अवस्था घनीय समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
राज्य का घन समीकरण तापमान और घनत्व के कार्य के रूप में [[गैस]] के दबाव को मॉडलिंग करने के लिए थर्मोडायनामिक मॉडल का  विशिष्ट वर्ग है और जिसे दाढ़ मात्रा के घन कार्य के रूप में फिर से लिखा जा सकता है।
अवस्था के घनीय समीकरण तापमान और घनत्व के कार्य के रूप में [[गैस]] के दबाव को मॉडलिंग करने के लिए थर्मोडायनामिक मॉडल का  विशिष्ट वर्ग है और जिसे मोलर मात्रा के घन कार्य के रूप में फिर से लिखा जा सकता है।


राज्य के समीकरण आमतौर पर [[भौतिक रसायन]] विज्ञान और रासायनिक इंजीनियरिंग के क्षेत्र में लागू होते हैं, विशेष रूप से वाष्प-तरल संतुलन और रासायनिक इंजीनियरिंग [[प्रक्रिया डिजाइन]] के मॉडलिंग में।
अवस्था के समीकरण सामान्यतः [[भौतिक रसायन]] विज्ञान और रासायनिक इंजीनियरिंग के क्षेत्र में विशेष रूप से वाष्प-तरल संतुलन और रासायनिक इंजीनियरिंग [[प्रक्रिया डिजाइन]] के मॉडलिंग में प्रयुक्त होते हैं |


'''राज्य का घन समीकरण तापमान और घनत्व के कार्य के रूप में [[गैस]] के दबाव को मॉडलिंग करने के लिए थर्मोडायनामिक मॉडल का  विशिष्ट वर्ग है और के रूप में फिर से लिखा जा सकता है।'''
'''अवस्था के घनीय समीकरण तापमान और घनत्व के कार्य के रूप में [[गैस]] के दबाव को मॉडलिंग करने के लिए थर्मोडायनामिक मॉडल का  विशिष्ट वर्ग है और के रूप में फिर से लिखा जा सकता है।'''


== राज्य का [[वैन डेर वाल्स समीकरण]] ==
== अवस्था का [[वैन डेर वाल्स समीकरण]] ==
राज्य के वैन डेर वाल्स समीकरण को इस प्रकार लिखा जा सकता है
अवस्था के वैन डेर वाल्स समीकरण को इस प्रकार लिखा जा सकता है |


: <math>\left(p + \frac{a}{V_\text{m}^2}\right)\left(V_\text{m} - b\right) = RT</math>
: <math>\left(p + \frac{a}{V_\text{m}^2}\right)\left(V_\text{m} - b\right) = RT</math>
कहाँ <math>T</math> परम तापमान है, <math>p</math> [[दबाव]] है, <math>V_\text{m}</math> दाढ़ की मात्रा है और <math>R</math> सार्वत्रिक गैस नियतांक है। ध्यान दें कि <math>V_\text{m} = V / n</math>, कहाँ <math>V</math> मात्रा है, और <math>n=N/N_\text{A}</math>, कहाँ <math>n</math> तिलों की संख्या है, <math>N</math> कणों की संख्या है, और <math>N_\text{A}</math> अवोगाद्रो नियतांक है। ये परिभाषाएँ नीचे दिए गए राज्य के सभी समीकरणों पर भी लागू होती हैं।
जहाँ <math>T</math> परम तापमान है, <math>p</math> [[दबाव]] है, <math>V_\text{m}</math> मोलर की मात्रा है और <math>R</math> सार्वत्रिक गैस नियतांक है। ध्यान दें कि <math>V_\text{m} = V / n</math>, जहाँ <math>V</math> मात्रा है, और <math>n=N/N_\text{A}</math>, जहाँ <math>n</math> मोल्स की संख्या है, <math>N</math> कणों की संख्या है, और <math>N_\text{A}</math> अवोगाद्रो नियतांक है। ये परिभाषाएँ नीचे दिए गए अवस्था के सभी समीकरणों पर भी प्रयुक्त होती हैं।


पदार्थ-विशिष्ट स्थिरांक <math>a</math> और <math>b</math> [[महत्वपूर्ण गुण]]ों से गणना की जा सकती है <math>p_\text{c}</math> और <math>V_\text{c}</math> (नोट किया कि <math>V_\text{c}</math> महत्वपूर्ण बिंदु पर दाढ़ की मात्रा है और <math>p_\text{c}</math> महत्वपूर्ण दबाव है) के रूप में:
पदार्थ-विशिष्ट स्थिरांक <math>a</math> और <math>b</math> की गणना [[महत्वपूर्ण गुण]] <math>p_\text{c}</math> और <math>V_\text{c}</math> से की जा सकती है |(ध्यान दें कि <math>V_\text{c}</math> महत्वपूर्ण बिंदु पर मोलर की मात्रा है और <math>p_\text{c}</math> महत्वपूर्ण दबाव है) इस प्रकार:


: <math>a = 3 p_\text{c} V_\text{c}^2</math>
: <math>a = 3 p_\text{c} V_\text{c}^2</math>
: <math>b = \frac{V_\text{c}}{3}.</math>
: <math>b = \frac{V_\text{c}}{3}.</math>
के लिए भाव <math>(a,b)</math> के कार्यों के रूप में लिखा गया है <math>(T_\text{c},p_\text{c})</math> भी प्राप्त किया जा सकता है और अक्सर समीकरण को पैरामीटर करने के लिए उपयोग किया जाता है क्योंकि महत्वपूर्ण तापमान और दबाव प्रयोग के लिए आसानी से सुलभ होते हैं।<ref>{{cite book |last1=Chang |first1=Raymond |last2=Thoman, Jr. |first2=John W. |title=रासायनिक विज्ञान के लिए भौतिक रसायन|date=2014 |publisher=University Science Books |location=New York}}</ref> वे हैं
<math>(T_\text{c},p_\text{c})</math> के कार्यों के रूप में लिखे गए <math>(a,b)</math> के लिए एक्सप्रेशन भी प्राप्त किए जा सकते हैं और अधिकांशतः समीकरण को मापदंड करने के लिए उपयोग किए जाते हैं | क्योंकि महत्वपूर्ण तापमान और दबाव प्रयोग के लिए आसानी से सुलभ हैं। <ref>{{cite book |last1=Chang |first1=Raymond |last2=Thoman, Jr. |first2=John W. |title=रासायनिक विज्ञान के लिए भौतिक रसायन|date=2014 |publisher=University Science Books |location=New York}}</ref> वे हैं


: <math>a = \frac{27(R T_\text{c})^2}{64p_\text{c}}</math>
: <math>a = \frac{27(R T_\text{c})^2}{64p_\text{c}}</math>
: <math>b = \frac{R T_\text{c}}{8p_\text{c}}.</math>
: <math>b = \frac{R T_\text{c}}{8p_\text{c}}.</math>
1873 में प्रस्तावित, राज्य का वैन डेर वाल्स समीकरण आदर्श गैस कानून की तुलना में स्पष्ट रूप से बेहतर प्रदर्शन करने वालों में से एक था। इस ऐतिहासिक समीकरण में <math>a</math> आकर्षण पैरामीटर कहा जाता है और <math>b</math> प्रतिकर्षण पैरामीटर या प्रभावी आणविक मात्रा। जबकि समीकरण निश्चित रूप से आदर्श गैस कानून से बेहतर है और  तरल चरण के गठन की भविष्यवाणी करता है, प्रयोगात्मक डेटा के साथ समझौता उन स्थितियों के लिए सीमित है जहां तरल रूप होते हैं। जबकि वैन डेर वाल्स समीकरण को आमतौर पर ऐतिहासिक कारणों से पाठ्यपुस्तकों और पत्रों में संदर्भित किया जाता है, यह अब अप्रचलित है। केवल थोड़ी अधिक जटिलता वाले अन्य आधुनिक समीकरण कहीं अधिक सटीक हैं।
1873 में प्रस्तावित, अवस्था का वैन डेर वाल्स समीकरण आदर्श गैस नियम की तुलना में स्पष्ट रूप से उत्तम प्रदर्शन करने वालों में से एक था। इस ऐतिहासिक समीकरण में <math>a</math> आकर्षण मापदंड कहा जाता है और <math>b</math> प्रतिकर्षण मापदंड या प्रभावी आणविक मात्रा खा जाता है। जबकि समीकरण निश्चित रूप से आदर्श गैस नियम से उत्तम है और  तरल चरण के गठन की पूर्वानुमान करता है | प्रयोगात्मक डेटा के साथ समझौता उन स्थितियों के लिए सीमित है | जहां तरल रूप होते हैं। जबकि वैन डेर वाल्स समीकरण को सामान्यतः ऐतिहासिक कारणों से पाठ्यपुस्तकों और पत्रों में संदर्भित किया जाता है, यह अब अप्रचलित है। केवल थोड़ी अधिक जटिलता वाले अन्य आधुनिक समीकरण कहीं अधिक स्पष्ट हैं।


वैन डेर वाल्स समीकरण को आदर्श गैस कानून माना जा सकता है, समीकरण में दो गैर-आदर्श योगदानों को शामिल करने के कारण सुधार हुआ है। फॉर्म में वैन डेर वाल्स समीकरण पर विचार करें
वैन डेर वाल्स समीकरण को आदर्श गैस नियम माना जा सकता है | समीकरण में दो गैर-आदर्श योगदानों को सम्मिलत करने के कारण सुधार हुआ है। फॉर्म में वैन डेर वाल्स समीकरण पर विचार करें |


: <math>p = \frac{RT}{V_\text{m}-b} - \frac{a}{V_\text{m}^2} </math>
: <math>p = \frac{RT}{V_\text{m}-b} - \frac{a}{V_\text{m}^2} </math>
Line 27: Line 27:


: <math>p = \frac{RT}{V_\text{m}} </math>
: <math>p = \frac{RT}{V_\text{m}} </math>
वैन डेर वाल्स समीकरण के रूप को निम्नानुसार प्रेरित किया जा सकता है:
वैन डेर वाल्स समीकरण के रूप को निम्नानुसार प्रेरित किया जा सकता है |
# अणुओं को कणों के रूप में माना जाता है जो  परिमित आयतन पर कब्जा कर लेते हैं। इस प्रकार भौतिक आयतन किसी भी समय सभी अणुओं के लिए सुलभ नहीं होता है, बिंदु कणों के लिए अपेक्षित दबाव की तुलना में दबाव को थोड़ा बढ़ा देता है। इस प्रकार (<math>V_\text{m} - b</math>), इसके बजाय प्रभावी दाढ़ मात्रा का उपयोग किया जाता है <math>V_\text{m}</math> पहले कार्यकाल में।
# अणुओं को कणों के रूप में माना जाता है | जो  परिमित आयतन पर कब्जा कर लेते हैं। इस प्रकार भौतिक आयतन किसी भी समय सभी अणुओं के लिए सुलभ नहीं होता है,| बिंदु कणों के लिए अपेक्षित दबाव की तुलना में दबाव को थोड़ा बढ़ा देता है। इस प्रकार (<math>V_\text{m} - b</math>), इसके अतिरिक्त <math>V_\text{m}</math> पहले कार्यकाल में प्रभावी मोलर मात्रा का उपयोग किया जाता है।
# जबकि आदर्श गैस अणु परस्पर क्रिया नहीं करते हैं, वास्तविक अणु आकर्षक [[वैन डेर वाल्स बल]]ों का प्रदर्शन करेंगे यदि वे एक साथ पर्याप्त रूप से पास हों। आकर्षक बल, जो घनत्व के समानुपाती होते हैं <math>\rho</math>, कंटेनर की दीवारों के साथ अणुओं के टकराव को कम करने और दबाव को कम करने की प्रवृत्ति रखते हैं। इतने प्रभावित होने वाले टकरावों की संख्या भी घनत्व के समानुपाती होती है। इस प्रकार, दबाव आनुपातिक राशि से कम हो जाता है <math>\rho^2</math>, या वर्ग दाढ़ मात्रा के व्युत्क्रमानुपाती।
# जबकि आदर्श गैस अणु परस्पर क्रिया नहीं करते हैं | वास्तविक अणु आकर्षक [[वैन डेर वाल्स बल]] का प्रदर्शन करेंगे यदि वे एक साथ पर्याप्त रूप से पास हों। आकर्षक बल, जो घनत्व <math>\rho</math> के समानुपाती होते हैं  |, कंटेनर की दीवारों के साथ अणुओं के टकराव को कम करने और दबाव को कम करने की प्रवृत्ति रखते हैं। इतने प्रभावित होने वाले टकरावों की संख्या भी घनत्व के समानुपाती होती है। इस प्रकार, दबाव आनुपातिक राशि से कम हो जाता है |,<math>\rho^2</math> या वर्ग मोलर मात्रा के व्युत्क्रमानुपाती होते है।


घटे हुए राज्य चर के साथ, अर्थात <math>V_\text{r}=V_\text{m}/V_\text{c}</math>, <math>P_\text{r}=p/p_\text{c}</math> और <math>T_\text{r}=T/T_\text{c}</math>, वैन डेर वाल्स समीकरण का घटा हुआ रूप तैयार किया जा सकता है:
घटे हुए अवस्था चर के साथ, अर्थात <math>V_\text{r}=V_\text{m}/V_\text{c}</math>, <math>P_\text{r}=p/p_\text{c}</math> और <math>T_\text{r}=T/T_\text{c}</math>, वैन डेर वाल्स समीकरण का घटा हुआ रूप तैयार किया जा सकता है |


: <math>\left(P_\text{r} + \frac{3}{V_\text{r}^2}\right)\left(3V_\text{r} - 1\right) = 8T_\text{r}</math>
: <math>\left(P_\text{r} + \frac{3}{V_\text{r}^2}\right)\left(3V_\text{r} - 1\right) = 8T_\text{r}</math>
इस फॉर्म का लाभ यह है कि दिया गया है <math>T_\text{r}</math> और <math>P_\text{r}</math>, तरल और गैस की घटी हुई मात्रा की गणना सीधे घन सूत्र # कार्डानो की विधि का उपयोग करके की जा सकती है। कम घन रूप के लिए कार्डानो की विधि:
 
