कणिकीय पदार्थ: Difference between revisions

From Vigyanwiki
No edit summary
Line 179: Line 179:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/04/2023]]
[[Category:Created On 10/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 08:40, 17 May 2023

दानेदार सामग्री के उदाहरण

दानेदार सामग्री असतत ठोस, स्थूल पैमाने के कणों का एक समूह है, जो परस्पर क्रिया करनेवाले कणों की ऊर्जा  हानि से परिभाषित होते हैं (सबसे सामान्य उदाहरण कणों के टकराने से उत्पन्न घर्षण है)।[1] दानेदार सामग्री बनाने वाले घटक पर्याप्त बड़े होते हैं कि वे ऊष्मीय गति के उतार-चढ़ाव के अधीन नहीं होते हैं। इस प्रकार, दानेदार सामग्री में कणों के लिए आकार की निचली सीमा लगभग 1 माइक्रोमीटर है। आकार की ऊपरी सीमा पर, दानेदार सामग्री की भौतिकी को बर्फ के टुकड़ों पर लागू किया जा सकता है जहां प्रत्येक अनाज के कण हिमशैल होते हैं और सौर मंडल के क्षुद्रग्रह बेल्टों के साथ प्रत्येक कण क्षुद्रग्रह।

दानेदार सामग्री के कुछ उदाहरण बर्फ, अखरोट, कोयला, रेत, चावल, कॉफ़ी , मकई के गुच्छे, उर्वरक और बेअरिंग बॉल्स हैं। इसलिए दानेदार सामग्री में अनुसंधान संभव है और कम से कम इसका सन्दर्भ चार्ल्स ऑगस्टिन डी कूलम्ब तक जाता है, जिनका घर्षण सिद्धांत मूल रूप से दानेदार सामग्री के लिए कहा गया था।[2] दवा उद्योग, कृषि और ऊर्जा उत्पादन जैसे विविधतापूर्ण अनुप्रयोगों में दानेदार सामग्री व्यावसायिक रूप से महत्वपूर्ण हैं।

पाउडर उनके छोटे कण आकार के कारण दानेदार सामग्री का एक विशेष वर्ग है, जो उन्हें अधिक संसक्त बनता है और गैस में आसानी से पृथक रखता है।

सैनिक/भौतिक विज्ञानी ब्रिगेडियर राल्फ एल्गर बैगनॉल्ड दानेदार पदार्थ भौतिकी के शुरुआती अग्रदूत थे और जिनकी पुस्तक "द फिजिक्स ऑफ़ ब्लोन सैंड एंड डेजर्ट डून्स"[3] आज भी एक महत्वपूर्ण संदर्भ बनी हुई है। भौतिक विज्ञानी पैट्रिक रिचर्ड के अनुसार, दानेदार सामग्री प्रकृति में सर्वव्यापी है और उद्योग में दूसरी सबसे अधिक काम में आने वाली सामग्री है (पहला, पानी है)।[4]

कुछ अर्थों में दानेदार पदार्थ, पदार्थ की एक ही अवस्था को नहीं दर्शाते हैं, लेकिन प्रति कण औसत ऊर्जा के आधार पर ठोस, तरल या गैस के अभिलक्षणों को प्रतिबिंबित करते हैं। हालाँकि, इनमें से प्रत्येक अवस्था में, दानेदार सामग्री ऐसे गुण भी प्रदर्शित करती है जो अद्वितीय हैं।[5]

उत्तेजित होने पर (जैसे कंपन या प्रवाह की अनुमति) दानेदार सामग्री भी पैटर्न बनाने वाले व्यवहारों की एक विस्तृत श्रृंखला प्रदर्शित करती है । उत्तेजना के तहत ऐसी दानेदार सामग्री को एक जटिल प्रणाली के उदाहरण के रूप में माना जा सकता है। वे द्रव-आधारित अस्थिरता और मैग्नस प्रभाव जैसी घटनाओं को भी प्रदर्शित करते हैं।[6]

