कार्टेशियन संवृत श्रेणी: Difference between revisions

From Vigyanwiki
Line 154: Line 154:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 08:44, 17 May 2023

श्रेणी सिद्धांत में, एक श्रेणी (गणित) कार्टेशियन संवृत है, यदि स्थूल रूप से बोलना हो तो, दो वस्तु (श्रेणी सिद्धांत) के उत्पाद (श्रेणी सिद्धांत) पर परिभाषित किसी भी आकारिकी को स्वाभाविक रूप से कारकों में से एक पर परिभाषित आकारिकी के साथ पहचाना जा सकता है। ये श्रेणियां गणितीय तर्क और प्रोग्रामिंग के सिद्धांत में विशेष रूप से महत्वपूर्ण हैं, जिसमें उनकी आंतरिक भाषा सरल रूप से प्ररूप की गई लैम्ब्डा कैलकुलस है। वे संवृत मोनोइडल श्रेणी द्वारा सामान्यीकृत हैं, जिनकी आंतरिक भाषा, रैखिक प्रकार की प्रणालियाँ, क्वांटम और शास्त्रीय संगणना दोनों के लिए उपयुक्त हैं।[1]

व्युत्पत्ति

रेने डेसकार्टेस (1596-1650), फ्रांसीसी दार्शनिक, गणितज्ञ और वैज्ञानिक के नाम पर, जिनके विश्लेषणात्मक ज्यामिति के निर्माण ने कार्टेशियन उत्पाद की अवधारणा को जन्म दिया, जिसे पश्चात में श्रेणीबद्ध उत्पाद की धारणा के लिए सामान्यीकृत किया गया।

परिभाषा

श्रेणी सी को कार्तीय संवृत कहा जाता है [2] यदि और केवल यदि यह निम्नलिखित तीन गुणों को संतुष्ट करता है:

  • इसमें एक टर्मिनल वस्तु है।
  • C की किन्हीं दो वस्तुओं X और Y का उत्पाद (श्रेणी सिद्धांत) C में X ×Y है।
  • C की किन्हीं दो वस्तुओं Y और Z में C में एक घातीय वस्तु ZY है।

पहली दो स्थितियों को एकल आवश्यकता के साथ जोड़ा जा सकता है कि C की वस्तुओं का कोई भी परिमित (संभवतः रिक्त) परिवार C में एक उत्पाद स्वीकार करता है, क्योंकि श्रेणीगत उत्पाद की प्राकृतिक संबद्धता के कारण किसी श्रेणी में रिक्त उत्पाद उस श्रेणी का टर्मिनल वस्तु होता है।

तीसरी शर्त आवश्यकता के बराबर है कि प्रचालक - ×Y (अर्थात C से C तक प्रचालक जो वस्तु X से X ×Y और आकारिकी φ से φ × idY को मैप करता है) में एक सहायक कारक होता है, सामान्यतः निरूपित -Y, सभी वस्तुओं के लिए C में Y है।

स्थानीय रूप से छोटी श्रेणियों (गणित) के लिए, यह होम समुच्चय के बीच एक आक्षेप के अस्तित्व द्वारा व्यक्त किया जा सकता है

जो X, Y और Z में प्राकृतिक परिवर्तन है।[3]

इस बात का ध्यान रखें कि एक कार्तीय संवृत श्रेणी की परिमित सीमाएँ होने की आवश्यकता नहीं है; केवल सीमित उत्पादों का प्रत्याभूत है।

यदि किसी श्रेणी के पास यह गुण है कि उसकी सभी स्लाइस श्रेणियां कार्टेशियन संवृत हैं, तो इसे स्थानीय रूप से कार्टेशियन संवृत कहा जाता है।[4] ध्यान दें कि यदि सी स्थानीय रूप से कार्टेशियन संवृत है, तो इसे वास्तव में कार्टेशियन संवृत होने की आवश्यकता नहीं है; ऐसा तब होता है जब सी में टर्मिनल वस्तु हो।

मूल निर्माण

मूल्यांकन

प्रत्येक वस्तु Y के लिए, घातीय संयोजन की गणना एक प्राकृतिक परिवर्तन है

(आंतरिक) मूल्यांकन मानचित्र कहा जाता है। अधिक सामान्यतः, हम आंशिक अनुप्रयोग मानचित्र को समग्र के रूप में बना सकते हैं