 
इस फॉर्म का लाभ यह है कि दिए गए <math>T_\text{r}</math> और <math>P_\text{r}</math> के लिए, कम घन के लिए कार्डानो की विधि का उपयोग करके तरल और गैस की घटी हुई मात्रा की सीधे गणना की जा सकती है।  


: <math>V_\text{r}^3 - \left(\frac{1}{3} + \frac{8T_\text{r}}{3P_\text{r}}\right)V_\text{r}^2 + \frac{3V_\text{r}}{P_\text{r}} - \frac{1}{P_\text{r}} = 0</math>
: <math>V_\text{r}^3 - \left(\frac{1}{3} + \frac{8T_\text{r}}{3P_\text{r}}\right)V_\text{r}^2 + \frac{3V_\text{r}}{P_\text{r}} - \frac{1}{P_\text{r}} = 0</math>
के लिए <math>P_\text{r}<1</math> और <math>T_\text{r}<1</math>सिस्टम वाष्प-तरल संतुलन की स्थिति में है। उस स्थिति में, राज्य के घटे हुए घन समीकरण से 3 समाधान प्राप्त होते हैं। सबसे बड़ा और सबसे कम समाधान गैस और तरल कम मात्रा है। इस स्थिति में, [[मैक्सवेल निर्माण]] का उपयोग कभी-कभी दाढ़ की मात्रा के कार्य के रूप में दबाव को मॉडल करने के लिए किया जाता है।
<math>P_\text{r}<1</math> और <math>T_\text{r}<1</math> के लिए, प्रणाली वाष्प-तरल संतुलन की स्थिति में है। उस स्थिति में, अवस्था के घटे हुए घन समीकरण से 3 समाधान प्राप्त होते हैं। सबसे बड़ा और सबसे कम समाधान गैस और तरल कम मात्रा है। इस स्थिति में, [[मैक्सवेल निर्माण]] का उपयोग कभी-कभी दाढ़ की मात्रा के कार्य के रूप में दबाव को मॉडल करने के लिए किया जाता है।


[[संपीड्यता कारक]] <math>Z=PV_\text{m}/RT</math> अक्सर गैर-आदर्श व्यवहार को चिह्नित करने के लिए प्रयोग किया जाता है। वैन डेर वाल्स समीकरण के लिए कम रूप में, यह बन जाता है
[[संपीड्यता कारक]] <math>Z=PV_\text{m}/RT</math> अधिकांशतः गैर-आदर्श व्यवहार को चिह्नित करने के लिए प्रयोग किया जाता है। वैन डेर वाल्स समीकरण के लिए कम रूप में, यह बन जाता है |


: <math>Z = \frac{V_\text{r}}{V_\text{r}-\frac{1}{3}} - \frac{9}{8 V_\text{r} T_\text{r}} </math>
: <math>Z = \frac{V_\text{r}}{V_\text{r}-\frac{1}{3}} - \frac{9}{8 V_\text{r} T_\text{r}} </math>
महत्वपूर्ण बिंदु पर, <math> Z_\text{c} = 3/8 = 0.375 </math>.
महत्वपूर्ण बिंदु पर, <math> Z_\text{c} = 3/8 = 0.375 </math>.


== राज्य का रेडलिच-क्वांग समीकरण ==
== अवस्था का रेडलिच-क्वांग समीकरण ==
 
1949 में प्रस्तुत किया गया,<ref name=":1">{{Cite journal|last1=Redlich|first1=Otto.|last2=Kwong|first2=J. N. S.|date=1949-02-01|title=समाधानों के ऊष्मप्रवैगिकी पर। V. राज्य का एक समीकरण। गैसीय विलयन की फुगसिटी।|journal=Chemical Reviews|volume=44|issue=1|pages=233–244|doi=10.1021/cr60137a013|issn=0009-2665|pmid=18125401}}</ref> अवस्था के रेडलिच-क्वांग समीकरण को वैन डेर वाल्स समीकरण में  उल्लेखनीय सुधार माना गया है। यह अभी भी मुख्य रूप से अपने अपेक्षाकृत सरल रूप के कारण रुचि का है।


1949 में पेश किया गया,<ref name=":1">{{Cite journal|last1=Redlich|first1=Otto.|last2=Kwong|first2=J. N. S.|date=1949-02-01|title=समाधानों के ऊष्मप्रवैगिकी पर। V. राज्य का एक समीकरण। गैसीय विलयन की फुगसिटी।|journal=Chemical Reviews|volume=44|issue=1|pages=233–244|doi=10.1021/cr60137a013|issn=0009-2665|pmid=18125401}}</ref> राज्य के रेडलिच-क्वांग समीकरण को वैन डेर वाल्स समीकरण में  उल्लेखनीय सुधार माना गया। यह अभी भी मुख्य रूप से अपने अपेक्षाकृत सरल रूप के कारण रुचि का है।


जबकि वैन डेर वाल्स समीकरण से कुछ मायनों में बेहतर है, यह तरल चरण के संबंध में खराब प्रदर्शन करता है और इस प्रकार वाष्प-तरल संतुलन की सटीक गणना के लिए इसका उपयोग नहीं किया जा सकता है। हालांकि, इस उद्देश्य के लिए इसका उपयोग अलग-अलग तरल-चरण सहसंबंधों के साथ किया जा सकता है। समीकरण नीचे दिया गया है, जैसा कि इसके पैरामीटर और महत्वपूर्ण स्थिरांक के बीच संबंध हैं:
जबकि वैन डेर वाल्स समीकरण से कुछ मायनों में उत्तम है | यह तरल चरण के संबंध में खराब प्रदर्शन करता है और इस प्रकार वाष्प-तरल संतुलन की स्पष्ट गणना के लिए इसका उपयोग नहीं किया जा सकता है। चूँकि, इस उद्देश्य के लिए इसका उपयोग अलग-अलग तरल-चरण सहसंबंधों के साथ किया जा सकता है। समीकरण नीचे दिया गया है | जैसा कि इसके मापदंड और महत्वपूर्ण स्थिरांक के बीच संबंध हैं |


: <math>\begin{align}
: <math>\begin{align}
Line 57: Line 60:
   \Omega_b &= \frac{2^{1/3}-1}{3} \approx 0.08664
   \Omega_b &= \frac{2^{1/3}-1}{3} \approx 0.08664
\end{align}</math>
\end{align}</math>
Redlich–Kwong समीकरण का  अन्य समकक्ष रूप मॉडल के संपीड्यता कारक की अभिव्यक्ति है:
रेडलिच-क्वांग समीकरण का  अन्य समकक्ष रूप मॉडल के संपीड्यता कारक की अभिव्यक्ति है |
: <math>Z=\frac{p V_\text{m}}{RT} = \frac{V_\text{m}}{V_\text{m} - b} - \frac{a}{R T^{3/2} \left(V_\text{m} + b\right)} </math>
: <math>Z=\frac{p V_\text{m}}{RT} = \frac{V_\text{m}}{V_\text{m} - b} - \frac{a}{R T^{3/2} \left(V_\text{m} + b\right)} </math>
Redlich-Kwong समीकरण गैस चरण गुणों की गणना के लिए पर्याप्त है जब कम दबाव (पिछले खंड में परिभाषित) तापमान के अनुपात के लगभग आधे से कम तापमान से कम होता है,
रेडलिच-क्वांग समीकरण गैस चरण गुणों की गणना के लिए पर्याप्त है | जब कम दबाव (पिछले खंड में परिभाषित) तापमान के अनुपात के लगभग आधे से कम तापमान से कम होता है |


: <math>P_\text{r} < \frac{T}{2T_\text{c}}.</math>
: <math>P_\text{r} < \frac{T}{2T_\text{c}}.</math>
रेडलिच-क्वांग समीकरण [[संबंधित राज्यों के प्रमेय]] के अनुरूप है। जब समीकरण को कम रूप में व्यक्त किया जाता है, तो सभी गैसों के लिए  समान समीकरण प्राप्त होता है:
रेडलिच-क्वांग समीकरण [[संबंधित राज्यों के प्रमेय]] के अनुरूप है। जब समीकरण को कम रूप में व्यक्त किया जाता है, तो सभी गैसों के लिए  समान समीकरण प्राप्त होता है |


: <math>P_\text{r} = \frac{3 T_\text{r}}{V_\text{r} - b'} - \frac{1}{b' \sqrt{T_\text{r}} V_\text{r} \left(V_\text{r}+b'\right)} </math>
: <math>P_\text{r} = \frac{3 T_\text{r}}{V_\text{r} - b'} - \frac{1}{b' \sqrt{T_\text{r}} V_\text{r} \left(V_\text{r}+b'\right)} </math>
कहाँ <math>b'</math> है:
जहाँ <math>b'</math> है |
: <math>b' = 2^{1/3}-1 \approx 0.25992</math>
: <math>b' = 2^{1/3}-1 \approx 0.25992</math>
इसके अलावा, महत्वपूर्ण बिंदु पर संपीड्यता कारक प्रत्येक पदार्थ के लिए समान है:
इसके अतिरिक्त, महत्वपूर्ण बिंदु पर संपीड्यता कारक प्रत्येक पदार्थ के लिए समान है |
: <math>Z_\text{c}=\frac{p_\text{c} V_\text{c}}{R T_\text{c}}=1/3 \approx 0.33333</math>
: <math>Z_\text{c}=\frac{p_\text{c} V_\text{c}}{R T_\text{c}}=1/3 \approx 0.33333</math>
यह वैन डेर वाल्स समीकरण#संपीड़नीयता_कारक पर  सुधार है, जो है <math>Z_\text{c} = 3/8 = 0.375</math> . विशिष्ट प्रयोगात्मक मूल्य हैं  <math>Z_\text{c} = 0.274</math> ([[कार्बन डाईऑक्साइड]]), <math>Z_\text{c} = 0.235</math> ([[पानी]] और <math>Z_\text{c} = 0.29</math> ([[नाइट्रोजन]])
यह वैन डेर वाल्स समीकरण संपीड़नीयता कारक पर  सुधार है, जो कि <math>Z_\text{c} = 3/8 = 0.375</math> . <math>Z_\text{c} = 0.274</math> ([[कार्बन डाईऑक्साइड]]), <math>Z_\text{c} = 0.235</math> ([[पानी]] और <math>Z_\text{c} = 0.29</math> ([[नाइट्रोजन]]) विशिष्ट प्रयोगात्मक मूल्य हैं |


== रेडलिच-क्वांग == का सोवे संशोधन


सोवे द्वारा रेडलिच-क्वांग समीकरण का  संशोधित रूप प्रस्तावित किया गया था।<ref name="Soave modification of Redlich-Kwong">{{cite journal|last1=Soave|first1=Giorgio|date=1972|title=Equilibrium constants from a modified Redlich–Kwong equation of state|journal=Chemical Engineering Science|volume=27|issue=6|pages=1197–1203|doi=10.1016/0009-2509(72)80096-4}}</ref> यह रूप लेता है
रेडलिच-क्वांग का सोवे संशोधन सोवे द्वारा रेडलिच-क्वांग समीकरण का  संशोधित रूप प्रस्तावित किया गया था।<ref name="Soave modification of Redlich-Kwong">{{cite journal|last1=Soave|first1=Giorgio|date=1972|title=Equilibrium constants from a modified Redlich–Kwong equation of state|journal=Chemical Engineering Science|volume=27|issue=6|pages=1197–1203|doi=10.1016/0009-2509(72)80096-4}}</ref> यह रूप लेता है |


: <math>p = \frac{R\,T}{V_\text{m}-b} - \frac{a \alpha}{V_\text{m}\left(V_\text{m}+b\right)}</math>
: <math>p = \frac{R\,T}{V_\text{m}-b} - \frac{a \alpha}{V_\text{m}\left(V_\text{m}+b\right)}</math>
Line 84: Line 86:
जहां ω प्रजातियों के लिए एसेंट्रिक कारक है।
जहां ω प्रजातियों के लिए एसेंट्रिक कारक है।


के लिए सूत्रीकरण <math>\alpha</math> ऊपर वास्तव में Graboski और Daubert के कारण है। सोवे से मूल सूत्रीकरण है:
सूत्रीकरण <math>\alpha</math> के लिए  ऊपर वास्तव में ग्राबोस्की और डबर्ट के कारण है। सोवे से मूल सूत्रीकरण है |


