है। एक परिमाण प्रणाली की शुद्ध अवस्था संबंधित हिल्बर्ट अंतरिक्ष (और प्रक्षेपीय हिल्बर्ट अंतरिक्ष के बिंदु) के एक आयामी उप-स्थान के अनुरूप होती है। द्वि-आयामी हिल्बर्ट अंतरिक्ष के लिए, ऐसे सभी दिक् का स्थान जटिल प्रक्षेपण रेखा है यह बलोच क्षेत्र है, जिसे रीमैन क्षेत्र में मानचित्र किया जा सकता है।
बलोच क्षेत्र एक इकाई एन-क्षेत्र 2-वृत्त है, जिसमें पारस्परिक रूप से आयतीय स्थिति सदिश की एक जोड़ी के अनुरूप प्रतिव्यासांत बिंदु होते हैं। बलोच क्षेत्र के उत्तरी और दक्षिणी ध्रुवों को सामान्यतः मानक आधार सदिश और के अनुरूप चुना जाता है, क्रमशः, जो बदले में एक इलेक्ट्रॉन की स्पिन (भौतिकी)-अप और स्पिन (भौतिकी)-डाउन अवस्थाओं के लिए उदा. हो सकता है। हालाँकि यह चुनाव स्वेच्छाचारी है। गोले की सतह पर बिंदु प्रणाली की शुद्ध अवस्थाओं की परिमाण अवस्था के अनुरूप होते हैं, जबकि आंतरिक बिंदु मिश्रित अवस्थाओं के अनुरूप होते हैं।[2][3] बलोच स्फीयर को n-स्तर परिमाण प्रणाली के लिए सामान्यीकृत किया जा सकता है, लेकिन तब मानसिक चित्रण कम उपयोगी होता है।
ऐतिहासिक कारणों से, प्रकाशिकी में बलोच क्षेत्र को पोंकारे क्षेत्र (दृग्विद्या) के रूप में भी जाना जाता है और विशेष रूप से विभिन्न प्रकार के ध्रुवीकरण (तरंगों) का प्रतिनिधित्व करता है। छह सामान्य ध्रुवीकरण प्रकार उपस्थित हैं और उन्हें जोन्स सदिश कहा जाता है। वास्तव में हेनरी पोंकारे 19वीं शताब्दी के अंत में स्टोक्स मापदंडों के त्रि-आयामी प्रतिनिधित्व के रूप में इस तरह के ज्यामितीय प्रतिनिधित्व के उपयोग का सुझाव देने वाले पहले व्यक्ति थे।[4]
बलोच क्षेत्र पर प्राकृतिक मापीय (गणित) फ़ुबिनी-अध्ययन मापीय है। द्वि-आयामी स्थिति अंतरिक्ष में इकाई 3-क्षेत्र से मानचित्रण बलोच क्षेत्र के लिए हॉप फ़िब्रेशन है, जिसमें घूर्णक के प्रत्येक प्रक्षेपीय हिल्बर्ट स्थल के साथ बलोच क्षेत्र पर एक बिंदु पर मानचित्रण होता है।
परिभाषा
एक अलौकिक आधार दिया गया है, दो-स्तरीय क्वांटम प्रणाली के किसी भी शुद्ध अवस्था को आधार सदिशों और के अधिस्थापन के रूप में लिखा जा सकता है , जहां दो आधार सदिशों में से प्रत्येक का गुणांक (या योगदान) एक सम्मिश्र संख्या है। इसका अर्थ है कि स्थिति को चार वास्तविक संख्याओं द्वारा वर्णित किया गया है। हालाँकि दो आधार सदिश के गुणांक के बीच केवल सापेक्ष चरण का कोई भौतिक अर्थ है (परिमाण प्रणाली का चरण सीधे परिमाण यांत्रिकी में माप नहीं है), ताकि इस विवरण में अतिरेक हो सके। हम का गुणांक वास्तविक और गैर-नकारात्मक ले सकते हैं। यह बलोच क्षेत्र के तीन आयामों को उत्पन्न करते हुए स्थिति को केवल तीन वास्तविक संख्याओं द्वारा वर्णित करने की अनुमति देता है।
हम परिमाण यांत्रिकी से यह भी जानते हैं कि प्रणाली की कुल संभावना एक होनी चाहिए:
- , या समकक्ष .