श्रेणी समुच्चय के विशेष मामले में, ये सामान्य परिचालनों को कम करते हैं:

रचना

आकारिकी p : XY पर एक तर्क में घातांक का मूल्यांकन करने पर आकारिकी मिलती है

पी के साथ रचना के संचालन के अनुरूप। संक्रिया pZ के लिए वैकल्पिक संकेतन में p* और p∘- सम्मलित हैं। संचालन Zp के लिए वैकल्पिक नोटेशन में p* और -∘p सम्मलित हैं।

मूल्यांकन मानचित्रों को इस रूप में श्रृंखलित किया जा सकता है

घातीय संयोजन के तहत संबंधित तीर

(आंतरिक) संयोजन मानचित्र कहा जाता है।

श्रेणी समुच्चय के विशेष मामले में, यह सामान्य संयोजन संक्रिया है:

खंड

आकृतिवाद p:X → Y के लिए, मान लें कि निम्न ठहराव वर्ग उपस्थित है, जो मानचित्रों के अनुरूप XY के सहवस्तु को परिभाषित करता है, जिसका संयोजन p के साथ पहचाना जाता है:

जहां दाईं ओर का तीर pY है और नीचे का तीर Y पर पहचान के अनुरूप है। तब ΓY(p) को p के 'अनुभाग (फाइबर बंडल)' कहा जाता है। इसे अधिकांशतः ΓY(X) के रूप में संक्षिप्त किया जाता है।

यदि ΓY(p) कोडोमेन Y के साथ प्रत्येक आकारिकी p के लिए उपस्थित है, तो इसे स्लाइस श्रेणी पर एक फ़ंक्टर ΓY : C/YC में इकट्ठा किया जा सकता है जो उत्पाद फ़ंक्टर के एक संस्करण के ठीक बगल में है:

Y द्वारा घातीय वर्गों के संदर्भ में व्यक्त किया जा सकता है:

उदाहरण

कार्तीय संवृत श्रेणियों के उदाहरणों में सम्मलित हैं:

  • आकारिकी के रूप में फलन (गणित) के साथ सभी समुच्चयों (गणित) का श्रेणी समुच्चय, कार्टेशियन संवृत है। उत्पाद X × Y, X और Y का कार्तीय उत्पाद है, और ZY, Y से Z तक के सभी फलन का समुच्चय है।टेन्सर-होम एडजंक्शनता निम्नलिखित तथ्य द्वारा व्यक्त की जाती है: फलन f : X×YZ स्वाभाविक रूप से करींग फलन g : XZY के साथ पहचाना जाता है x के लिए g(x)(y) = f(x,y) द्वारा X में सभी x और Y में y के लिए परिभाषित किया गया है।
  • आकारिकी के रूप में फलन के साथ परिमित समुच्चय की श्रेणी, कार्टेशियन उसी कारण से संवृत है।
  • यदि G एक समुच्चय (गणित) है, तो सभी G-समुच्चय की श्रेणी कार्टेशियन संवृत है। यदि Y और Z दो G-समुच्चय हैं, तो ZY, Y से Z तक सभी फलन का समुच्चय है, जिसमें G, F में सभी g के लिए (g.F)(y) = F(g−1.y) द्वारा परिभाषित G क्रिया है: F:YZ और y Y में।
  • परिमित जी-समुच्चय की श्रेणी भी कार्तीय संवृत है।
  • सभी छोटी श्रेणियों की श्रेणी कैट (आकारिकी के रूप में फ़ंक्टर के साथ) कार्टेशियन संवृत है; घातीय सीडी को फ़ंक्टर श्रेणी द्वारा दिया जाता है, जिसमें डी से सी तक के सभी फ़ंक्टर प्राकृतिक रूपांतरों के रूप में होते हैं।
  • यदि C एक छोटी श्रेणी है, तो फ़ंक्टर श्रेणी 'समुच्चय'C जिसमें C से समुच्चय की श्रेणी में सभी सहसंयोजक फलनकारि सम्मलित हैं, प्राकृतिक परिवर्तनों के साथ आकारिकी के रूप में, यदि F और G, C से समुच्चय तक दो फ़ंक्टर हैं, तो घातीय FG फ़ंक्टर है, जिसका C के वस्तु X पर मान (X,−) × G से F तक सभी प्राकृतिक परिवर्तनों के समुच्चय द्वारा दिया गया है।
    • G-समुच्चय के पहले के उदाहरण को फ़ंक्टर श्रेणियों के एक विशेष मामले के रूप में देखा जा सकता है: प्रत्येक समुच्चय को एक-वस्तु श्रेणी के रूप में माना जा सकता है, और जी-समुच्चय इस श्रेणी से फ़ैक्टर के अतिरिक्त और कुछ नहीं हैं
    • सभी ग्राफ सिद्धांत की श्रेणी कार्तीय संवृत है; यह एक फ़ंक्टर श्रेणी है जैसा कि फ़ैक्टर श्रेणी के अंतर्गत समझाया गया है।
    • विशेष रूप से, सरलीकृत समुच्चय की श्रेणी (जो फ़ैक्टर X : Δop → समुच्चय) कार्टेशियन संवृत है।
  • इससे भी अधिक सामान्यतः, प्रत्येक प्राथमिक टोपोस(श्रेणी) कार्टेशियन संवृत होती है।
  • बीजगणितीय टोपोलॉजी में, कार्टेशियन संवृत श्रेणियां विशेष रूप से काम करने में आसान होती हैं। निरंतर कार्य (टोपोलॉजी) मानचित्रों के साथ न तो टोपोलॉजिकल रिक्त स्थान की श्रेणी और न ही निर्विघ्ऩ मानचित्रों के साथ निर्विघ्ऩ कई गुना की श्रेणी कार्टेशियन संवृत है। इसलिए स्थानापन्न श्रेणियों पर विचार किया गया है: सघन रूप से उत्पन्न हॉसडॉर्फ रिक्त स्थान की श्रेणी कार्टेशियन संवृत है, जैसा कि फ्रोलीचर रिक्त स्थान की श्रेणी है।
  • आदेश सिद्धांत में, पूर्ण आंशिक आदेश (सीपीओएस) में एक प्राकृतिक टोपोलॉजी है, स्कॉट टोपोलॉजी, जिसके निरंतर मानचित्र एक कार्टेशियन संवृत श्रेणी बनाते हैं (अर्थात, वस्तुएं सीपीओ हैं, और आकारिकी स्कॉट निरंतर मानचित्र हैं)। करीइंग और अप्लाई (गणित में फ़ंक्शन ) दोनों ही स्कॉट टोपोलॉजी में निरंतर कार्य करते हैं, और करींग, अप्लाई के साथ, संलग्न प्रदान करते हैं।[5]
  • एक हेटिंग बीजगणित एक कार्तीय संवृत (परिबद्ध) जालक (सार संरचना) है। टोपोलॉजिकल स्थान से एक महत्वपूर्ण उदाहरण सामने आता है। यदि X एक टोपोलॉजिकल स्थान है, तो X में विवृत समुच्चय एक श्रेणी O (X) की वस्तुओं का निर्माण करते हैं, जिसके लिए U से V तक एक अद्वितीय आकारिकी है यदि U, V का एक उपसमुच्चय है और अन्यथा कोई आकारिकी नहीं है। यह पॉसेट एक कार्तीय संवृत श्रेणी है: U और V का "उत्पाद" U और V का प्रतिच्छेदन है और चरघातांकी UV U∪(X\V) का आंतरिक (टोपोलॉजी) है।
  • शून्य वस्तु वाली एक श्रेणी कार्टेशियन संवृत है यदि और केवल यदि यह केवल एक वस्तु और एक पहचान आकारिता वाली श्रेणी के बराबर है। दरअसल, यदि 0 प्रारंभिक वस्तु है और 1 अंतिम वस्तु है और हमारे पास है , तब जिसमें केवल एक तत्व है।[6]
    • विशेष रूप से, शून्य वस्तु वाली कोई गैर-तुच्छ श्रेणी, जैसे एबेलियन श्रेणी, कार्टेशियन संवृत नहीं है। इसलिए रिंग के ऊपर मॉड्यूल (गणित) की श्रेणी कार्टेशियन संवृत नहीं है। चूंकि, होम-फ़ंक्टर टेंसर उत्पाद एक निश्चित मॉड्यूल के साथ एक टेन्सर-होम एडजंक्शन होता है। टेंसर उत्पाद एक श्रेणीबद्ध उत्पाद नहीं है, इसलिए यह उपरोक्त का खंडन नहीं करता है। हम इसके अतिरिक्त प्राप्त करते हैं कि अनुखंड की श्रेणी मोनोइडल संवृत श्रेणी है।