: <math>\alpha = \left(1 + \left(0.480 + 1.574\,\omega - 0.176\,\omega^2\right) \left(1-T_\text{r}^{0.5}\right)\right)^2</math>
: <math>\alpha = \left(1 + \left(0.480 + 1.574\,\omega - 0.176\,\omega^2\right) \left(1-T_\text{r}^{0.5}\right)\right)^2</math>
Line 102: Line 104:
: <math>p_\text{r} = \frac{R\,T_\text{r} T_\text{c}}{P_\text{c} V_\text{c}\left(V_\text{r}-\frac{\Omega_b}{Z_\text{c}}\right)} - \frac{\frac{\Omega_a\,R^2 T_\text{c}^2}{P_\text{c}^2} \alpha\left(\omega, T_\text{r}\right)}{V_\text{r} V_\text{c}^2\left(V_\text{r}+\frac{\Omega_b}{Z_\text{c}}\right)} =  
: <math>p_\text{r} = \frac{R\,T_\text{r} T_\text{c}}{P_\text{c} V_\text{c}\left(V_\text{r}-\frac{\Omega_b}{Z_\text{c}}\right)} - \frac{\frac{\Omega_a\,R^2 T_\text{c}^2}{P_\text{c}^2} \alpha\left(\omega, T_\text{r}\right)}{V_\text{r} V_\text{c}^2\left(V_\text{r}+\frac{\Omega_b}{Z_\text{c}}\right)} =  
  \frac{T_\text{r}}{Z_\text{c}\left(V_\text{r}-\frac{\Omega_b}{Z_\text{c}}\right)} - \frac{\frac{\Omega_a}{Z_\text{c}^2} \alpha\left(\omega, T_\text{r}\right)}{V_\text{r} \left(V_\text{r}+\frac{\Omega_b}{Z_\text{c}}\right)} </math>
  \frac{T_\text{r}}{Z_\text{c}\left(V_\text{r}-\frac{\Omega_b}{Z_\text{c}}\right)} - \frac{\frac{\Omega_a}{Z_\text{c}^2} \alpha\left(\omega, T_\text{r}\right)}{V_\text{r} \left(V_\text{r}+\frac{\Omega_b}{Z_\text{c}}\right)} </math>
इस प्रकार, सोवे-रेडलिच-क्वांग समीकरण कम रूप में केवल ω और पर निर्भर करता है <math>Z_\text{c}</math> पदार्थ का, VdW और RK समीकरण दोनों के विपरीत जो संबंधित राज्यों के प्रमेय के अनुरूप हैं और घटा हुआ रूप सभी पदार्थों के लिए एक है:
इस प्रकार, सोवे-रेडलिच-क्वांग समीकरण कम रूप में केवल ω और पर निर्भर करता है | <math>Z_\text{c}</math> पदार्थ का, वीडीडब्ल्यू और आरके समीकरण दोनों के विपरीत जो संबंधित राज्यों के प्रमेय के अनुरूप हैं और घटा हुआ रूप सभी पदार्थों के लिए एक है |
: <math>p_\text{r} = \frac{T_\text{r}}{Z_\text{c}\left(V_\text{r}-\frac{\Omega_b}{Z_\text{c}}\right)} - \frac{\frac{\Omega_a}{Z_\text{c}^2} \alpha\left(\omega, T_\text{r}\right)}{V_\text{r} \left(V_\text{r}+\frac{\Omega_b}{Z_\text{c}}\right)} </math>
: <math>p_\text{r} = \frac{T_\text{r}}{Z_\text{c}\left(V_\text{r}-\frac{\Omega_b}{Z_\text{c}}\right)} - \frac{\frac{\Omega_a}{Z_\text{c}^2} \alpha\left(\omega, T_\text{r}\right)}{V_\text{r} \left(V_\text{r}+\frac{\Omega_b}{Z_\text{c}}\right)} </math>
हम इसे बहुपद रूप में भी लिख सकते हैं:
हम इसे बहुपद रूप में भी लिख सकते हैं:
Line 114: Line 116:
इस समीकरण के तीन मूल हो सकते हैं। घन समीकरण की अधिकतम जड़ आम तौर पर वाष्प अवस्था से मेल खाती है, जबकि न्यूनतम जड़ तरल अवस्था के लिए होती है। गणनाओं में घन समीकरणों का उपयोग करते समय इसे ध्यान में रखा जाना चाहिए, उदाहरण के लिए, वाष्प-तरल_संतुलन|वाष्प-तरल संतुलन।
इस समीकरण के तीन मूल हो सकते हैं। घन समीकरण की अधिकतम जड़ आम तौर पर वाष्प अवस्था से मेल खाती है, जबकि न्यूनतम जड़ तरल अवस्था के लिए होती है। गणनाओं में घन समीकरणों का उपयोग करते समय इसे ध्यान में रखा जाना चाहिए, उदाहरण के लिए, वाष्प-तरल_संतुलन|वाष्प-तरल संतुलन।


1972 में जी। सोवे<ref>{{Cite journal|last1=Soave|first1=Giorgio|year=1972|title=Equilibrium constants from a modified Redlich–Kwong equation of state|journal=Chemical Engineering Science|volume=27|issue=6|pages=1197–1203|doi=10.1016/0009-2509(72)80096-4}}</ref> की जगह <math display=inline>\frac{1}{\sqrt{T}}</math>  फ़ंक्शन α(T,ω) के साथ रेडलिच-क्वांग समीकरण की अवधि तापमान और एसेंट्रिक कारक को शामिल करती है (परिणामी समीकरण को राज्य के सोवे-रेडलिच-क्वांग समीकरण के रूप में भी जाना जाता है; एसआरके ईओएस)। हाइड्रोकार्बन के वाष्प दबाव डेटा को फिट करने के लिए α फ़ंक्शन तैयार किया गया था और इन सामग्रियों के लिए समीकरण काफी अच्छा करता है।
1972 में जी। सोवे<ref>{{Cite journal|last1=Soave|first1=Giorgio|year=1972|title=Equilibrium constants from a modified Redlich–Kwong equation of state|journal=Chemical Engineering Science|volume=27|issue=6|pages=1197–1203|doi=10.1016/0009-2509(72)80096-4}}</ref> की जगह <math display=inline>\frac{1}{\sqrt{T}}</math>  फ़ंक्शन α(T,ω) के साथ रेडलिच-क्वांग समीकरण की अवधि तापमान और एसेंट्रिक कारक को सम्मिलत करती है (परिणामी समीकरण को अवस्था के सोवे-रेडलिच-क्वांग समीकरण के रूप में भी जाना जाता है; एसआरके ईओएस)। हाइड्रोकार्बन के वाष्प दबाव डेटा को फिट करने के लिए α फ़ंक्शन तैयार किया गया था और इन सामग्रियों के लिए समीकरण काफी अच्छा करता है।


विशेष रूप से ध्यान दें कि यह प्रतिस्थापन थोड़ा की परिभाषा को बदलता है, जैसा कि <math>T_\text{c}</math> अब दूसरी शक्ति के लिए है।
विशेष रूप से ध्यान दें कि यह प्रतिस्थापन थोड़ा की परिभाषा को बदलता है, जैसा कि <math>T_\text{c}</math> अब दूसरी शक्ति के लिए है।
Line 122: Line 124:


: <math>p = \frac{R\,T}{V_{m,\text{SRK}} - b} - \frac{a}{V_{m,\text{SRK}} \left(V_{m,\text{SRK}} + b\right)}</math>
: <math>p = \frac{R\,T}{V_{m,\text{SRK}} - b} - \frac{a}{V_{m,\text{SRK}} \left(V_{m,\text{SRK}} + b\right)}</math>
कहाँ
जहाँ


: <math>\begin{align}
: <math>\begin{align}
Line 129: Line 131:
     b &\approx 0.08664\frac{R\,T_\text{c}}{P_\text{c}}
     b &\approx 0.08664\frac{R\,T_\text{c}}{P_\text{c}}
\end{align}</math>
\end{align}</math>
कहाँ <math>\alpha</math> और SRK EOS के अन्य भागों को SRK EOS सेक्शन में परिभाषित किया गया है।
जहाँ <math>\alpha</math> और SRK EOS के अन्य भागों को SRK EOS सेक्शन में परिभाषित किया गया है।


SRK EOS और अन्य क्यूबिक EOS का नकारात्मक पक्ष यह है कि तरल मोलर आयतन गैस मोलर आयतन की तुलना में काफी कम सटीक है। पेनेलौक्स और अन्य (1982)<ref name="Peneloux1982">{{cite journal|last1=Peneloux|first1=A.|last2=Rauzy|first2=E.|last3=Freze|first3=R.|year=1982|title=A Consistent Correction for Redlich–Kwong–Soave Volumes|journal=Fluid Phase Equilibria|volume=8|issue=1982|pages=7–23|doi=10.1016/0378-3812(82)80002-2}}</ref> वॉल्यूम अनुवाद की शुरुआत करके इसके लिए  सरल सुधार प्रस्तावित किया
SRK EOS और अन्य क्यूबिक EOS का नकारात्मक पक्ष यह है कि तरल मोलर आयतन गैस मोलर आयतन की तुलना में काफी कम स्पष्ट है। पेनेलौक्स और अन्य (1982)<ref name="Peneloux1982">{{cite journal|last1=Peneloux|first1=A.|last2=Rauzy|first2=E.|last3=Freze|first3=R.|year=1982|title=A Consistent Correction for Redlich–Kwong–Soave Volumes|journal=Fluid Phase Equilibria|volume=8|issue=1982|pages=7–23|doi=10.1016/0378-3812(82)80002-2}}</ref> वॉल्यूम अनुवाद की शुरुआत करके इसके लिए  सरल सुधार प्रस्तावित किया


: <math>V_{\text{m},\text{SRK}} = V_\text{m} + c</math>
: <math>V_{\text{m},\text{SRK}} = V_\text{m} + c</math>
कहाँ <math>c</math> एक अतिरिक्त द्रव घटक पैरामीटर है जो दाढ़ की मात्रा को थोड़ा अनुवाद करता है। ईओएस की तरल शाखा पर, दाढ़ की मात्रा में  छोटा परिवर्तन दबाव में  बड़े परिवर्तन से मेल खाता है। ईओएस की गैस शाखा पर, दाढ़ की मात्रा में  छोटा परिवर्तन तरल शाखा की तुलना में दबाव में बहुत कम परिवर्तन से मेल खाता है। इस प्रकार, दाढ़ गैस की मात्रा का क्षोभ छोटा है। दुर्भाग्य से, दो संस्करण हैं जो विज्ञान और उद्योग में होते हैं।
जहाँ <math>c</math> एक अतिरिक्त द्रव घटक मापदंड है जो मोलर की मात्रा को थोड़ा अनुवाद करता है। ईओएस की तरल शाखा पर, मोलर की मात्रा में  छोटा परिवर्तन दबाव में  बड़े परिवर्तन से मेल खाता है। ईओएस की गैस शाखा पर, मोलर की मात्रा में  छोटा परिवर्तन तरल शाखा की तुलना में दबाव में बहुत कम परिवर्तन से मेल खाता है। इस प्रकार, मोलर गैस की मात्रा का क्षोभ छोटा है। दुर्भाग्य से, दो संस्करण हैं जो विज्ञान और उद्योग में होते हैं।


पहले संस्करण में ही <math>V_{\text{m},\text{SRK}}</math> अनुवादित है,<ref name="Soave1990">{{cite journal|last1=Soave|first1=G.|last2=Fermeglia|first2=M.|year=1990|title=सिंथेटिक उच्च दबाव वीएलई मापन के लिए राज्य के घन समीकरण के आवेदन पर|journal=Fluid Phase Equilibria|volume=60|issue=1990|pages=261–271|doi=10.1016/0378-3812(90)85056-G}}</ref> <ref name="Zeberg2001">{{Cite book|last1=Zéberg-Mikkelsen|first1=C.K.|title=Viscosity study of hydrocarbon fluids at reservoir conditions – modeling and measurements|journal=Ph.D. Thesis at the Technical University of Denmark. Department of Chemical Engineering|year=2001|isbn=9788790142742|volume=June|pages=1–271|issue=2001}}</ref> और EOS बन जाता है
पहले संस्करण में ही <math>V_{\text{m},\text{SRK}}</math> अनुवादित है,<ref name="Soave1990">{{cite journal|last1=Soave|first1=G.|last2=Fermeglia|first2=M.|year=1990|title=सिंथेटिक उच्च दबाव वीएलई मापन के लिए राज्य के घन समीकरण के आवेदन पर|journal=Fluid Phase Equilibria|volume=60|issue=1990|pages=261–271|doi=10.1016/0378-3812(90)85056-G}}</ref> <ref name="Zeberg2001">{{Cite book|last1=Zéberg-Mikkelsen|first1=C.K.|title=Viscosity study of hydrocarbon fluids at reservoir conditions – modeling and measurements|journal=Ph.D. Thesis at the Technical University of Denmark. Department of Chemical Engineering|year=2001|isbn=9788790142742|volume=June|pages=1–271|issue=2001}}</ref> और EOS बन जाता है


: <math>p = \frac{R\,T}{V_\text{m} + c - b} - \frac{a}{\left(V_\text{m} + c\right) \left(V_\text{m} + c + b\right)}</math>
: <math>p = \frac{R\,T}{V_\text{m} + c - b} - \frac{a}{\left(V_\text{m} + c\right) \left(V_\text{m} + c + b\right)}</math>
दूसरे संस्करण में दोनों <math>V_{\text{m},\text{SRK}}</math> और <math>b_\text{SRK}</math> अनुवादित हैं, या का अनुवाद <math>V_{\text{m},\text{SRK}}</math> इसके बाद समग्र पैरामीटर का नाम बदल दिया जाता है {{nowrap|''b'' − ''c''}}.<ref name="Pedersen1989">{{Cite book|last1=Pedersen|first1=K. S.|title=तेल और प्राकृतिक गैसों के गुण|last2=Fredenslund|first2=Aa.|last3=Thomassen|first3=P.|journal=Book Published by Gulf Publishing Company, Houston|year=1989|isbn=9780872015883|volume=1989|pages=1–252|issue=1989}}</ref> यह देता है
दूसरे संस्करण में दोनों <math>V_{\text{m},\text{SRK}}</math> और <math>b_\text{SRK}</math> अनुवादित हैं, या का अनुवाद <math>V_{\text{m},\text{SRK}}</math> इसके बाद समग्र मापदंड का नाम बदल दिया जाता है {{nowrap|''b'' − ''c''}}.<ref name="Pedersen1989">{{Cite book|last1=Pedersen|first1=K. S.|title=तेल और प्राकृतिक गैसों के गुण|last2=Fredenslund|first2=Aa.|last3=Thomassen|first3=P.|journal=Book Published by Gulf Publishing Company, Houston|year=1989|isbn=9780872015883|volume=1989|pages=1–252|issue=1989}}</ref> यह देता है


: <math>\begin{align}
: <math>\begin{align}
Line 145: Line 147:
             p &= \frac{R\,T}{V_\text{m} - b} - \frac{a}{\left(V_\text{m} + c\right) \left(V_\text{m} + 2c + b\right)}
             p &= \frac{R\,T}{V_\text{m} - b} - \frac{a}{\left(V_\text{m} + c\right) \left(V_\text{m} + 2c + b\right)}
\end{align}</math>
\end{align}</math>
द्रव मिश्रण के सी-पैरामीटर की गणना किसके द्वारा की जाती है
द्रव मिश्रण के सी-मापदंड की गणना किसके द्वारा की जाती है