परिभाषाएँ

दानेदार पदार्थ कई स्थूल कणों से बना एक प्रणाली है। सूक्ष्म कण (परमाणु/अणु) प्रणाली की स्वतंत्रता के सभी आयामों-डीओऍफ़ (भौतिकी और रसायन विज्ञान) द्वारा वर्णित (चिरसम्मत यांत्रिकी में) हैं। स्थूल कणों को केवल प्रत्येक कण की गति के डीओएफ द्वारा कठोर वस्तु के रूप में वर्णित किया जाता है। प्रत्येक कण में बहुत सारे आंतरिक डीओएफ होते हैं। यदि दो कणों के बीच अप्रत्यास्थ टक्कर पर विचार करें - वेग से ऊर्जा कठोर शरीर के रूप में सूक्ष्म आंतरिक डीओएफ में स्थानांतरित हो जाती है। हमें "अपव्यय" मिलता है - अपरिवर्तनीय ऊष्मा उत्पादन के रूप में। इसका परिणाम यह होता है कि बिना बाहरी गति के, अंततः सभी कण कंपन बंद कर देंगे। सूक्ष्म कणों में ऊष्मीय उतार-चढ़ाव अप्रासंगिक हैं।

जब कोई पदार्थ पतला और गतिशील (संचालित) होता है तो इसे दानेदार गैस कहा जाता है और अपव्यय की घटना हावी होती है।

जब कोई पदार्थ सघन और स्थिर होता है, तो उसे दानेदार ठोस कहा जाता है और जैमिंग घटना हावी हो जाती है।

जब घनत्व मध्यवर्ती होता है तो इसे दानेदार द्रव कहते हैं।

स्थैतिक व्यवहार

कूलम्ब घर्षण नियम

दानेदार माध्यम में तनाव बलों के संचरण की श्रृंखला

चार्ल्स-ऑगस्टिन डी कूलम्ब ने दानेदार कणों के बीच आंतरिक बलों को एक घर्षण प्रक्रिया के रूप में माना, और घर्षण नियम का प्रस्ताव दिया, कि ठोस कणों का घर्षण बल उनके बीच सामान्य दबाव के समानुपाती होता है और स्थैतिक घर्षण गुणांक, गतिज घर्षण गुणांक से अधिक होता है। उन्होंने रेत के ढेर के ढहने का अध्ययन किया और अनुभवजन्य रूप से दो महत्वपूर्ण कोण पाए: अधिकतम स्थिर कोण और विश्राम का न्यूनतम कोण | जब रेत के ढेर का ढलान अधिकतम स्थिर कोण तक पहुँच जाता है, तो ढेर की सतह पर रेत के कण गिरने लगते हैं। प्रक्रिया रुक जाती है जब सतह का झुकाव कोण रिपोज के कोण के बराबर होता है। इन दोनों कोणों के बीच का अंतर, , बैगनॉल्ड कोण है, जो दानेदार सामग्री के हिस्टैरिसीस का एक माप है। यह घटना बल श्रृंखलाओं के कारण होती है: दानेदार ठोस में तनाव समान रूप से वितरित नहीं होता है लेकिन तथाकथित बल श्रृंखलाओं के साथ दूर किया जाता है जो एक दूसरे पर आराम करने वाले कणों की प्रणाली होते हैं। इन श्रृंखलाओं के बीच कम तनाव के क्षेत्र होते हैं जिनके कण वॉल्टिंग और आर्चिंग प्रभावों के कारण ऊपर के कणों से परिरक्षित होते हैं। जब ऊपरी तनाव एक निश्चित मूल्य तक पहुँच जाता है, तो बल श्रृंखलाएँ टूट सकती हैं और सतह पर श्रृंखलाएँ के अंत में कण फिसलने लगते हैं। फिर, नई बल श्रृंखलाएं तब तक बनती हैं जब तक ऊपरी तनाव महत्वपूर्ण मूल्य से कम नहीं होता है, और इसलिए रेत के ढेर रिपोज के निरंतर कोण को बनाए रखता है।[7]