इस बाधा को देखते हुए हम निम्नलिखित प्रतिनिधित्व का उपयोग करके लिख सकते हैं:
- , जहाँ और .
प्रतिनिधित्व हमेशा अनूठा होता है, क्योंकि, भले ही का मूल्य अद्वितीय नहीं है जब स्तिथि में से एक (ब्रा-केट चिन्हांकन देखें) या है, और द्वारा दर्शाया गया बिंदु अद्वितीय है।
मापदण्ड और , गोलाकार समन्वय प्रणाली में क्रमशः z-अक्ष के संबंध में समांतरता और x-अक्ष के संबंध में देशांतर के रूप में फिर से व्याख्या की गई, निम्नलिखित में एक बिंदु निर्दिष्ट करें
- इकाई क्षेत्र पर बिंदु निर्दिष्ट करें।
मिश्रित अवस्था (भौतिकी) के लिए, एक घनत्व संचालक पर विचार करता है। कोई द्वि-आयामी घनत्व संचालक ρ I और हर्मिटियन आव्यूह, ट्रेस (रैखिक बीजगणित) पॉल आव्यूह अस्मिता का उपयोग करके विस्तारित किया जा सकता है,
- ,
जहाँ बलोच सदिश कहा जाता है।
यह सदिश क्षेत्र के भीतर उस बिंदु को इंगित करता है जो किसी दिए गए मिश्रित स्थिति से मेल खाता है। विशेष रूप से, पाउली सदिश की मूल विशेषता के रूप में, के अभिलक्षणिक मान ρ हैं। घनत्व संचालकों को सकारात्मक-अर्ध-परिमित होना चाहिए, इसलिए यह उसी का अनुसरण करता है।
शुद्ध अवस्था के लिए, एक के पास निम्न है
उपरोक्त के अनुरूप।[5]
नतीजतन, बलोच क्षेत्र की सतह द्वि-आयामी परिमाण प्रणाली के सभी शुद्ध अवस्था का प्रतिनिधित्व करती है, जबकि आंतरिक सभी मिश्रित अवस्था से मेल खाती है।
u, v, w प्रतिनिधित्व
बलोच सदिश घनत्व संचालक के संदर्भ में निम्नलिखित आधार पर प्रतिनिधित्व किया जा सकता है :[6]
जहाँ
यह आधार प्रायः लेज़र सिद्धांत में प्रयोग किया जाता है, जहां जनसंख्या व्युत्क्रमण के रूप में जाना जाता है। [7] इस आधार पर, संख्याएँ तीन पाउली आव्यूह की अपेक्षाएं हैं, एक को xy और z अक्षों के साथ तीन निर्देशांकों की सर्वसमिका की अनुमति देता है।
शुद्ध अवस्थाएँ
एक n-स्तर परिमाण यांत्रिक प्रणाली पर विचार करें। इस प्रणाली का वर्णन n-विमीय हिल्बर्ट अन्तराल hn द्वारा किया गया है परिभाषा के अनुसार शुद्ध अवस्था स्थान Hn की 1-आयामी अर्धरेखा का समुच्चय है।
प्रमेय. U(N)|U(n) आकार n के एकात्मक आव्यूह का लाइ समूह होने दें। फिर 'Hn' का शुद्ध स्थिति स्थान सघन सह समुच्चय स्थल के साथ पहचाना जा सकता है
इस तथ्य को सिद्ध करने के लिए, ध्यान दें कि Hn की अवस्थाओं के समुच्चय पर U(n) की एक प्राकृतिक रूपांतरण समूह क्रिया (गणित) है। यह क्रिया शुद्ध अवस्थाओं पर निरंतर और सकर्मक समूह क्रिया है। किसी भी स्थिति के लिए, का समदैशिकता समूह , (तत्वों के सम्मुच्चय के रूप में परिभाषित u (n) की ऐसी है कि ) उत्पाद समूह के लिए समरूपी है