: <math>c = \sum_{i=1}^n z_i c_i</math>
: <math>c = \sum_{i=1}^n z_i c_i</math>
पेट्रोलियम गैस और तेल में अलग-अलग द्रव घटकों के सी-पैरामीटर को सहसंबंध द्वारा अनुमान लगाया जा सकता है
पेट्रोलियम गैस और तेल में अलग-अलग द्रव घटकों के सी-मापदंड को सहसंबंध द्वारा अनुमान लगाया जा सकता है


: <math>c_i \approx 0.40768\ \frac{RT_{ci}}{P_{ci}} \left(0.29441 - Z_{\text{RA},i}\right) </math>
: <math>c_i \approx 0.40768\ \frac{RT_{ci}}{P_{ci}} \left(0.29441 - Z_{\text{RA},i}\right) </math>
Line 154: Line 156:


: <math>Z_{\text{RA},i} \approx 0.29056 - 0.08775\ \omega_i</math>
: <math>Z_{\text{RA},i} \approx 0.29056 - 0.08775\ \omega_i</math>
पेनेलौक्स एट अल की वॉल्यूम अनुवाद पद्धति के साथ  अच्छी सुविधा। (1982) यह है कि यह वाष्प-तरल संतुलन गणनाओं को प्रभावित नहीं करता है।<ref name="Knudsen1992">{{cite journal|last1=Knudsen|first1=K.|year=1992|title=चरण संतुलन और मल्टीफ़ेज़ सिस्टम का परिवहन|journal=Ph.D. Thesis at the Technical University of Denmark. Department of Chemical Engineering|issue=1992}}</ref> वॉल्यूम ट्रांसलेशन का यह तरीका अन्य क्यूबिक ईओएस पर भी लागू किया जा सकता है यदि सी-पैरामीटर सहसंबंध को चयनित ईओएस से मिलान करने के लिए समायोजित किया जाता है।
पेनेलौक्स एट अल की वॉल्यूम अनुवाद पद्धति के साथ  अच्छी सुविधा। (1982) यह है कि यह वाष्प-तरल संतुलन गणनाओं को प्रभावित नहीं करता है।<ref name="Knudsen1992">{{cite journal|last1=Knudsen|first1=K.|year=1992|title=चरण संतुलन और मल्टीफ़ेज़ सिस्टम का परिवहन|journal=Ph.D. Thesis at the Technical University of Denmark. Department of Chemical Engineering|issue=1992}}</ref> वॉल्यूम ट्रांसलेशन का यह तरीका अन्य क्यूबिक ईओएस पर भी प्रयुक्त किया जा सकता है यदि सी-मापदंड सहसंबंध को चयनित ईओएस से मिलान करने के लिए समायोजित किया जाता है।


== राज्य का पेंग-रॉबिन्सन समीकरण ==
== अवस्था का पेंग-रॉबिन्सन समीकरण ==
राज्य के पेंग-रॉबिन्सन समीकरण (पीआर ईओएस) को 1976 में [[अल्बर्टा विश्वविद्यालय]] में [[ डिंग यूप इंजी ]] | डिंग-यू पेंग और डोनाल्ड रॉबिन्सन द्वारा निम्नलिखित लक्ष्यों को पूरा करने के लिए विकसित किया गया था:<ref>{{cite journal|author1=Peng, D. Y.|author2=Robinson, D. B.|year=1976|title=राज्य का एक नया दो-स्थिर समीकरण|journal=Industrial and Engineering Chemistry: Fundamentals|volume=15|pages=59–64|doi=10.1021/i160057a011|s2cid=98225845 }}</ref>
अवस्था के पेंग-रॉबिन्सन समीकरण (पीआर ईओएस) को 1976 में [[अल्बर्टा विश्वविद्यालय]] में [[ डिंग यूप इंजी ]] | डिंग-यू पेंग और डोनाल्ड रॉबिन्सन द्वारा निम्नलिखित लक्ष्यों को पूरा करने के लिए विकसित किया गया था:<ref>{{cite journal|author1=Peng, D. Y.|author2=Robinson, D. B.|year=1976|title=राज्य का एक नया दो-स्थिर समीकरण|journal=Industrial and Engineering Chemistry: Fundamentals|volume=15|pages=59–64|doi=10.1021/i160057a011|s2cid=98225845 }}</ref>
# मापदंडों को महत्वपूर्ण गुणों और एसेंट्रिक कारक के संदर्भ में व्यक्त किया जाना चाहिए।
# मापदंडों को महत्वपूर्ण गुणों और एसेंट्रिक कारक के संदर्भ में व्यक्त किया जाना चाहिए।
# मॉडल को महत्वपूर्ण बिंदु के पास उचित सटीकता प्रदान करनी चाहिए, विशेष रूप से संपीड़ितता कारक और तरल घनत्व की गणना के लिए।
# मॉडल को महत्वपूर्ण बिंदु के पास उचित सटीकता प्रदान करनी चाहिए, विशेष रूप से संपीड़ितता कारक और तरल घनत्व की गणना के लिए।
# मिश्रण के नियमों में एक से अधिक बाइनरी इंटरेक्शन पैरामीटर का उपयोग नहीं करना चाहिए, जो तापमान, दबाव और संरचना से स्वतंत्र होना चाहिए।
# मिश्रण के नियमों में एक से अधिक बाइनरी इंटरेक्शन मापदंड का उपयोग नहीं करना चाहिए, जो तापमान, दबाव और संरचना से स्वतंत्र होना चाहिए।
# प्राकृतिक गैस प्रक्रियाओं में सभी द्रव गुणों की सभी गणनाओं के लिए समीकरण लागू होना चाहिए।
# प्राकृतिक गैस प्रक्रियाओं में सभी द्रव गुणों की सभी गणनाओं के लिए समीकरण प्रयुक्त होना चाहिए।


समीकरण इस प्रकार दिया गया है:
समीकरण इस प्रकार दिया गया है:
Line 178: Line 180:
: <math>B = \frac{bp}{RT}</math>
: <math>B = \frac{bp}{RT}</math>
: <math>Z^3 - (1 - B)Z^2 + \left(A - 2B - 3B^2\right)Z - \left(AB - B^2 - B^3\right) = 0</math>
: <math>Z^3 - (1 - B)Z^2 + \left(A - 2B - 3B^2\right)Z - \left(AB - B^2 - B^3\right) = 0</math>
अधिकांश भाग के लिए पेंग-रॉबिन्सन समीकरण सोवे समीकरण के समान प्रदर्शन प्रदर्शित करता है, हालांकि यह आम तौर पर कई सामग्रियों, विशेष रूप से गैर-ध्रुवीय वाले तरल घनत्व की भविष्यवाणी करने में बेहतर है।<ref>{{cite journal|author=Pierre Donnez|year=2007|title=जलाशय इंजीनियरिंग की अनिवार्यता|volume=1|pages=151}}</ref> पेंग-रॉबिन्सन समीकरण का प्रस्थान फलन  अलग लेख में दिया गया है।
अधिकांश भाग के लिए पेंग-रॉबिन्सन समीकरण सोवे समीकरण के समान प्रदर्शन प्रदर्शित करता है, चूँकि यह आम तौर पर कई सामग्रियों, विशेष रूप से गैर-ध्रुवीय वाले तरल घनत्व की पूर्वानुमान करने में उत्तम है।<ref>{{cite journal|author=Pierre Donnez|year=2007|title=जलाशय इंजीनियरिंग की अनिवार्यता|volume=1|pages=151}}</ref> पेंग-रॉबिन्सन समीकरण का प्रस्थान फलन  अलग लेख में दिया गया है।


इसके विशिष्ट स्थिरांक के विश्लेषणात्मक मूल्य हैं:
इसके विशिष्ट स्थिरांक के विश्लेषणात्मक मूल्य हैं:
Line 187: Line 189:




== पेंग-रॉबिन्सन-स्ट्राइजेक-राज्य के वेरा समीकरण ==
== पेंग-रॉबिन्सन-स्ट्राइजेक-अवस्था के वेरा समीकरण ==


=== PRSV1 ===
=== PRSV1 ===
1986 में स्ट्रीजेक और वेरा द्वारा प्रकाशित राज्य के पेंग-रॉबिन्सन समीकरण में आकर्षण शब्द में संशोधन (PRSV) ने  समायोज्य शुद्ध घटक पैरामीटर को शुरू करके और एसेंट्रिक कारक के बहुपद फिट को संशोधित करके मॉडल की सटीकता में काफी सुधार किया।<ref name="PRSV1">{{cite journal|author1=Stryjek, R.|author2=Vera, J. H.|year=1986|title=PRSV: An improved Peng–Robinson equation of state for pure compounds and mixtures|journal=The Canadian Journal of Chemical Engineering|volume=64|issue=2|pages=323–333|doi=10.1002/cjce.5450640224}}</ref>
1986 में स्ट्रीजेक और वेरा द्वारा प्रकाशित अवस्था के पेंग-रॉबिन्सन समीकरण में आकर्षण शब्द में संशोधन (PRSV) ने  समायोज्य शुद्ध घटक मापदंड को शुरू करके और एसेंट्रिक कारक के बहुपद फिट को संशोधित करके मॉडल की सटीकता में काफी सुधार किया।<ref name="PRSV1">{{cite journal|author1=Stryjek, R.|author2=Vera, J. H.|year=1986|title=PRSV: An improved Peng–Robinson equation of state for pure compounds and mixtures|journal=The Canadian Journal of Chemical Engineering|volume=64|issue=2|pages=323–333|doi=10.1002/cjce.5450640224}}</ref>
संशोधन है:
संशोधन है:


Line 197: Line 199:
   \kappa_0 &= 0.378893+1.4897153\,\omega - 0.17131848\,\omega^2 + 0.0196554\,\omega^3
   \kappa_0 &= 0.378893+1.4897153\,\omega - 0.17131848\,\omega^2 + 0.0196554\,\omega^3
\end{align}</math>
\end{align}</math>
कहाँ <math>\kappa_1</math>  समायोज्य शुद्ध घटक पैरामीटर है। स्ट्राइजेक और वेरा ने अपने मूल पत्रिका लेख में औद्योगिक हित के कई यौगिकों के लिए शुद्ध घटक पैरामीटर प्रकाशित किए। 0.7 से ऊपर कम तापमान पर, वे सेट करने की सलाह देते हैं <math>\kappa_1 = 0 </math> और बस उपयोग करें <math>\kappa = \kappa_0 </math>. शराब और पानी के मूल्य के लिए <math> \kappa_1 </math> महत्वपूर्ण तापमान तक इस्तेमाल किया जा सकता है और उच्च तापमान पर शून्य पर सेट किया जा सकता है।<ref name="PRSV1" />
जहाँ <math>\kappa_1</math>  समायोज्य शुद्ध घटक मापदंड है। स्ट्राइजेक और वेरा ने अपने मूल पत्रिका लेख में औद्योगिक हित के कई यौगिकों के लिए शुद्ध घटक मापदंड प्रकाशित किए। 0.7 से ऊपर कम तापमान पर, वे सेट करने की सलाह देते हैं <math>\kappa_1 = 0 </math> और बस उपयोग करें <math>\kappa = \kappa_0 </math>. शराब और पानी के मूल्य के लिए <math> \kappa_1 </math> महत्वपूर्ण तापमान तक इस्तेमाल किया जा सकता है और उच्च तापमान पर शून्य पर सेट किया जा सकता है।<ref name="PRSV1" />




=== PRSV2 ===
=== PRSV2 ===
1986 (PRSV2) में प्रकाशित  बाद के संशोधन ने पिछले आकर्षण शब्द संशोधन के लिए दो अतिरिक्त शुद्ध घटक मापदंडों को पेश करके मॉडल की सटीकता में और सुधार किया।<ref name="PRSV2">{{cite journal|author1=Stryjek, R.|author2=Vera, J. H.|year=1986|title=PRSV2: A cubic equation of state for accurate vapor—liquid equilibria calculations|journal=The Canadian Journal of Chemical Engineering|volume=64|issue=5|pages=820–826|doi=10.1002/cjce.5450640516}}</ref>
1986 (PRSV2) में प्रकाशित  बाद के संशोधन ने पिछले आकर्षण शब्द संशोधन के लिए दो अतिरिक्त शुद्ध घटक मापदंडों को प्रस्तुत करके मॉडल की सटीकता में और सुधार किया।<ref name="PRSV2">{{cite journal|author1=Stryjek, R.|author2=Vera, J. H.|year=1986|title=PRSV2: A cubic equation of state for accurate vapor—liquid equilibria calculations|journal=The Canadian Journal of Chemical Engineering|volume=64|issue=5|pages=820–826|doi=10.1002/cjce.5450640516}}</ref>
संशोधन है:
संशोधन है:


Line 208: Line 210:
   \kappa_0 &= 0.378893 + 1.4897153\,\omega - 0.17131848\,\omega^2 + 0.0196554\,\omega^3
   \kappa_0 &= 0.378893 + 1.4897153\,\omega - 0.17131848\,\omega^2 + 0.0196554\,\omega^3
\end{align}</math>
\end{align}</math>
कहाँ <math>\kappa_1</math>, <math>\kappa_2</math>, और <math>\kappa_3</math> समायोज्य शुद्ध घटक पैरामीटर हैं।
जहाँ <math>\kappa_1</math>, <math>\kappa_2</math>, और <math>\kappa_3</math> समायोज्य शुद्ध घटक मापदंड हैं।