जैनसेन प्रभाव

1895 में, एचए जैनसेन ने पाया कि कणों से भरे एक ऊर्ध्वाधर सिलेंडर में, सिलेंडर के आधार पर मापा गया दबाव भरने की ऊंचाई पर निर्भर नहीं करता है, न्यूटोनियन तरल पदार्थ के विपरीत जो साइमन स्टीवन के नियम का पालन करते हैं। जानसेन ने निम्नलिखित मान्यताओं के साथ एक सरलीकृत मॉडल का सुझाव दिया:

1) लंबवत दबाव, , क्षैतिज तल में स्थिर है;

2) क्षैतिज दबाव, , ऊर्ध्वाधर दबाव के समानुपाती होता है , जहाँ अंतरिक्ष में स्थिर है;

3) दीवार घर्षण स्थिर गुणांक दीवार के संपर्क में ऊर्ध्वाधर भार को बनाए रखता है;

4) सामग्री का घनत्व सभी गहराईयों पर स्थिर रहता है।

दानेदार सामग्री में दबाव को तब एक अलग नियम में वर्णित किया जाता है, जो परिपूर्णता को परिभाषित करता है:

जहाँ और सिलेंडर की त्रिज्या है, और साइलो के शीर्ष पर .


दिया गया दबाव समीकरण बाध्य स्थितियो को महत्व नहीं देता है, जैसे कण आकार के बीच साइलो के त्रिज्या के बीच का अनुपात। चूंकि सामग्री के आंतरिक तनाव को मापा नहीं जा सकता है, जैनसेन की अटकलों को किसी प्रत्यक्ष प्रयोग द्वारा सत्यापित नहीं किया गया है।

रोवे स्ट्रेस - डिलैटेंसी रिलेशन

1960 के दशक की शुरुआत में, रोवे ने अपरूपण परीक्षणों में अपरूपण शक्ति पर तनुता प्रभाव का अध्ययन किया और उनके बीच एक संबंध प्रस्तावित किया।

2D में मोनो-डिस्पेर्सेड कणों के संयोजन के यांत्रिक गुणों का विश्लेषण प्रतिनिधि प्राथमिक मात्रा के आधार पर किया जा सकता है, विशिष्ट लंबाई के साथ, क्रमशः ऊर्ध्वाधर और क्षैतिज दिशाओं में। प्रणाली की ज्यामितीय विशेषताएं और चर द्वारा वर्णित हैं, जहाँ उस कोण का वर्णन करता है जब संपर्क बिंदु फिसलने की प्रक्रिया शुरू करते हैं। ऊर्ध्वाधर दिशा में द्वारा, जो प्रमुख तनाव की दिशा है और क्षैतिज दिशा में द्वारा, जो मामूली प्रमुख तनाव की दिशा है, निर्देशित है।

तब बाध्य तनाव को अलग-अलग कणों द्वारा वहन किए गए केंद्रित बल के रूप में व्यक्त किया जा सकता है। समान तनाव के साथ द्विअक्षीय लोडिंग के तहत और इसलिए .

संतुलन अवस्था में:

जहाँ , घर्षण कोण, संपर्क बल और संपर्क सामान्य दिशा के बीच का कोण है।


, जो कोण का वर्णन करता है कि यदि घर्षण शंकु के भीतर स्पर्शरेखा बल गिरता है तो कण अभी भी स्थिर रहेंगे। यह घर्षण के गुणांक द्वारा निर्धारित किया जाता है , इसलिए . एक बार सिस्टम पर तनाव लागू हो जाता है जबकि धीरे-धीरे बढ़ता है अपरिवर्तित। कब तब कण फिसलने लगेंगे, जिसके परिणामस्वरूप सिस्टम की संरचना बदल जाएगी और नई बल श्रृंखलाएं बन जाएंगी। ,क्षैतिज और ऊर्ध्वाधर विस्थापन क्रमशः संतुष्ट करते हैं:

दानेदार गैसें

यदि दानेदार सामग्री को इस तरह जोर से चलाया जाता है कि कणों के बीच संपर्क अत्यधिक दुर्बल हो जाता है, तो सामग्री गैसीय अवस्था में प्रवेश कर जाती है। इसके अनुरूप, अनाज के वेग में परिवर्तन के रूट माध्य वर्ग के बराबर एक दानेदार तापमान को परिभाषित किया जा सकता है जो थर्मोडायनामिक तापमान के अनुरूप है। पारंपरिक गैसों के विपरीत, अनाज के बीच टकराव की अपव्यय प्रकृति के कारण दानेदार सामग्री एकत्र होने और गुच्छे बनाने का प्रयास करेगी। गुच्छे बनाने कि इस प्रक्रिया के कुछ रोचक परिणाम हैं। उदाहरण के लिए, यदि दानेदार सामग्री के आंशिक रूप से विभाजित बॉक्स को जोर से हिलाया जाता है, तो समय के साथ कण, दोनों विभाजनों में समान रूप से फैलने के बजाय एक विभाजन में इकट्ठा हो जाएगा, जैसा कि एक पारंपरिक गैस में होता है। यह प्रभाव, दानेदार मैक्सवेल्स डेमोन के रूप में जाना जाता है, किसी भी ऊष्मप्रवैगिकी सिद्धांतों का उल्लंघन नहीं करता है क्योंकि प्रक्रिया में सिस्टम से ऊर्जा लगातार नष्ट हो रही है।

उलाम मॉडल

विचार करिये कि कण में, कण की ऊर्जा है| प्रति इकाई समय में कुछ स्थिर दर पर, यादृच्छिक ढंग से दो कणों का ऊर्जाओं के साथ चयन करें और योग की गणना करें| अब, दो कणों के बीच कुल ऊर्जा को यादृच्छिक ढंग से वितरित करें: यादृच्छिक रूप से चुनें ताकि टक्कर के बाद पहले कण में ऊर्जा हो, और दूसरा .

स्टोचैस्टिक एवोलुशन समीकरण :

जहाँ टक्कर दर है, से यादृच्छिक रूप से चुना जाता है (समान वितरण) और j एक समान वितरण से यादृच्छिक ढंग से चुना गया एक सूचकांक भी है। प्रति कण औसत ऊर्जा:
दूसरा क्षण:

अब दूसरे क्षण का व्युत्पन्न समय:

स्थिर अवस्था में:

दूसरे क्षण के लिए अंतर समीकरण को हल करना:

हालांकि, क्षणों को चिह्नित करने के बजाय, हम विश्लेषणात्मक रूप से ऊर्जा वितरण को हल कर सकते हैं, क्षण उत्पन्न करने वाले कार्य से। लाप्लास परिवर्तन पर विचार करें:

.

जहाँ , और

n व्युत्पन्न:

अब:

के लिए हल करना चर के परिवर्तन के साथ :

हम वह दिखाएंगे (बोल्ट्जमैन वितरण) इसके लाप्लास परिवर्तन को लेकर और जनरेटिंग फ़ंक्शन की गणना करें:

जैमिंग परिवर्तन

दानेदार सामग्री के निर्वहन के दौरान जाम आर्क गठन (लाल गोले) के कारण होता है

दानेदार पदार्थ जैमिंग को प्रदर्शित करने के लिए जाने जाते हैं और जैमिंग परिवर्तन से गुजरते हैं जिसे जेम्ड अवस्था जेम्ड अवस्था एक थर्मोडायनामिक अवस्था परिवर्तन माना जाता है।[8]परिवर्तन द्रव जैसी अवस्था से ठोस जैसी अवस्था में होता है और इसे तापमान , वॉल्यूम फ़्रैक्शन और सतही तनाव द्वारा नियंत्रित किया जाता है| कांच परिवर्तन का सामान्य चरण आरेख सतह में है और एक परिवर्तन रेखा द्वारा यह जेम्ड अवस्था क्षेत्र और अन-जेम्ड अवस्था तरल अवस्था में बांटा गया है। दानेदार पदार्थ के लिए चरण आरेख सतह में निहित है, और महत्वपूर्ण तनाव वक्र अवस्था चरण को जेम्ड\अन-जेम्ड क्षेत्र में विभाजित करता है, जो क्रमशः दानेदार ठोस/तरल पदार्थ से मेल खाता है। आइसोट्रोपिक रूप से जैम दानेदार प्रणाली के लिए, जब एक निश्चित बिंदु के आसपास कम हो जाता है, थोक और सतही मोडुली शून्य के समीप हो जाता है। बिंदु महत्वपूर्ण आयतन अंश से मेल खाता है| बिंदु से दूरी को परिभाषित करता है महत्वपूर्ण मात्रा अंश, | बिंदु के पास दानेदार प्रणालियों का व्यवहार अनुभवजन्य रूप से दूसरे क्रम के परिवर्तन के समान पाया गया था: बल्क मापांक के साथ एक शक्ति नियम स्केलिंग दिखाता है और कुछ अलग-अलग विशेषताओं की लंबाई होती है जब शून्य के समीप पहुंच जाता है।[7]जबकि एक अनंत प्रणाली के लिए स्थिर है, एक परिमित प्रणाली के लिए कुछ हद तक सीमा प्रभाव का वितरण होता है ।