रैखिक बीजगणित के संदर्भ में, इसे निम्नानुसार उचित ठहराया जा सकता है। कोई u (n) का जो छोड़ देता है। एक अभिलक्षणिक सदिश के रूप में अपरिवर्तनीय होना चाहिए। चूंकि संबंधित अभिलक्षणिक मान मापांक 1 की एक सम्मिश्र संख्या होनी चाहिए, यह समदैशिकता समूह का U(1) कारक देता है। समदैशिकता समूह के दूसरे भाग को आयतीय पूरक पर एकात्मक आव्यूह द्वारा प्राचलीकरण किया गया है, जो U(n − 1) के लिए तुल्याकारी है। इससे प्रमेय का अभिकथन सघन समूहों के सकर्मक समूह कार्यों के बारे में बुनियादी तथ्यों से होता है।
ऊपर ध्यान देने योग्य महत्वपूर्ण तथ्य यह है कि एकात्मक समूह शुद्ध अवस्थाओं पर सकर्मक रूप से कार्य करता है।
अब U(n) का (वास्तविक) आयाम n2 है। घातीय मानचित्र के बाद से यह देखना आसान है
स्व-संलग्न जटिल आव्यूह के स्थान से u (n) तक एक स्थानीय होमोमोर्फिज्म है। स्व-संलग्न जटिल आव्यूहों के स्थान का वास्तविक आयाम n2 है।
परिणाम. 'Hn' के शुद्ध स्थिति स्थान का वास्तविक आयाम 2n - 2 है।
वास्तव में,
आइए इसे m क्यूबिट परिमाण क्यूबिट के वास्तविक आयाम पर विचार करने के लिए लागू करें। संबंधित हिल्बर्ट स्पेस का आयाम 2 है.
परिमाण क्यूबिट के शुद्ध अवस्था स्थान का वास्तविक आयाम 2m+1 − 2 है।
त्रिविम प्रक्षेपण के माध्यम से शुद्ध दो-स्पाइनर स्थिति आलेखन करना
शुद्ध अवस्था प्रदान की
जहाँ और जटिल संख्याएँ हैं जिन्हें सामान्यीकृत किया जाता है ताकि
और ऐसा है और ,
अर्थात्, ऐसा कि और एक आधार बनाते हैं और बलोच क्षेत्र पर बिल्कुल विपरीत प्रतिनिधित्व करते हैं, फिर मान लीजिये
उनका अनुपात हो।
यदि बलोच क्षेत्र को अंतर्निहित माना जाता है। मूल में इसके केंद्र के साथ और त्रिज्या एक के साथ, फिर तल z = 0 (जो बलोच क्षेत्र को एक बड़े वृत्त पर काटता है; गोले का भूमध्य रेखा, जैसा कि था) को अरगंड आरेख के रूप में माना जा सकता है। इस तल में क्षेत्रक बिंदु u - ताकि अंदर इसके निर्देशांक हैं।
u के माध्यम से और प्रतिनिधित्व करने वाले गोले पर बिंदु के माध्यम से एक सीधी रेखा खींचें। (चलो (0,0,1) प्रतिनिधित्व करते हैं और (0,0,−1) प्रतिनिधित्व करते हैं .) यह रेखा गोले को इसके अलावा एक अन्य बिंदु पर काटती है । (एकमात्र अपवाद है जब , यानी जब और ।) इस बिंदु को P कहते हैं। समतल z = 0 पर बिंदु u बलोच क्षेत्र पर बिंदु P का त्रिविमीय प्रक्षेपण है। मूल बिंदु पर पूंछ और पी पर टिप वाला सदिश स्पाइनर के अनुरूप 3-डी अंतरिक्ष में दिशा है . P के निर्देशांक हैं
- .