PRSV2 वाष्प-तरल संतुलन गणनाओं के लिए विशेष रूप से लाभप्रद है। जबकि PRSV1 उष्मागतिकीय व्यवहार का वर्णन करने के लिए पेंग-रॉबिन्सन मॉडल पर  लाभ प्रदान करता है, यह सामान्य रूप से चरण संतुलन गणना के लिए पर्याप्त सटीक नहीं है।<ref name="PRSV1" />  चरण-संतुलन गणना विधियों का अत्यधिक गैर-रैखिक व्यवहार यह बढ़ाता है कि अन्यथा स्वीकार्य रूप से छोटी त्रुटियां क्या होंगी। इसलिए यह अनुशंसा की जाती है कि इन मॉडलों को किसी डिज़ाइन पर लागू करते समय संतुलन गणना के लिए PRSV2 का उपयोग किया जाए। हालांकि, एक बार संतुलन स्थिति निर्धारित हो जाने के बाद, संतुलन पर चरण विशिष्ट उष्मागतिक मूल्यों को उचित सटीकता के साथ कई सरल मॉडलों में से एक द्वारा निर्धारित किया जा सकता है।<ref name="PRSV2" />
PRSV2 वाष्प-तरल संतुलन गणनाओं के लिए विशेष रूप से लाभप्रद है। जबकि PRSV1 उष्मागतिकीय व्यवहार का वर्णन करने के लिए पेंग-रॉबिन्सन मॉडल पर  लाभ प्रदान करता है, यह सामान्य रूप से चरण संतुलन गणना के लिए पर्याप्त स्पष्ट नहीं है।<ref name="PRSV1" />  चरण-संतुलन गणना विधियों का अत्यधिक गैर-रैखिक व्यवहार यह बढ़ाता है कि अन्यथा स्वीकार्य रूप से छोटी त्रुटियां क्या होंगी। इसलिए यह अनुशंसा की जाती है कि इन मॉडलों को किसी डिज़ाइन पर प्रयुक्त करते समय संतुलन गणना के लिए PRSV2 का उपयोग किया जाए। चूँकि, एक बार संतुलन स्थिति निर्धारित हो जाने के बाद, संतुलन पर चरण विशिष्ट उष्मागतिक मूल्यों को उचित सटीकता के साथ कई सरल मॉडलों में से एक द्वारा निर्धारित किया जा सकता है।<ref name="PRSV2" />


एक बात ध्यान देने वाली है कि PRSV समीकरण में, पैरामीटर फिट  विशेष तापमान रेंज में किया जाता है जो आमतौर पर महत्वपूर्ण तापमान से नीचे होता है। महत्वपूर्ण तापमान से ऊपर, PRSV अल्फा फ़ंक्शन अलग हो जाता है और 0. की ओर बढ़ने के बजाय मनमाने ढंग से बड़ा हो जाता है। इस वजह से, अल्फा के लिए वैकल्पिक समीकरणों को महत्वपूर्ण बिंदु से ऊपर नियोजित किया जाना चाहिए। यह हाइड्रोजन युक्त प्रणालियों के लिए विशेष रूप से महत्वपूर्ण है जो अक्सर अपने महत्वपूर्ण बिंदु से ऊपर के तापमान पर पाया जाता है। कई वैकल्पिक फॉर्मूलेशन प्रस्तावित किए गए हैं। कुछ प्रसिद्ध लोग ट्वू एट अल द्वारा हैं।{{cn|date=July 2022}} और मथियास और कोपमैन द्वारा।{{cn|date=July 2022}}
एक बात ध्यान देने वाली है कि PRSV समीकरण में, मापदंड फिट  विशेष तापमान रेंज में किया जाता है जो सामान्यतः महत्वपूर्ण तापमान से नीचे होता है। महत्वपूर्ण तापमान से ऊपर, PRSV अल्फा फ़ंक्शन अलग हो जाता है और 0. की ओर बढ़ने के अतिरिक्त मनमाने ढंग से बड़ा हो जाता है। इस वजह से, अल्फा के लिए वैकल्पिक समीकरणों को महत्वपूर्ण बिंदु से ऊपर नियोजित किया जाना चाहिए। यह हाइड्रोजन युक्त प्रणालियों के लिए विशेष रूप से महत्वपूर्ण है जो अधिकांशतः अपने महत्वपूर्ण बिंदु से ऊपर के तापमान पर पाया जाता है। कई वैकल्पिक फॉर्मूलेशन प्रस्तावित किए गए हैं। कुछ प्रसिद्ध लोग ट्वू एट अल द्वारा हैं।{{cn|date=July 2022}} और मथियास और कोपमैन द्वारा।{{cn|date=July 2022}}


== पेंग-रॉबिन्सन-बबालालो राज्य समीकरण (पीआरबी) ==
== पेंग-रॉबिन्सन-बबालालो अवस्था समीकरण (पीआरबी) ==
उन्होंने उन्हें बचा लिया <ref>{{Cite web|title=जलाशय द्रव प्रणालियों के थर्मोडायनामिक संपत्ति भविष्यवाणी में राज्य के विभिन्न समीकरणों के प्रदर्शन का तुलनात्मक विश्लेषण|url=https://www.researchgate.net/publication/297878197|access-date=2021-01-08|website=ResearchGate|language=en}}</ref> राज्य के पेंग-रॉबिन्सन समीकरण को संशोधित किया:
उन्होंने उन्हें बचा लिया <ref>{{Cite web|title=जलाशय द्रव प्रणालियों के थर्मोडायनामिक संपत्ति भविष्यवाणी में राज्य के विभिन्न समीकरणों के प्रदर्शन का तुलनात्मक विश्लेषण|url=https://www.researchgate.net/publication/297878197|access-date=2021-01-08|website=ResearchGate|language=en}}</ref> अवस्था के पेंग-रॉबिन्सन समीकरण को संशोधित किया:


<math>P =\left ( \frac{RT}{v-b} \right ) -\left [ \frac{(a_1P+a_2)\alpha}{v(v+b)+b(v-b)} \right ]</math>
<math>P =\left ( \frac{RT}{v-b} \right ) -\left [ \frac{(a_1P+a_2)\alpha}{v(v+b)+b(v-b)} \right ]</math>
राज्य के पेंग-रॉबिन्सन समीकरण में दबाव के संबंध में आकर्षक बल पैरामीटर 'ए' को स्थिर माना जाता था। संशोधन, जिसमें पैरामीटर 'ए' को बहुघटक बहु-चरण उच्च घनत्व जलाशय प्रणालियों के दबाव के संबंध में एक चर के रूप में माना गया था, पीवीटी मॉडलिंग के लिए जटिल जलाशय तरल पदार्थ के गुणों की भविष्यवाणी में सटीकता में सुधार करना था। भिन्नता को  रेखीय समीकरण के साथ दर्शाया गया था जहाँ a<sub>1</sub> और ए<sub>2</sub> पैरामीटर 'a' के मानों को दाब के विरुद्ध आलेखित करने पर प्राप्त सीधी रेखा के क्रमशः ढलान और अवरोधन का प्रतिनिधित्व करते हैं।
अवस्था के पेंग-रॉबिन्सन समीकरण में दबाव के संबंध में आकर्षक बल मापदंड 'ए' को स्थिर माना जाता था। संशोधन, जिसमें मापदंड 'ए' को बहुघटक बहु-चरण उच्च घनत्व जलाशय प्रणालियों के दबाव के संबंध में एक चर के रूप में माना गया था, पीवीटी मॉडलिंग के लिए जटिल जलाशय तरल पदार्थ के गुणों की पूर्वानुमान में सटीकता में सुधार करना था। भिन्नता को  रेखीय समीकरण के साथ दर्शाया गया था जहाँ a<sub>1</sub> और ए<sub>2</sub> मापदंड 'a' के मानों को दाब के विरुद्ध आलेखित करने पर प्राप्त सीधी रेखा के क्रमशः ढलान और अवरोधन का प्रतिनिधित्व करते हैं।


यह संशोधन राज्य के पेंग-रॉबिन्सन समीकरण की सटीकता को विशेष रूप से उच्च दबाव रेंज (> 30MPa) पर भारी तरल पदार्थों के लिए बढ़ाता है और राज्य के मूल पेंग-रॉबिन्सन समीकरण को ट्यून करने की आवश्यकता को समाप्त करता है।
यह संशोधन अवस्था के पेंग-रॉबिन्सन समीकरण की सटीकता को विशेष रूप से उच्च दबाव रेंज (> 30MPa) पर भारी तरल पदार्थों के लिए बढ़ाता है और अवस्था के मूल पेंग-रॉबिन्सन समीकरण को ट्यून करने की आवश्यकता को समाप्त करता है।


== राज्य का इलियट-सुरेश-डोनोह्यू समीकरण ==
== अवस्था का इलियट-सुरेश-डोनोह्यू समीकरण ==
राज्य का इलियट-सुरेश-डोनोह्यू (ESD) समीकरण 1990 में प्रस्तावित किया गया था।<ref name="ESD">{{cite journal|author1=J. Richard Jr. Elliott|author2=S. Jayaraman Suresh|author3=Marc D. Donohue|year=1990|title=अगोलीय और संबद्ध अणुओं के लिए अवस्था का एक सरल समीकरण|journal=Ind. Eng. Chem. Res.|volume=29|issue=7|pages=1476–1485|doi=10.1021/ie00103a057}}</ref> समीकरण पेंग-रॉबिन्सन ईओएस में  कमी को ठीक करने का प्रयास करता है जिसमें वैन डेर वाल्स प्रतिकारक शब्द में  अशुद्धि थी। EOS किसी भी अणु के आकार के प्रभाव के लिए खाता है और इसे सीधे आणविक मापदंडों के साथ पॉलिमर तक बढ़ाया जा सकता है, जो कि महत्वपूर्ण गुणों का उपयोग करने के बजाय घुलनशीलता पैरामीटर और तरल मात्रा के संदर्भ में होता है (जैसा कि यहां दिखाया गया है)। EOS को ही कंप्यूटर सिमुलेशन के साथ तुलना के माध्यम से विकसित किया गया था और इसे आकार, आकार और हाइड्रोजन बॉन्डिंग के आवश्यक भौतिकी पर कब्जा करना चाहिए।
अवस्था का इलियट-सुरेश-डोनोह्यू (ESD) समीकरण 1990 में प्रस्तावित किया गया था।<ref name="ESD">{{cite journal|author1=J. Richard Jr. Elliott|author2=S. Jayaraman Suresh|author3=Marc D. Donohue|year=1990|title=अगोलीय और संबद्ध अणुओं के लिए अवस्था का एक सरल समीकरण|journal=Ind. Eng. Chem. Res.|volume=29|issue=7|pages=1476–1485|doi=10.1021/ie00103a057}}</ref> समीकरण पेंग-रॉबिन्सन ईओएस में  कमी को ठीक करने का प्रयास करता है जिसमें वैन डेर वाल्स प्रतिकारक शब्द में  अशुद्धि थी। EOS किसी भी अणु के आकार के प्रभाव के लिए खाता है और इसे सीधे आणविक मापदंडों के साथ पॉलिमर तक बढ़ाया जा सकता है, जो कि महत्वपूर्ण गुणों का उपयोग करने के अतिरिक्त घुलनशीलता मापदंड और तरल मात्रा के संदर्भ में होता है (जैसा कि यहां दिखाया गया है)। EOS को ही कंप्यूटर सिमुलेशन के साथ तुलना के माध्यम से विकसित किया गया था और इसे आकार, आकार और हाइड्रोजन बॉन्डिंग के आवश्यक भौतिकी पर कब्जा करना चाहिए।


: <math>\frac{p V_\text{m}}{RT}=Z=1 + Z^{\rm{rep}} + Z^{\rm{att}}</math>
: <math>\frac{p V_\text{m}}{RT}=Z=1 + Z^{\rm{rep}} + Z^{\rm{att}}</math>
कहाँ:
जहाँ:


: <math>Z^{\rm{rep}} = \frac{4 c \eta}{1-1.9 \eta}</math>
: <math>Z^{\rm{rep}} = \frac{4 c \eta}{1-1.9 \eta}</math>
Line 236: Line 238:
: <math>c=1+3.535\omega+0.533\omega^2</math>.
: <math>c=1+3.535\omega+0.533\omega^2</math>.


कम संख्या घनत्व <math>\eta</math> परिभाषित किया जाता है <math>\eta=b \rho</math>, कहाँ
कम संख्या घनत्व <math>\eta</math> परिभाषित किया जाता है <math>\eta=b \rho</math>, जहाँ


: <math>b</math> विशेषता आकार पैरामीटर है [सेमी<sup>3</sup>/mol], और
: <math>b</math> विशेषता आकार मापदंड है [सेमी<sup>3</sup>/mol], और
: <math>\rho = \frac{1}{V_\text{m}}= N/(N_\text{A}V)</math> दाढ़ घनत्व है [mol/cm<sup>3</sup>]।
: <math>\rho = \frac{1}{V_\text{m}}= N/(N_\text{A}V)</math> मोलर घनत्व है [mol/cm<sup>3</sup>]।


विशेषता आकार पैरामीटर से संबंधित है <math>c</math> द्वारा
विशेषता आकार मापदंड से संबंधित है <math>c</math> द्वारा


: <math>b=\frac{RT_\text{c}}{P_\text{c}}\Phi</math>
: <math>b=\frac{RT_\text{c}}{P_\text{c}}\Phi</math>
कहाँ
जहाँ


: <math>\Phi=\frac{Z_\text{c}^2}{2A_q}{[-B_q+\sqrt{B_q^2+4A_qC_q }] }</math>
: <math>\Phi=\frac{Z_\text{c}^2}{2A_q}{[-B_q+\sqrt{B_q^2+4A_qC_q }] }</math>
Line 255: Line 257:
: <math>C_q=(9.5q-k_1)/Z_\text{c}
: <math>C_q=(9.5q-k_1)/Z_\text{c}
</math>
</math>
आकृति पैरामीटर <math>q</math> आकर्षण अवधि और अवधि में दिखाई दे रहा है <math>Y</math> द्वारा दिए गए हैं
आकृति मापदंड <math>q</math> आकर्षण अवधि और अवधि में दिखाई दे रहा है <math>Y</math> द्वारा दिए गए हैं


: <math>q=1+k_3(c-1)</math> (और इसलिए गोलाकार अणुओं के लिए भी 1 के बराबर है)।
: <math>q=1+k_3(c-1)</math> (और इसलिए गोलाकार अणुओं के लिए भी 1 के बराबर है)।
: <math>Y=\exp\left(\frac{\epsilon}{kT}\right) - k_2</math>
: <math>Y=\exp\left(\frac{\epsilon}{kT}\right) - k_2</math>
कहाँ <math>\epsilon</math> वर्ग-वेल क्षमता की गहराई है और इसके द्वारा दिया जाता है
जहाँ <math>\epsilon</math> वर्ग-वेल क्षमता की गहराई है और इसके द्वारा दिया जाता है