स्थानीय रूप से कार्तीय संवृत श्रेणियों के उदाहरणों में सम्मलित हैं:

  • हर प्राथमिक टोपोस स्थानीय रूप से कार्टेशियन संवृत है। इस उदाहरण में जी- समूह के लिए समुच्चय, फिनसमुच्चय, जी-समुच्चय, साथ ही छोटी श्रेणियों C के लिए समुच्चय C सम्मलित हैं।
  • श्रेणी LH जिसकी वस्तुएँ टोपोलॉजिकल स्थान हैं और जिनकी आकृतियाँ स्थानीय होमोमोर्फिज़्म हैं, स्थानीय रूप से कार्टेशियन संवृत है, क्योंकि LH / X शीशों की श्रेणी के बराबर है . चूंकि, एलएच के पास टर्मिनल वस्तुएँ नहीं है, और इस प्रकार कार्टेशियन संवृत नहीं है।
  • यदि C में पुलबैक हैं और प्रत्येक तीर p : X → Y के लिए, पुलबैक लेकर दिए गए फ़ंक्टर p* : C/Y → C/X का टेन्सर-होम एडजंक्शन है, तो C स्थानीय रूप से कार्टेशियन संवृत है।
  • यदि C स्थानीय रूप से कार्टेशियन संवृत है, तो इसकी सभी भाग श्रेणियां C/X भी स्थानीय रूप से कार्टेशियन संवृत हैं।

स्थानीय रूप से कार्तीय संवृत श्रेणियों के गैर-उदाहरणों में सम्मलित हैं:

  • 'कैट' स्थानीय रूप से कार्टेशियन संवृत नहीं है।

अनुप्रयोग

कार्तीय संवृत श्रेणियों में, एक "दो चरों का एक फलन" (एक आकारिकी f : X×YZ ) को हमेशा "एक चर के फलन के रूप में दर्शाया जा सकता है (आकृतिवाद λf : XZY)। कंप्यूटर विज्ञान अनुप्रयोगों में, इसे करींग (गणित) के रूप में जाना जाता है; इससे यह अहसास हुआ है कि सामान्य रूप से टाइप किए गए लैम्ब्डा कैलकुलस की व्याख्या किसी भी कार्टेशियन संवृत श्रेणी में की जा सकती है।

करी-हावर्ड-लैम्बेक पत्राचार अंतर्ज्ञानवादी तर्क, सरल रूप से टाइप किए गए लैम्ब्डा कैलकुलस और कार्टेशियन संवृत श्रेणियों के बीच एक गहरी समरूपता प्रदान करता है।

कुछ कार्तीय संवृत श्रेणियां, टोपोई, को पारंपरिक समुच्चय सिद्धांत के अतिरिक्त गणित के लिए एक सामान्य समुच्चयिंग के रूप में प्रस्तावित करती है।

प्रसिद्ध कंप्यूटर वैज्ञानिक जॉन बैकस ने एक चर-मुक्त संकेतन, या फंक्शन-लेवल प्रोग्रामिंग की समर्थन किया है, जो पूर्वव्यापी रूप से कार्टेशियन संवृत श्रेणियों की आंतरिक भाषा में कुछ समानता रखता है। कैमल (प्रोग्रामिंग भाषा) अधिक सचेत रूप से कार्टेशियन संवृत श्रेणियों पर आधारित है।

निर्भर राशि और उत्पाद

बता दें कि C स्थानीय रूप से कार्टेशियन संवृत श्रेणी है। फिर C में सभी पुलबैक हैं, क्योंकि कोडोमेन Z के साथ दो तीरों का पुलबैक C/Z में उत्पाद द्वारा दिया गया है।

प्रत्येक तीर p : XY, के लिए, मान लीजिए कि P, C/Y की संबंधित वस्तु को निरूपित करता है। p के साथ पुलबैक लेने से एक फंटक्टर p* : C/YC/X मिलता है जिसमें एक बाएँ और दाएँ दोनों संलग्न होते हैं।

बायां जोड़ निर्भर योग कहा जाता है और संयोजन द्वारा दिया जाता है .