गणितीय रूप से दो-स्पाइनर स्थिति के लिए बलोच क्षेत्र को रीमैन क्षेत्र या एक जटिल 2-आयामी प्रक्षेपीय हिल्बर्ट स्पेस में मानचित्र किया जा सकता है, जिसे निरूपित किया जा सकता है जटिल द्वि-आयामी हिल्बर्ट अंतरिक्ष (जिसका कि एक प्रक्षेपण है) SO(3) का प्रतिनिधित्व स्थान है।[8]
घनत्व संचालक
पृथक प्रणालियों के लिए शुद्ध अवस्थाओं के संदर्भ में परिमाण यांत्रिकी के सूत्रीकरण पर्याप्त हैं; घनत्व आव्यूह के संदर्भ में सामान्य परिमाण यांत्रिक प्रणालियों में वर्णित करने की आवश्यकता है। बलोच क्षेत्र न केवल शुद्ध अवस्थाओं बल्कि 2-स्तरीय प्रणालियों के लिए मिश्रित अवस्थाओं का प्राचलिक करता है। 2-स्तरीय परिमाण प्रणाली (क्यूबिट) के मिश्रित-स्थिति का वर्णन करने वाला घनत्व संचालक निम्नलिखित निर्देशांक के साथ बलोच क्षेत्र के अंदर एक बिंदु से मेल खाता है:
जहाँ पहनावा के भीतर अलग-अलग स्तिथि की संभावना है और अलग-अलग स्तिथि के निर्देशांक हैं (बलोच क्षेत्र की सतह पर)। बलोच वृत्त पर और अंदर सभी बिंदुओं के सम्मुच्चय को बलोच गोलक के रूप में जाना जाता है।
उच्च आयाम वाले स्तिथि के लिए इसे मिश्रित स्तिथि तक विस्तारित करने में कठिनाई होती है। सांस्थितिक विवरण इस तथ्य से जटिल है कि एकात्मक समूह घनत्व संचालकों पर सकर्मक रूप से कार्य नहीं करता है। इसके अलावा, कक्षाएँ अत्यंत विविध हैं, जैसा कि निम्नलिखित अवलोकन से पता चलता है:
प्रमेय. मान लीजिए A एक n स्तर परिमाण यांत्रिक प्रणाली पर घनत्व संचालक है जिसका अलग-अलग आइगेनमान μ1, ..., μk गुणन के साथ n1, ..., nk हैं।
फिर एकात्मक संकारकों का समूह V ऐसा कि V A V* = A समरूपी (एक लाइ समूह के रूप में) है
विशेष रूप से a की कक्षा समरूपी है
बलोच गेंद के निर्माण को 2 से बड़े आयामों के लिए सामान्यीकृत करना संभव है, लेकिन ऐसे बलोच शरीर की ज्यामिति गेंद की तुलना में अधिक जटिल होती है।[9]
परिक्रमण
बलोच क्षेत्र के प्रतिनिधित्व का एक उपयोगी लाभ यह है कि बलोच क्षेत्र के घुमावों द्वारा क्वबिट स्थिति का विकास वर्णित है। ऐसा क्यों है, इसकी सबसे संक्षिप्त व्याख्या यह है कि एकात्मक और हर्मिटियन आव्यूह के समूह के लिए लाइ बीजगणित तीन आयामी घुमावों के समूह के लाई बीजगणित के लिए समरूपी है। [10]
बलोच आधार के बारे में क्रमावर्तन संचालक
बलोच आधार में कार्तीय अक्ष के बारे में बलोच क्षेत्र के क्रमावर्तन द्वारा दिया जाता है[11]
एक सामान्य अक्ष के चारों ओर घूर्णन
अगर तीन आयामों में एक वास्तविक इकाई सदिश है, इस अक्ष के बारे में बलोच क्षेत्र का क्रमावर्तन निम्न द्वारा दिया गया है:
ध्यान देने वाली एक रोचक बात यह है कि यह अभिव्यक्ति चतुष्कोणों और स्थानिक घुमाव के लिए विस्तारित यूलर सूत्र के पुन: वर्गीकरण के समान है।
बलोच क्रमावर्तन जनित्र की व्युत्पत्ति
बैलेंटाइन [12] अतिसूक्ष्म एकात्मक परिवर्तन के लिए एक सहज व्युत्पत्ति प्रस्तुत करता है। यह समझने के लिए महत्वपूर्ण है कि बलोच क्षेत्रों के घूर्णन पाउली आव्यूह के रैखिक संयोजनों के घातीय क्यों हैं। अतः इसका संक्षिप्त उपचार यहाँ दिया जा रहा है। परिमाण यांत्रिक संदर्भ में एक अधिक पूर्ण विवरण क्रमावर्तन संचालक (परिमाण यांत्रिकी) पाया जा सकता है।
एकात्मक संचालकों के एक वर्ग पर विचार करें किसी अक्ष के परितः घूर्णन को निरूपित करता है। चूंकि क्रमावर्तन में स्वतंत्रता की एक घात होती है, संचालक अदिश के क्षेत्र में इस प्रकार कार्य करता है कि:
जहाँ
हम असीम एकात्मक को परिभाषित करते हैं क्योंकि टेलर का विस्तार दूसरे क्रम में छोटा है।
एकात्मक स्थिति से:
इस तरह
इस समानता को सत्य मानने के लिए (यह मानते हुए कि नगण्य है), हमें चाहिए
- .