: <math>Y_\text{c} =(\frac{R T_\text{c}}{b P_\text{c}})^2 \frac{Z_\text{c}^3}{A_q}</math>
: <math>Y_\text{c} =(\frac{R T_\text{c}}{b P_\text{c}})^2 \frac{Z_\text{c}^3}{A_q}</math>
: <math>z_\text{m}</math>, <math>k_1</math>, <math>k_2</math> और <math>k_3</math> राज्य के समीकरण में स्थिरांक हैं:
: <math>z_\text{m}</math>, <math>k_1</math>, <math>k_2</math> और <math>k_3</math> अवस्था के समीकरण में स्थिरांक हैं:
: <math>z_\text{m} = 9.5</math> गोलाकार अणुओं के लिए (c=1)
: <math>z_\text{m} = 9.5</math> गोलाकार अणुओं के लिए (c=1)
: <math>k_1 = 1.7745</math> गोलाकार अणुओं के लिए (c=1)
: <math>k_1 = 1.7745</math> गोलाकार अणुओं के लिए (c=1)
Line 276: Line 278:
:<math>Z=1 + m(\frac{4\eta}{1-1.9\eta} - \frac{9.5Y\eta}{1+k_1Y\eta})-\frac{(m-1)1.9\eta}{1-1.9\eta}
:<math>Z=1 + m(\frac{4\eta}{1-1.9\eta} - \frac{9.5Y\eta}{1+k_1Y\eta})-\frac{(m-1)1.9\eta}{1-1.9\eta}
</math>
</math>
इस रूप में, SAFT का खंडीय परिप्रेक्ष्य स्पष्ट है और माइकल वार्टहाइम के सभी परिणाम हैं<ref name="Chapman1988" /><ref name="ChapmanGubbins1988" /><ref name="Wertheim1986a">{{cite journal|last1=Wertheim|first1=Michael S.|date=31 May 1985|title=अत्यधिक दिशात्मक आकर्षक बल वाले तरल पदार्थ। तृतीय। एकाधिक आकर्षण साइटें|journal=J. Stat. Phys.|language=en|volume=42|issue=3–4 |pages=459–476|doi=10.1007/BF01127721 |s2cid=122840701 }}</ref> सीधे लागू होते हैं और अपेक्षाकृत संक्षिप्त हैं। SAFT के खण्डीय परिप्रेक्ष्य में, प्रत्येक अणु की कल्पना की जाती है कि इसमें m गोलाकार खंड शामिल होते हैं जो अंतरिक्ष में अपने स्वयं के गोलाकार अंतःक्रियाओं के साथ तैरते हैं, लेकिन फिर (m - 1) शब्द द्वारा  स्पर्शरेखा क्षेत्र श्रृंखला में बंधने के लिए सही किया जाता है। जब m एक पूर्णांक नहीं होता है, तो इसे केवल स्पर्शरेखा क्षेत्र खंडों की  प्रभावी संख्या के रूप में माना जाता है।
इस रूप में, SAFT का खंडीय परिप्रेक्ष्य स्पष्ट है और माइकल वार्टहाइम के सभी परिणाम हैं<ref name="Chapman1988" /><ref name="ChapmanGubbins1988" /><ref name="Wertheim1986a">{{cite journal|last1=Wertheim|first1=Michael S.|date=31 May 1985|title=अत्यधिक दिशात्मक आकर्षक बल वाले तरल पदार्थ। तृतीय। एकाधिक आकर्षण साइटें|journal=J. Stat. Phys.|language=en|volume=42|issue=3–4 |pages=459–476|doi=10.1007/BF01127721 |s2cid=122840701 }}</ref> सीधे प्रयुक्त होते हैं और अपेक्षाकृत संक्षिप्त हैं। SAFT के खण्डीय परिप्रेक्ष्य में, प्रत्येक अणु की कल्पना की जाती है कि इसमें m गोलाकार खंड सम्मिलत होते हैं जो अंतरिक्ष में अपने स्वयं के गोलाकार अंतःक्रियाओं के साथ तैरते हैं, लेकिन फिर (m - 1) शब्द द्वारा  स्पर्शरेखा क्षेत्र श्रृंखला में बंधने के लिए सही किया जाता है। जब m एक पूर्णांक नहीं होता है, तो इसे केवल स्पर्शरेखा क्षेत्र खंडों की  प्रभावी संख्या के रूप में माना जाता है।


वार्टहाइम के सिद्धांत में समीकरणों को हल करना जटिल हो सकता है, लेकिन सरलीकरण उनके कार्यान्वयन को कम कठिन बना सकता है। संक्षेप में, गणना करने के लिए कुछ अतिरिक्त चरणों की आवश्यकता है <math>Z^{\rm{assoc}}</math>दिया घनत्व और तापमान। उदाहरण के लिए, जब हाइड्रोजन बॉन्डिंग डोनर्स की संख्या स्वीकार करने वालों की संख्या के बराबर होती है, तो ESD समीकरण बन जाता है:
वार्टहाइम के सिद्धांत में समीकरणों को हल करना जटिल हो सकता है, लेकिन सरलीकरण उनके कार्यान्वयन को कम कठिन बना सकता है। संक्षेप में, गणना करने के लिए कुछ अतिरिक्त चरणों की आवश्यकता है <math>Z^{\rm{assoc}}</math>दिया घनत्व और तापमान। उदाहरण के लिए, जब हाइड्रोजन बॉन्डिंग डोनर्स की संख्या स्वीकार करने वालों की संख्या के बराबर होती है, तो ESD समीकरण बन जाता है:


:<math>\frac{p V_\text{m}}{RT}=Z=1 + Z^{\rm{rep}} + Z^{\rm{att}}+ Z^{\rm{assoc}}</math>
:<math>\frac{p V_\text{m}}{RT}=Z=1 + Z^{\rm{rep}} + Z^{\rm{att}}+ Z^{\rm{assoc}}</math>
कहाँ:
जहाँ:


:<math>Z^{\rm{assoc}} = -gN^\text{AD}(1-X^\text{AD});X^\text{AD}=2/[1+\sqrt{1+4N^\text{AD}\alpha^\text{AD}}];\alpha^\text{AD}=\rho N_\text{A}K^\text{AD}[\exp{(\epsilon^\text{AD}/kT)-1]}</math>
:<math>Z^{\rm{assoc}} = -gN^\text{AD}(1-X^\text{AD});X^\text{AD}=2/[1+\sqrt{1+4N^\text{AD}\alpha^\text{AD}}];\alpha^\text{AD}=\rho N_\text{A}K^\text{AD}[\exp{(\epsilon^\text{AD}/kT)-1]}</math>
<math>N_\text{A}</math> अवोगाद्रो नियतांक है, <math>K^\text{AD}</math> और <math>\epsilon^\text{AD}</math> हाइड्रोजन बंधन की मात्रा और ऊर्जा का प्रतिनिधित्व करने वाले संग्रहीत इनपुट पैरामीटर हैं। आमतौर पर, <math>K^\text{AD} = \mathrm{0.001\ nm^3}</math> और <math>\epsilon^\text{AD}/k_\text{B}=\mathrm{2000\ K}</math> जमा हो जाती है। <math>N^\text{AD}</math> स्वीकार करने वालों की संख्या है (इस उदाहरण के लिए दाताओं की संख्या के बराबर)। उदाहरण के लिए,  <math>N^\text{AD}</math> = 1 अल्कोहल जैसे मेथनॉल और इथेनॉल के लिए।  <math>N^\text{AD}</math> = 2 पानी के लिए।  <math>N^\text{AD}</math> = पॉलीविनाइलफेनोल के लिए पोलीमराइजेशन की डिग्री। तो आप गणना करने के लिए घनत्व और तापमान का उपयोग करें <math>\alpha^\text{AD}</math> फिर उपयोग करें <math>\alpha^\text{AD}</math> अन्य मात्राओं की गणना करने के लिए। तकनीकी रूप से, ईएसडी समीकरण अब क्यूबिक नहीं है जब एसोसिएशन शब्द शामिल है, लेकिन कोई कलाकृतियां पेश नहीं की जाती हैं, इसलिए घनत्व में केवल तीन जड़ें हैं।
<math>N_\text{A}</math> अवोगाद्रो नियतांक है, <math>K^\text{AD}</math> और <math>\epsilon^\text{AD}</math> हाइड्रोजन बंधन की मात्रा और ऊर्जा का प्रतिनिधित्व करने वाले संग्रहीत इनपुट मापदंड हैं। सामान्यतः, <math>K^\text{AD} = \mathrm{0.001\ nm^3}</math> और <math>\epsilon^\text{AD}/k_\text{B}=\mathrm{2000\ K}</math> जमा हो जाती है। <math>N^\text{AD}</math> स्वीकार करने वालों की संख्या है (इस उदाहरण के लिए दाताओं की संख्या के बराबर)। उदाहरण के लिए,  <math>N^\text{AD}</math> = 1 अल्कोहल जैसे मेथनॉल और इथेनॉल के लिए।  <math>N^\text{AD}</math> = 2 पानी के लिए।  <math>N^\text{AD}</math> = पॉलीविनाइलफेनोल के लिए पोलीमराइजेशन की डिग्री। तो आप गणना करने के लिए घनत्व और तापमान का उपयोग करें <math>\alpha^\text{AD}</math> फिर उपयोग करें <math>\alpha^\text{AD}</math> अन्य मात्राओं की गणना करने के लिए। तकनीकी रूप से, ईएसडी समीकरण अब क्यूबिक नहीं है जब एसोसिएशन शब्द सम्मिलत है, लेकिन कोई कलाकृतियां प्रस्तुत नहीं की जाती हैं, इसलिए घनत्व में केवल तीन जड़ें हैं।


== क्यूबिक-प्लस-एसोसिएशन ==
== क्यूबिक-प्लस-एसोसिएशन ==
राज्य का क्यूबिक-प्लस-एसोसिएशन (सीपीए) समीकरण सोवे-रेडलिच-क्वांग समीकरण को एसएएफटी से संबद्ध शब्द के साथ जोड़ता है।<ref name="Chapman1988">{{cite journal|last1=Chapman|first1=Walter G.|date=1988|title=संबद्ध तरल मिश्रण का सिद्धांत और अनुकरण|journal=Doctoral Dissertation, Cornell University|language=en}}</ref><ref name="ChapmanGubbins1988">{{cite journal|last1=Chapman|first1=Walter G.|last2=Jackson|first2=G.|last3=Gubbins|first3=K.E.|date=11 July 1988|title=Phase equilibria of associating fluids: Chain molecules with multiple bonding sites|journal=Molecular Physics|language=en|volume=65|pages=1057–1079|doi=10.1080/00268978800101601}}</ref> माइकल वार्टहाइम के कारण अणुओं को जोड़ने के सिद्धांत के चैपमैन के विस्तार और सरलीकरण पर आधारित है।<ref name="Wertheim1986a">{{cite journal|last1=Wertheim|first1=Michael S.|date=31 May 1985|title=अत्यधिक दिशात्मक आकर्षक बल वाले तरल पदार्थ। तृतीय। एकाधिक आकर्षण साइटें|journal=J. Stat. Phys.|language=en|volume=42|issue=3–4 |pages=459–476|doi=10.1007/BF01127721 |s2cid=122840701 }}</ref> समीकरण का विकास 1995 में शेल द्वारा वित्तपोषित  शोध परियोजना के रूप में शुरू हुआ, और 1996 में  लेख प्रकाशित हुआ जिसने राज्य के सीपीए समीकरण को प्रस्तुत किया।<ref name=":0">{{cite journal|last1=Kontogeorgis|first1=Georgios M.|last2=Michelsen|first2=Michael L.|last3=Folas|first3=Georgios K.|last4=Derawi|first4=Samer|last5=von Solms|first5=Nicolas|last6=Stenby|first6=Erling H.|date=2006|title=राज्य के सीपीए (क्यूबिक-प्लस-एसोसिएशन) समीकरण के साथ दस साल। भाग 1। शुद्ध यौगिक और स्व-एसोसिएटिंग सिस्टम|journal=Industrial and Engineering Chemistry Research|volume=45|issue=14|pages=4855–4868|doi=10.1021/ie051305v}}</ref><ref>{{cite journal|last1=Kontogeorgis|first1=Georgios M.|last2=Voutsas|first2=Epaminondas C.|last3=Yakoumis|first3=Iakovos V.|last4=Tassios|first4=Dimitrios P.|date=1996|title=संबद्ध तरल पदार्थ के लिए राज्य का एक समीकरण|journal=Industrial & Engineering Chemistry Research|volume=35|issue=11|pages=4310–4318|doi=10.1021/ie9600203}}</ref>
अवस्था का क्यूबिक-प्लस-एसोसिएशन (सीपीए) समीकरण सोवे-रेडलिच-क्वांग समीकरण को एसएएफटी से संबद्ध शब्द के साथ जोड़ता है।<ref name="Chapman1988">{{cite journal|last1=Chapman|first1=Walter G.|date=1988|title=संबद्ध तरल मिश्रण का सिद्धांत और अनुकरण|journal=Doctoral Dissertation, Cornell University|language=en}}</ref><ref name="ChapmanGubbins1988">{{cite journal|last1=Chapman|first1=Walter G.|last2=Jackson|first2=G.|last3=Gubbins|first3=K.E.|date=11 July 1988|title=Phase equilibria of associating fluids: Chain molecules with multiple bonding sites|journal=Molecular Physics|language=en|volume=65|pages=1057–1079|doi=10.1080/00268978800101601}}</ref> माइकल वार्टहाइम के कारण अणुओं को जोड़ने के सिद्धांत के चैपमैन के विस्तार और सरलीकरण पर आधारित है।<ref name="Wertheim1986a">{{cite journal|last1=Wertheim|first1=Michael S.|date=31 May 1985|title=अत्यधिक दिशात्मक आकर्षक बल वाले तरल पदार्थ। तृतीय। एकाधिक आकर्षण साइटें|journal=J. Stat. Phys.|language=en|volume=42|issue=3–4 |pages=459–476|doi=10.1007/BF01127721 |s2cid=122840701 }}</ref> समीकरण का विकास 1995 में शेल द्वारा वित्तपोषित  शोध परियोजना के रूप में शुरू हुआ, और 1996 में  लेख प्रकाशित हुआ जिसने अवस्था के सीपीए समीकरण को प्रस्तुत किया।<ref name=":0">{{cite journal|last1=Kontogeorgis|first1=Georgios M.|last2=Michelsen|first2=Michael L.|last3=Folas|first3=Georgios K.|last4=Derawi|first4=Samer|last5=von Solms|first5=Nicolas|last6=Stenby|first6=Erling H.|date=2006|title=राज्य के सीपीए (क्यूबिक-प्लस-एसोसिएशन) समीकरण के साथ दस साल। भाग 1। शुद्ध यौगिक और स्व-एसोसिएटिंग सिस्टम|journal=Industrial and Engineering Chemistry Research|volume=45|issue=14|pages=4855–4868|doi=10.1021/ie051305v}}</ref><ref>{{cite journal|last1=Kontogeorgis|first1=Georgios M.|last2=Voutsas|first2=Epaminondas C.|last3=Yakoumis|first3=Iakovos V.|last4=Tassios|first4=Dimitrios P.|date=1996|title=संबद्ध तरल पदार्थ के लिए राज्य का एक समीकरण|journal=Industrial & Engineering Chemistry Research|volume=35|issue=11|pages=4310–4318|doi=10.1021/ie9600203}}</ref>
: <math>P = \frac{RT}{(V - b)} - \frac{a}{V (V + b)} + \frac{RT}{V} \rho \sum_{A} \left[ \frac{1}{X^\text{A}} - \frac{1}{2} \right] \frac{\partial X^\text{A}}{\partial \rho}</math>
: <math>P = \frac{RT}{(V - b)} - \frac{a}{V (V + b)} + \frac{RT}{V} \rho \sum_{A} \left[ \frac{1}{X^\text{A}} - \frac{1}{2} \right] \frac{\partial X^\text{A}}{\partial \rho}</math>
संघ अवधि में <math>X^\text{A}</math> साइट ए पर बंधित नहीं होने वाले अणुओं का मोल अंश है।
संघ अवधि में <math>X^\text{A}</math> साइट ए पर बंधित नहीं होने वाले अणुओं का मोल अंश है।