लुबचेव्स्की-स्टिलिंगर एल्गोरिथम जैम करने से सिम्युलेटेड जैम्ड दानेदार विन्यास के उत्पादन करने की अनुमति मिलती है। [9]

आकृति निर्माण

उत्तेजित दानेदार पदार्थ एक समृद्ध आकृति बनाने वाली प्रणाली है। दानेदार सामग्री में देखे जाने वाली आकृति बनाने वाले कुछ व्यवहार इस प्रकार हैं:

  • कंपन और प्रवाह के कारण असमान अनाजों का मिश्रण या पृथक्करण। इसका एक उदाहरण तथाकथित ब्राजील नट प्रभाव है[10] जहां ब्राजील नट्स हिलाए जाने पर मिश्रित नट्स के एक पैकेट के ऊपर आ जाते हैं। इस प्रभाव का कारण यह है कि जब इसे हिलाया जाता है, दानेदार (और कुछ अन्य) सामग्री एक परिपत्र पैटर्न में चलती है। कुछ बड़े पदार्थ (ब्राज़ील नट्स) वृत्त के नीचे जाते समय अटक जाते हैं और इसलिए शीर्ष पर बने रहते हैं।
  • कंपित दानेदार परतों में संरचित सतह या बड़ी आकृति का निर्माण।[11] इन पैटर्न में पट्टियां, वर्ग और हेक्सागोन शामिल हैं लेकिन इन तक ही सीमित नहीं हैं। ऐसा माना जाता है कि ये पैटर्न सतह के मौलिक उत्तेजनाओं से बनते हैं जिन्हें ऑसिलॉन कहा जाता है। दानेदार सामग्री में आदेशित वॉल्यूमेट्रिक संरचनाओं के गठन को दानेदार क्रिस्टलीकरण के रूप में जाना जाता है, और इसमें कणों के एक यादृच्छिक पैकिंग से हेक्सागोनल क्लोज-पैक या शरीर-केंद्रित क्यूबिक जैसे ऑर्डर किए गए पैकिंग में परिवर्तन शामिल होता है। यह आमतौर पर संकीर्ण आकार के वितरण और समान अनाज आकारिकी के साथ दानेदार सामग्री में देखा जाता है।[11]*
  • रेत की लहरों के निशान, टीलों और रेत की चादरों का बनना

कंप्यूटर सिमुलेशन में कुछ पैटर्न बनाने वाले व्यवहारों को पुन: उत्पन्न करना संभव हो गया है।[12][13] इस तरह के सिमुलेशन के लिए दो मुख्य कम्प्यूटेशनल दृष्टिकोण हैं, समय कदम और घटना-संचालित प्रोग्रामिंग | इवेंट-संचालित, सामग्री के उच्च घनत्व और कम तीव्रता की गति के लिए पूर्व सबसे कुशल है, और बाद वाला कम तीव्रता के लिए है। सामग्री का घनत्व और उच्च तीव्रता की गति।

ध्वनिक प्रभाव

बालू के टीले

कुछ समुद्र तट की रेत, जैसे उपयुक्त स्क्वीकी नामक बीच  पर चलने पर चीख़ने जैसी  प्रतिक्रिया  प्रदर्शित करते हैं। कुछ रेगिस्तानी टीलों को हिमस्खलन के दौरान या जब उनकी सतह को अन्यथा अशांत किया जाता है तो उफनते टीलों को प्रदर्शित करने के लिए जाना जाता है। साइलो से निकलने वाली दानेदार सामग्री साइलो हॉर्निंग के रूप में जाने वाली प्रक्रिया में जोरदार ध्वनिक उत्सर्जन उत्पन्न करती है।