इसका परिणाम स्वरुप के समाधान में होता है:
जहाँ कोई हर्मिटियन परिवर्तन है, और इसे एकात्मक वर्ग का जनक कहा जाता है।
इस तरह:
पाउली आव्यूह के बाद से एकात्मक हर्मिटियन आव्यूह हैं और बलोच आधार के अनुरूप अभिलक्षणिक सदिश हैं, हम स्वाभाविक रूप से देख सकते हैं कि कैसे बलोच का घूर्णन एक स्वेच्छाचारी अक्ष के बारे में निम्नलिखित द्वारा वर्णित है
द्वारा दिए गए क्रमावर्तन जनित्र के साथ वर्णित है।
यह भी देखें
- परमाणु इलेक्ट्रॉन संक्रमण
- घूर्णिका सदिश स्थल
- पोंकारे क्षेत्र (प्रकाशिकी)
- वर्सेज
- बलोच क्षेत्र के विशिष्ट कार्यान्वयनों की गणना भौतिक कार्यान्वयन लेख के अंतर्गत की गई है।
संदर्भ
- ↑ Bloch, Felix (Oct 1946). "परमाणु प्रेरण". Phys. Rev. 70 (7–8): 460–474. Bibcode:1946PhRv...70..460B. doi:10.1103/physrev.70.460.; see Arecchi, F T, Courtens, E, Gilmore, R, & Thomas, H (1972). "Atomic coherent states in quantum optics", Phys Rev A6(6): 2211
- ↑ Nielsen, Michael A.; Chuang, Isaac L. (2004). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 978-0-521-63503-5.
- ↑ "Bloch sphere | Quantiki".
- ↑ Poincaré, Henri (1892). Théorie mathématique de la lumière II. G. Carré.
- ↑ The idempotent density matrix
- ↑ Feynman, Richard; Vernon, Frank; Hellwarth, Robert (January 1957). "Geometrical Representation of the Schrödinger Equation for Solving Maser Problems". Journal of Applied Physics. 28 (1): 49–52. Bibcode:1957JAP....28...49F. doi:10.1063/1.1722572. S2CID 36493808.
- ↑ Milonni, Peter W.; Eberly, Joseph (1988). लेजर. New York: Wiley. p. 340. ISBN 978-0471627319.
- ↑ Penrose, Roger (2007) [2004]. The Road to Reality : A Complete Guide to the Laws of the Universe. New York: Vintage Books (Random House, Inc.). p. 554. ISBN 978-0-679-77631-4.
- ↑ Appleby, D.M. (2007). "मनमाना रैंक के सममित सूचनात्मक रूप से पूर्ण माप". Optics and Spectroscopy. 103 (3): 416–428. arXiv:quant-ph/0611260. Bibcode:2007OptSp.103..416A. doi:10.1134/S0030400X07090111. S2CID 17469680.
- ↑ D.B. Westra 2008, "SU(2) and SO(3)", https://www.mat.univie.ac.at/~westra/so3su2.pdf
- ↑ Nielsen and Chuang 2010, "Quantum Computation and Information," pg 174
- ↑ Ballentine 2014, "Quantum Mechanics - A Modern Development", Chapter 3