Revision as of 18:02, 15 May 2023

अवस्था के घनीय समीकरण तापमान और घनत्व के कार्य के रूप में गैस के दबाव को मॉडलिंग करने के लिए थर्मोडायनामिक मॉडल का विशिष्ट वर्ग है और जिसे मोलर मात्रा के घन कार्य के रूप में फिर से लिखा जा सकता है।

अवस्था के समीकरण सामान्यतः भौतिक रसायन विज्ञान और रासायनिक इंजीनियरिंग के क्षेत्र में विशेष रूप से वाष्प-तरल संतुलन और रासायनिक इंजीनियरिंग प्रक्रिया डिजाइन के मॉडलिंग में प्रयुक्त होते हैं |

अवस्था के घनीय समीकरण तापमान और घनत्व के कार्य के रूप में गैस के दबाव को मॉडलिंग करने के लिए थर्मोडायनामिक मॉडल का विशिष्ट वर्ग है और के रूप में फिर से लिखा जा सकता है।

अवस्था का वैन डेर वाल्स समीकरण

अवस्था के वैन डेर वाल्स समीकरण को इस प्रकार लिखा जा सकता है |

जहाँ परम तापमान है, दबाव है, मोलर की मात्रा है और सार्वत्रिक गैस नियतांक है। ध्यान दें कि , जहाँ मात्रा है, और , जहाँ मोल्स की संख्या है, कणों की संख्या है, और अवोगाद्रो नियतांक है। ये परिभाषाएँ नीचे दिए गए अवस्था के सभी समीकरणों पर भी प्रयुक्त होती हैं।

पदार्थ-विशिष्ट स्थिरांक और की गणना महत्वपूर्ण गुण और से की जा सकती है |(ध्यान दें कि महत्वपूर्ण बिंदु पर मोलर की मात्रा है और महत्वपूर्ण दबाव है) इस प्रकार:

के कार्यों के रूप में लिखे गए के लिए एक्सप्रेशन भी प्राप्त किए जा सकते हैं और अधिकांशतः समीकरण को मापदंड करने के लिए उपयोग किए जाते हैं | क्योंकि महत्वपूर्ण तापमान और दबाव प्रयोग के लिए आसानी से सुलभ हैं। [1] वे हैं

1873 में प्रस्तावित, अवस्था का वैन डेर वाल्स समीकरण आदर्श गैस नियम की तुलना में स्पष्ट रूप से उत्तम प्रदर्शन करने वालों में से एक था। इस ऐतिहासिक समीकरण में आकर्षण मापदंड कहा जाता है और प्रतिकर्षण मापदंड या प्रभावी आणविक मात्रा खा जाता है। जबकि समीकरण निश्चित रूप से आदर्श गैस नियम से उत्तम है और तरल चरण के गठन की पूर्वानुमान करता है | प्रयोगात्मक डेटा के साथ समझौता उन स्थितियों के लिए सीमित है | जहां तरल रूप होते हैं। जबकि वैन डेर वाल्स समीकरण को सामान्यतः ऐतिहासिक कारणों से पाठ्यपुस्तकों और पत्रों में संदर्भित किया जाता है, यह अब अप्रचलित है। केवल थोड़ी अधिक जटिलता वाले अन्य आधुनिक समीकरण कहीं अधिक स्पष्ट हैं।

वैन डेर वाल्स समीकरण को आदर्श गैस नियम माना जा सकता है | समीकरण में दो गैर-आदर्श योगदानों को सम्मिलत करने के कारण सुधार हुआ है। फॉर्म में वैन डेर वाल्स समीकरण पर विचार करें |

आदर्श गैस समीकरण की तुलना में

वैन डेर वाल्स समीकरण के रूप को निम्नानुसार प्रेरित किया जा सकता है |

  1. अणुओं को कणों के रूप में माना जाता है | जो परिमित आयतन पर कब्जा कर लेते हैं। इस प्रकार भौतिक आयतन किसी भी समय सभी अणुओं के लिए सुलभ नहीं होता है,| बिंदु कणों के लिए अपेक्षित दबाव की तुलना में दबाव को थोड़ा बढ़ा देता है। इस प्रकार (), इसके अतिरिक्त पहले कार्यकाल में प्रभावी मोलर मात्रा का उपयोग किया जाता है।
  2. जबकि आदर्श गैस अणु परस्पर क्रिया नहीं करते हैं | वास्तविक अणु आकर्षक वैन डेर वाल्स बल का प्रदर्शन करेंगे यदि वे एक साथ पर्याप्त रूप से पास हों। आकर्षक बल, जो घनत्व के समानुपाती होते हैं |, कंटेनर की दीवारों के साथ अणुओं के टकराव को कम करने और दबाव को कम करने की प्रवृत्ति रखते हैं। इतने प्रभावित होने वाले टकरावों की संख्या भी घनत्व के समानुपाती होती है। इस प्रकार, दबाव आनुपातिक राशि से कम हो जाता है |, या वर्ग मोलर मात्रा के व्युत्क्रमानुपाती होते है।

घटे हुए अवस्था चर के साथ, अर्थात , और , वैन डेर वाल्स समीकरण का घटा हुआ रूप तैयार किया जा सकता है |


इस फॉर्म का लाभ यह है कि दिए गए और के लिए, कम घन के लिए कार्डानो की विधि का उपयोग करके तरल और गैस की घटी हुई मात्रा की सीधे गणना की जा सकती है।

और के लिए, प्रणाली वाष्प-तरल संतुलन की स्थिति में है। उस स्थिति में, अवस्था के घटे हुए घन समीकरण से 3 समाधान प्राप्त होते हैं। सबसे बड़ा और सबसे कम समाधान गैस और तरल कम मात्रा है। इस स्थिति में, मैक्सवेल निर्माण का उपयोग कभी-कभी दाढ़ की मात्रा के कार्य के रूप में दबाव को मॉडल करने के लिए किया जाता है।

संपीड्यता कारक अधिकांशतः गैर-आदर्श व्यवहार को चिह्नित करने के लिए प्रयोग किया जाता है। वैन डेर वाल्स समीकरण के लिए कम रूप में, यह बन जाता है |

महत्वपूर्ण बिंदु पर, .

अवस्था का रेडलिच-क्वांग समीकरण

1949 में प्रस्तुत किया गया,[2] अवस्था के रेडलिच-क्वांग समीकरण को वैन डेर वाल्स समीकरण में उल्लेखनीय सुधार माना गया है। यह अभी भी मुख्य रूप से अपने अपेक्षाकृत सरल रूप के कारण रुचि का है।


जबकि वैन डेर वाल्स समीकरण से कुछ मायनों में उत्तम है | यह तरल चरण के संबंध में खराब प्रदर्शन करता है और इस प्रकार वाष्प-तरल संतुलन की स्पष्ट गणना के लिए इसका उपयोग नहीं किया जा सकता है। चूँकि, इस उद्देश्य के लिए इसका उपयोग अलग-अलग तरल-चरण सहसंबंधों के साथ किया जा सकता है। समीकरण नीचे दिया गया है | जैसा कि इसके मापदंड और महत्वपूर्ण स्थिरांक के बीच संबंध हैं |

रेडलिच-क्वांग समीकरण का अन्य समकक्ष रूप मॉडल के संपीड्यता कारक की अभिव्यक्ति है |

रेडलिच-क्वांग समीकरण गैस चरण गुणों की गणना के लिए पर्याप्त है | जब कम दबाव (पिछले खंड में परिभाषित) तापमान के अनुपात के लगभग आधे से कम तापमान से कम होता है |

रेडलिच-क्वांग समीकरण संबंधित राज्यों के प्रमेय के अनुरूप है। जब समीकरण को कम रूप में व्यक्त किया जाता है, तो सभी गैसों के लिए समान समीकरण प्राप्त होता है |

जहाँ है |

इसके अतिरिक्त, महत्वपूर्ण बिंदु पर संपीड्यता कारक प्रत्येक पदार्थ के लिए समान है |

यह वैन डेर वाल्स समीकरण संपीड़नीयता कारक पर सुधार है, जो कि . (कार्बन डाईऑक्साइड), (पानी और (नाइट्रोजन) विशिष्ट प्रयोगात्मक मूल्य हैं |


रेडलिच-क्वांग का सोवे संशोधन सोवे द्वारा रेडलिच-क्वांग समीकरण का संशोधित रूप प्रस्तावित किया गया था।[3] यह रूप लेता है |

जहां ω प्रजातियों के लिए एसेंट्रिक कारक है।

सूत्रीकरण के लिए ऊपर वास्तव में ग्राबोस्की और डबर्ट के कारण है। सोवे से मूल सूत्रीकरण है |

हाइड्रोजन के लिए:

घटे हुए रूप में चरों को प्रतिस्थापित करके और महत्वपूर्ण बिंदु पर संपीड्यता कारक

हमने प्राप्त

इस प्रकार अग्रणी

इस प्रकार, सोवे-रेडलिच-क्वांग समीकरण कम रूप में केवल ω और पर निर्भर करता है | पदार्थ का, वीडीडब्ल्यू और आरके समीकरण दोनों के विपरीत जो संबंधित राज्यों के प्रमेय के अनुरूप हैं और घटा हुआ रूप सभी पदार्थों के लिए एक है |

हम इसे बहुपद रूप में भी लिख सकते हैं:

संपीड्यता कारक के संदर्भ में, हमारे पास:

.

इस समीकरण के तीन मूल हो सकते हैं। घन समीकरण की अधिकतम जड़ आम तौर पर वाष्प अवस्था से मेल खाती है, जबकि न्यूनतम जड़ तरल अवस्था के लिए होती है। गणनाओं में घन समीकरणों का उपयोग करते समय इसे ध्यान में रखा जाना चाहिए, उदाहरण के लिए, वाष्प-तरल_संतुलन|वाष्प-तरल संतुलन।

1972 में जी। सोवे[4] की जगह फ़ंक्शन α(T,ω) के साथ रेडलिच-क्वांग समीकरण की अवधि तापमान और एसेंट्रिक कारक को सम्मिलत करती है (परिणामी समीकरण को अवस्था के सोवे-रेडलिच-क्वांग समीकरण के रूप में भी जाना जाता है; एसआरके ईओएस)। हाइड्रोकार्बन के वाष्प दबाव डेटा को फिट करने के लिए α फ़ंक्शन तैयार किया गया था और इन सामग्रियों के लिए समीकरण काफी अच्छा करता है।

विशेष रूप से ध्यान दें कि यह प्रतिस्थापन थोड़ा की परिभाषा को बदलता है, जैसा कि अब दूसरी शक्ति के लिए है।

पेनेलौक्स एट अल का वॉल्यूम अनुवाद। (1982)

शाहरुख ईओएस के रूप में लिखा जा सकता है

जहाँ

जहाँ और SRK EOS के अन्य भागों को SRK EOS सेक्शन में परिभाषित किया गया है।

SRK EOS और अन्य क्यूबिक EOS का नकारात्मक पक्ष यह है कि तरल मोलर आयतन गैस मोलर आयतन की तुलना में काफी कम स्पष्ट है। पेनेलौक्स और अन्य (1982)[5] वॉल्यूम अनुवाद की शुरुआत करके इसके लिए सरल सुधार प्रस्तावित किया