दानेदार बनाना

दानेदार बनाना वह कार्य या प्रक्रिया है जिसमें प्राथमिक पाउडर के कणों को ग्रैन्यूल्स कहे जाने वाले बड़े, बहु-कणों वाले अवयवों का पालन करने के लिए बनाया जाता है।

क्रिस्टलीकरण

जब पानी या अन्य तरल पदार्थों को पर्याप्त रूप से धीरे-धीरे ठंडा किया जाता है, तो अनियमित रूप से स्थित अणु पुनर्व्यवस्थित होते हैं और ठोस क्रिस्टल बनते हैं और आकार में बढ़ते हैं। इसी तरह की क्रिस्टलीकरण प्रक्रिया बेतरतीब ढंग से पैक दानेदार सामग्री में हो सकती है। ठंडा करके ऊर्जा छय के विपरीत, दानेदार सामग्री में क्रिस्टलीकरण बाहरी प्रभाव द्वारा प्राप्त किया जाता है। आवधिक दबाव के साथ-साथ कंपित दानेदार पदार्थ में दानेदार सामग्री के क्रमबद्ध अवस्था या क्रिस्टलीकरण को देखा गया है।[11]आणविक प्रणालियों के विपरीत, प्रयोग में व्यक्तिगत कणों की स्थिति को ट्रैक किया जा सकता है।[14] गोलाकार अनाजों की एक प्रणाली के लिए कंप्यूटर सिमुलेशन से पता चलता है कि सजातीय क्रिस्टलीकरण एक आयतन अंश पर उभरता है .[15] कंप्यूटर सिमुलेशन दानेदार क्रिस्टलीकरण के लिए आवश्यक न्यूनतम अवयवों की पहचान करते हैं। विशेष रूप से, गुरुत्वाकर्षण और घर्षण आवश्यक नहीं हैं।

दानेदार सामग्री की कम्प्यूटेशनल मॉडलिंग

दानेदार सामग्री के मॉडलिंग के लिए कई तरीके उपलब्ध हैं। इनमें से अधिकांश विधियों में सांख्यिकीय विधियां शामिल हैं जिनके द्वारा विभिन्न सांख्यिकीय गुण, जो या तो बिंदु डेटा या एक छवि से प्राप्त होते हैं, निकाले जाते हैं और दानेदार माध्यम के स्टोकेस्टिक मॉडल उत्पन्न करने के लिए उपयोग किए जाते हैं। ऐसे तरीकों की आधुनिक और व्यापक समीक्षा तहमासेबी और अदर (2017) में उपलब्ध है।[16] दानेदार कणों के पैकेट के निर्माण के लिए एक अन्य विकल्प लेवल-सेट अल्गोरिथम हैजो हाल ही में प्रस्तुत किया गया है जिसके द्वारा वास्तविक कणों के आकारिकी के लिए निकाले गए आँकड़ों के माध्यम से कण के आकार को प्राप्त करके पुन: प्रस्तुत किया जा सकता है।[17]