दाहिना जोड़ निर्भर उत्पाद कहा जाता है।

C/Y में P द्वारा घातांक सूत्र द्वारा निर्भर उत्पाद के संदर्भ में व्यक्त किया जा सकता है .

इन नामों का कारण यह है कि जब P की व्याख्या एक निर्भर प्रकार के रूप में की जाती है , फलन और प्रकार संरचनाओं के अनुरूप है और क्रमशः।

समतामूलक सिद्धांत

प्रत्येक कार्टेशियन संवृत श्रेणी में (घातीय संकेतन का उपयोग करते हुए),(XY)Z और (XZ)Y सभी वस्तुओं X, Y और Z के लिए आइसोमोर्फिक हैं। हम इसे "समीकरण" के रूप में लिखते हैं।

(xy)z = (xz)y.

यह पूछ सकता है कि ऐसे और कौन से समीकरण सभी कार्तीय संवृत्त श्रेणियों में मान्य हैं। यह पता चला है कि ये सभी निम्नलिखित अभिगृहीतो का तार्किक रूप से अनुसरण करते हैं:[7]

  • x×(y×z) = (x×y)×z
  • x×y = y×x
  • x×1 = x (यहाँ 1 C के टर्मिनल वस्तुओ को दर्शाता है)
    • 1x = 1
    • x1 = x
    • (x×y)z = xz×yz
    • (xy)z = x(y×z)

द्विकार्तीय संवृत श्रेणियां

बिकार्टेशियन संवृत श्रेणियां कार्टेशियन संवृत श्रेणियों को बाइनरी सहउत्पाद और एक प्रारंभिक वस्तु के साथ विस्तारित करती हैं, जिसमें उत्पादों को सहउत्पाद पर वितरित किया जाता है। उनके समीकरण सिद्धांत को निम्नलिखित अभिगृहीतो के साथ विस्तारित किया गया है, गणितीय तर्क में, टार्स्की की हाई स्कूल बीजगणित समस्या के समान है, लेकिन एक शून्य के साथ:

  • x + y = y + x
  • (x + y) + z = x + (y + z)
  • x×(y + z) = x×y + x×z
  • x(y + z) = xy×xz
  • 0 + x = x
  • x×0 = 0
  • x0 = 1

चूंकि ध्यान दें कि उपरोक्त सूची पूर्ण नहीं है; मुक्त बीसीसीसी में टाइप आइसोमोर्फिज्म सूक्ष्म रूप से अभिगृहीत नहीं है, और इसकी निर्णायकता अभी भी एक विवृत समस्या है।[8]

संदर्भ

  1. Baez, John C.; Stay, Mike (2011). "Physics, Topology, Logic and Computation: A Rosetta Stone" (PDF). In Coecke, Bob (ed.). भौतिकी के लिए नई संरचनाएं. Lecture Notes in Physics. Vol. 813. Springer. pp. 95–174. arXiv:0903.0340. CiteSeerX 10.1.1.296.1044. doi:10.1007/978-3-642-12821-9_2. ISBN 978-3-642-12821-9. S2CID 115169297.
  2. Saunders, Mac Lane (1978). कामकाजी गणितज्ञ के लिए श्रेणियाँ (2nd ed.). Springer. ISBN 1441931236. OCLC 851741862.
  3. "nLab में कार्तीय बंद श्रेणी". ncatlab.org. Retrieved 2017-09-17.
  4. Locally cartesian closed category at the nLab
  5. Barendregt, H.P. (1984). "Theorem 1.2.16". लैम्ब्डा कैलकुलस. North-Holland. ISBN 0-444-87508-5.
  6. "Ct.category theory - is the category commutative monoids cartesian closed?".
  7. Solov'ev, S.V. (1983). "परिमित समुच्चयों की श्रेणी और कार्टेशियन बंद श्रेणियां". J Math Sci. 22 (3): 1387–1400. doi:10.1007/BF01084396. S2CID 122693163.
  8. Fiore, M.; Cosmo, R. Di; Balat, V. (2006). "टाइप किए गए लैम्ब्डा कैलकुली में खाली और योग प्रकार के साथ आइसोमोर्फिज्म पर टिप्पणी" (PDF). Annals of Pure and Applied Logic. 141 (1–2): 35–50. doi:10.1016/j.apal.2005.09.001.

बाहरी संबंध