यह भी देखें

संदर्भ

  1. Duran, J., Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (translated by A. Reisinger). November 1999, Springer-Verlag New York, Inc., New York, ISBN 0-387-98656-1.
  2. Rodhes, M (editor), Principles of powder technology, John Wiley & Sons, 1997 ISBN 0-471-92422-9
  3. Bagnold, R.A. 1941. The physics of blown sand and desert dunes. London: Methuen,
  4. Richard, P.; Nicodemi, Mario; Delannay, Renaud; Ribière, Philippe; Bideau, Daniel (2005). "दानेदार प्रणालियों की धीमी छूट और संघनन". Nature Materials. 4 (2): 121–8. Bibcode:2005NatMa...4..121R. doi:10.1038/nmat1300. PMID 15689950. S2CID 25375365.
  5. Dhiman, Manish; Kumar, Sonu; Reddy, K. Anki; Gupta, Raghvendra (March 2020). "एक सीमित दानेदार माध्यम में घुसपैठियों के बीच लंबी दूरी के आकर्षण या प्रतिकर्षण की उत्पत्ति". Journal of Fluid Mechanics (in English). 886: A23. doi:10.1017/jfm.2019.1035. ISSN 0022-1120. S2CID 214483792.
  6. Kumar, Sonu; Dhiman, Manish; Reddy, K. Anki (2019-01-14). "दानेदार मीडिया में मैग्नस प्रभाव". Physical Review E. 99 (1): 012902. doi:10.1103/PhysRevE.99.012902. PMID 30780222. S2CID 73456295.
  7. 7.0 7.1 Qicheng, Sun (2013). "यांत्रिकी के दानेदार पदार्थ". Southampton, UK: WIT Press.
  8. Haye Hinrichsen, Dietrich E. Wolf (eds), The Physics of Granular Media. 2004, Wiley-VCH Verlag GmbH & Co. ISBN 978-3-527-60362-6
  9. Kansal, Anuraag R.; Torquato, Salvatore; Stillinger, Frank H. (2002). "घने पॉलीडिस्पर्स क्षेत्र पैकिंग का कंप्यूटर जनरेशन" (PDF). The Journal of Chemical Physics. 117 (18): 8212. Bibcode:2002JChPh.117.8212K. doi:10.1063/1.1511510.
  10. Rosato, A.; Strandburg, K.J.; Prinz, F.; Swendsen, R.H. (1987). "ब्राजील नट्स शीर्ष पर क्यों हैं". Physical Review Letters. 58 (10): 1038–41. doi:10.1103/physrevlett.58.1038. PMID 10034316.
  11. 11.0 11.1 11.2 Dai, Weijing; Reimann, Joerg; Hanaor, Dorian; Ferrero, Claudio; Gan, Yixiang (2019). "कंपन पैकिंग में दीवार प्रेरित दानेदार क्रिस्टलीकरण के तरीके". Granular Matter. 21 (2). arXiv:1805.07865. doi:10.1007/s10035-019-0876-8. S2CID 119084790.
  12. John J. Drozd, Computer Simulation of Granular Matter: A Study of An Industrial Grinding Mill Archived 2011-08-18 at the Wayback Machine, Thesis, Univ. Western Ontario, Canada, 2004.
  13. A. D. Wissner-Gross, "Intruder dynamics on vibrofluidized granular surfaces", Materials Research Society Symposium Proceedings 1152E, TT03-01 (2009).
  14. Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias (2 February 2018). "शियरड ग्रेन्युलर मैटर में न्यूक्लिएशन". Physical Review Letters. 120 (5): 055701. arXiv:1705.02984. Bibcode:2018PhRvL.120e5701R. doi:10.1103/PhysRevLett.120.055701. PMID 29481202.
  15. Jin, Weiwei; O’Hern, Corey S.; Radin, Charles; Shattuck, Mark D.; Swinney, Harry L. (18 December 2020). "चक्रीय रूप से कतरे गए घर्षण रहित अनाज में सजातीय क्रिस्टलीकरण". Physical Review Letters. 125 (25): 258003. arXiv:2008.01920. Bibcode:2020PhRvL.125y8003J. doi:10.1103/PhysRevLett.125.258003. PMID 33416399. S2CID 220968720.
  16. Tahmasebi, Pejman; Sahimi, Muhammad; Andrade, José E. (2017-01-01). "ग्रैन्यूलर पोरस मीडिया की छवि-आधारित मॉडलिंग" (PDF). Geophysical Research Letters (in English). 44 (10): 2017GL073938. Bibcode:2017GeoRL..44.4738T. doi:10.1002/2017GL073938. ISSN 1944-8007. S2CID 44736386.
  17. Tahmasebi, Pejman (August 2018). "असतत और अनियमित कणों की पैकिंग" (PDF). Computers and Geotechnics. 100: 52–61. doi:10.1016/j.compgeo.2018.03.011.


बाहरी संबंध