जहाँ एक अतिरिक्त द्रव घटक मापदंड है जो मोलर की मात्रा को थोड़ा अनुवाद करता है। ईओएस की तरल शाखा पर, मोलर की मात्रा में छोटा परिवर्तन दबाव में बड़े परिवर्तन से मेल खाता है। ईओएस की गैस शाखा पर, मोलर की मात्रा में छोटा परिवर्तन तरल शाखा की तुलना में दबाव में बहुत कम परिवर्तन से मेल खाता है। इस प्रकार, मोलर गैस की मात्रा का क्षोभ छोटा है। दुर्भाग्य से, दो संस्करण हैं जो विज्ञान और उद्योग में होते हैं।

पहले संस्करण में ही अनुवादित है,[6] [7] और EOS बन जाता है

दूसरे संस्करण में दोनों और अनुवादित हैं, या का अनुवाद इसके बाद समग्र मापदंड का नाम बदल दिया जाता है bc.[8] यह देता है

द्रव मिश्रण के सी-मापदंड की गणना किसके द्वारा की जाती है

पेट्रोलियम गैस और तेल में अलग-अलग द्रव घटकों के सी-मापदंड को सहसंबंध द्वारा अनुमान लगाया जा सकता है

जहां रैकेट संपीड्यता कारक द्वारा अनुमान लगाया जा सकता है

पेनेलौक्स एट अल की वॉल्यूम अनुवाद पद्धति के साथ अच्छी सुविधा। (1982) यह है कि यह वाष्प-तरल संतुलन गणनाओं को प्रभावित नहीं करता है।[9] वॉल्यूम ट्रांसलेशन का यह तरीका अन्य क्यूबिक ईओएस पर भी प्रयुक्त किया जा सकता है यदि सी-मापदंड सहसंबंध को चयनित ईओएस से मिलान करने के लिए समायोजित किया जाता है।

अवस्था का पेंग-रॉबिन्सन समीकरण

अवस्था के पेंग-रॉबिन्सन समीकरण (पीआर ईओएस) को 1976 में अल्बर्टा विश्वविद्यालय में डिंग यूप इंजी | डिंग-यू पेंग और डोनाल्ड रॉबिन्सन द्वारा निम्नलिखित लक्ष्यों को पूरा करने के लिए विकसित किया गया था:[10]

  1. मापदंडों को महत्वपूर्ण गुणों और एसेंट्रिक कारक के संदर्भ में व्यक्त किया जाना चाहिए।
  2. मॉडल को महत्वपूर्ण बिंदु के पास उचित सटीकता प्रदान करनी चाहिए, विशेष रूप से संपीड़ितता कारक और तरल घनत्व की गणना के लिए।
  3. मिश्रण के नियमों में एक से अधिक बाइनरी इंटरेक्शन मापदंड का उपयोग नहीं करना चाहिए, जो तापमान, दबाव और संरचना से स्वतंत्र होना चाहिए।
  4. प्राकृतिक गैस प्रक्रियाओं में सभी द्रव गुणों की सभी गणनाओं के लिए समीकरण प्रयुक्त होना चाहिए।

समीकरण इस प्रकार दिया गया है:

बहुपद रूप में:

अधिकांश भाग के लिए पेंग-रॉबिन्सन समीकरण सोवे समीकरण के समान प्रदर्शन प्रदर्शित करता है, चूँकि यह आम तौर पर कई सामग्रियों, विशेष रूप से गैर-ध्रुवीय वाले तरल घनत्व की पूर्वानुमान करने में उत्तम है।[11] पेंग-रॉबिन्सन समीकरण का प्रस्थान फलन अलग लेख में दिया गया है।

इसके विशिष्ट स्थिरांक के विश्लेषणात्मक मूल्य हैं:


पेंग-रॉबिन्सन-स्ट्राइजेक-अवस्था के वेरा समीकरण

PRSV1

1986 में स्ट्रीजेक और वेरा द्वारा प्रकाशित अवस्था के पेंग-रॉबिन्सन समीकरण में आकर्षण शब्द में संशोधन (PRSV) ने समायोज्य शुद्ध घटक मापदंड को शुरू करके और एसेंट्रिक कारक के बहुपद फिट को संशोधित करके मॉडल की सटीकता में काफी सुधार किया।[12] संशोधन है:

जहाँ समायोज्य शुद्ध घटक मापदंड है। स्ट्राइजेक और वेरा ने अपने मूल पत्रिका लेख में औद्योगिक हित के कई यौगिकों के लिए शुद्ध घटक मापदंड प्रकाशित किए। 0.7 से ऊपर कम तापमान पर, वे सेट करने की सलाह देते हैं और बस उपयोग करें . शराब और पानी के मूल्य के लिए महत्वपूर्ण तापमान तक इस्तेमाल किया जा सकता है और उच्च तापमान पर शून्य पर सेट किया जा सकता है।[12]


PRSV2

1986 (PRSV2) में प्रकाशित बाद के संशोधन ने पिछले आकर्षण शब्द संशोधन के लिए दो अतिरिक्त शुद्ध घटक मापदंडों को प्रस्तुत करके मॉडल की सटीकता में और सुधार किया।[13] संशोधन है:

जहाँ , , और समायोज्य शुद्ध घटक मापदंड हैं।

PRSV2 वाष्प-तरल संतुलन गणनाओं के लिए विशेष रूप से लाभप्रद है। जबकि PRSV1 उष्मागतिकीय व्यवहार का वर्णन करने के लिए पेंग-रॉबिन्सन मॉडल पर लाभ प्रदान करता है, यह सामान्य रूप से चरण संतुलन गणना के लिए पर्याप्त स्पष्ट नहीं है।[12] चरण-संतुलन गणना विधियों का अत्यधिक गैर-रैखिक व्यवहार यह बढ़ाता है कि अन्यथा स्वीकार्य रूप से छोटी त्रुटियां क्या होंगी। इसलिए यह अनुशंसा की जाती है कि इन मॉडलों को किसी डिज़ाइन पर प्रयुक्त करते समय संतुलन गणना के लिए PRSV2 का उपयोग किया जाए। चूँकि, एक बार संतुलन स्थिति निर्धारित हो जाने के बाद, संतुलन पर चरण विशिष्ट उष्मागतिक मूल्यों को उचित सटीकता के साथ कई सरल मॉडलों में से एक द्वारा निर्धारित किया जा सकता है।[13]

एक बात ध्यान देने वाली है कि PRSV समीकरण में, मापदंड फिट विशेष तापमान रेंज में किया जाता है जो सामान्यतः महत्वपूर्ण तापमान से नीचे होता है। महत्वपूर्ण तापमान से ऊपर, PRSV अल्फा फ़ंक्शन अलग हो जाता है और 0. की ओर बढ़ने के अतिरिक्त मनमाने ढंग से बड़ा हो जाता है। इस वजह से, अल्फा के लिए वैकल्पिक समीकरणों को महत्वपूर्ण बिंदु से ऊपर नियोजित किया जाना चाहिए। यह हाइड्रोजन युक्त प्रणालियों के लिए विशेष रूप से महत्वपूर्ण है जो अधिकांशतः अपने महत्वपूर्ण बिंदु से ऊपर के तापमान पर पाया जाता है। कई वैकल्पिक फॉर्मूलेशन प्रस्तावित किए गए हैं। कुछ प्रसिद्ध लोग ट्वू एट अल द्वारा हैं।[citation needed] और मथियास और कोपमैन द्वारा।[citation needed]

पेंग-रॉबिन्सन-बबालालो अवस्था समीकरण (पीआरबी)

उन्होंने उन्हें बचा लिया [14] अवस्था के पेंग-रॉबिन्सन समीकरण को संशोधित किया:

अवस्था के पेंग-रॉबिन्सन समीकरण में दबाव के संबंध में आकर्षक बल मापदंड 'ए' को स्थिर माना जाता था। संशोधन, जिसमें मापदंड 'ए' को बहुघटक बहु-चरण उच्च घनत्व जलाशय प्रणालियों के दबाव के संबंध में एक चर के रूप में माना गया था, पीवीटी मॉडलिंग के लिए जटिल जलाशय तरल पदार्थ के गुणों की पूर्वानुमान में सटीकता में सुधार करना था। भिन्नता को रेखीय समीकरण के साथ दर्शाया गया था जहाँ a1 और ए2 मापदंड 'a' के मानों को दाब के विरुद्ध आलेखित करने पर प्राप्त सीधी रेखा के क्रमशः ढलान और अवरोधन का प्रतिनिधित्व करते हैं।

यह संशोधन अवस्था के पेंग-रॉबिन्सन समीकरण की सटीकता को विशेष रूप से उच्च दबाव रेंज (> 30MPa) पर भारी तरल पदार्थों के लिए बढ़ाता है और अवस्था के मूल पेंग-रॉबिन्सन समीकरण को ट्यून करने की आवश्यकता को समाप्त करता है।

अवस्था का इलियट-सुरेश-डोनोह्यू समीकरण

अवस्था का इलियट-सुरेश-डोनोह्यू (ESD) समीकरण 1990 में प्रस्तावित किया गया था।[15] समीकरण पेंग-रॉबिन्सन ईओएस में कमी को ठीक करने का प्रयास करता है जिसमें वैन डेर वाल्स प्रतिकारक शब्द में अशुद्धि थी। EOS किसी भी अणु के आकार के प्रभाव के लिए खाता है और इसे सीधे आणविक मापदंडों के साथ पॉलिमर तक बढ़ाया जा सकता है, जो कि महत्वपूर्ण गुणों का उपयोग करने के अतिरिक्त घुलनशीलता मापदंड और तरल मात्रा के संदर्भ में होता है (जैसा कि यहां दिखाया गया है)। EOS को ही कंप्यूटर सिमुलेशन के साथ तुलना के माध्यम से विकसित किया गया था और इसे आकार, आकार और हाइड्रोजन बॉन्डिंग के आवश्यक भौतिकी पर कब्जा करना चाहिए।

जहाँ:

और आकार कारक है, के साथ गोलाकार अणुओं के लिए।

गैर-गोलाकार अणुओं के लिए, आकार कारक और एसेंट्रिक कारक के बीच निम्नलिखित संबंध का सुझाव दिया गया है:

.

कम संख्या घनत्व परिभाषित किया जाता है , जहाँ

विशेषता आकार मापदंड है [सेमी3/mol], और
मोलर घनत्व है [mol/cm3]।

विशेषता आकार मापदंड से संबंधित है द्वारा

जहाँ

आकृति मापदंड आकर्षण अवधि और अवधि में दिखाई दे रहा है द्वारा दिए गए हैं

(और इसलिए गोलाकार अणुओं के लिए भी 1 के बराबर है)।

जहाँ वर्ग-वेल क्षमता की गहराई है और इसके द्वारा दिया जाता है

, , और अवस्था के समीकरण में स्थिरांक हैं:
गोलाकार अणुओं के लिए (c=1)
गोलाकार अणुओं के लिए (c=1)
गोलाकार अणुओं के लिए (c=1)

मॉडल को गैर-सहयोगी घटकों के साथ संबद्ध घटकों और मिश्रणों तक बढ़ाया जा सकता है। विवरण जेआर इलियट, जूनियर एट अल द्वारा पेपर में हैं। (1990)।[15]

नोट किया कि = 1.900, SAFT में फिर से लिखा जा सकता है[16][17]के रूप में:

यदि पसंद किया जाता है, तो q को SAFT संकेतन में m से बदला जा सकता है और ESD EOS लिखा जा सकता है:

इस रूप में, SAFT का खंडीय परिप्रेक्ष्य स्पष्ट है और माइकल वार्टहाइम के सभी परिणाम हैं[16][17][18] सीधे प्रयुक्त होते हैं और अपेक्षाकृत संक्षिप्त हैं। SAFT के खण्डीय परिप्रेक्ष्य में, प्रत्येक अणु की कल्पना की जाती है कि इसमें m गोलाकार खंड सम्मिलत होते हैं जो अंतरिक्ष में अपने स्वयं के गोलाकार अंतःक्रियाओं के साथ तैरते हैं, लेकिन फिर (m - 1) शब्द द्वारा स्पर्शरेखा क्षेत्र श्रृंखला में बंधने के लिए सही किया जाता है। जब m एक पूर्णांक नहीं होता है, तो इसे केवल स्पर्शरेखा क्षेत्र खंडों की प्रभावी संख्या के रूप में माना जाता है।

वार्टहाइम के सिद्धांत में समीकरणों को हल करना जटिल हो सकता है, लेकिन सरलीकरण उनके कार्यान्वयन को कम कठिन बना सकता है। संक्षेप में, गणना करने के लिए कुछ अतिरिक्त चरणों की आवश्यकता है दिया घनत्व और तापमान। उदाहरण के लिए, जब हाइड्रोजन बॉन्डिंग डोनर्स की संख्या स्वीकार करने वालों की संख्या के बराबर होती है, तो ESD समीकरण बन जाता है:

जहाँ:

अवोगाद्रो नियतांक है, और हाइड्रोजन बंधन की मात्रा और ऊर्जा का प्रतिनिधित्व करने वाले संग्रहीत इनपुट मापदंड हैं। सामान्यतः, और जमा हो जाती है। स्वीकार करने वालों की संख्या है (इस उदाहरण के लिए दाताओं की संख्या के बराबर)। उदाहरण के लिए, = 1 अल्कोहल जैसे मेथनॉल और इथेनॉल के लिए। = 2 पानी के लिए। = पॉलीविनाइलफेनोल के लिए पोलीमराइजेशन की डिग्री। तो आप गणना करने के लिए घनत्व और तापमान का उपयोग करें फिर उपयोग करें अन्य मात्राओं की गणना करने के लिए। तकनीकी रूप से, ईएसडी समीकरण अब क्यूबिक नहीं है जब एसोसिएशन शब्द सम्मिलत है, लेकिन कोई कलाकृतियां प्रस्तुत नहीं की जाती हैं, इसलिए घनत्व में केवल तीन जड़ें हैं।

क्यूबिक-प्लस-एसोसिएशन

अवस्था का क्यूबिक-प्लस-एसोसिएशन (सीपीए) समीकरण सोवे-रेडलिच-क्वांग समीकरण को एसएएफटी से संबद्ध शब्द के साथ जोड़ता है।[16][17] माइकल वार्टहाइम के कारण अणुओं को जोड़ने के सिद्धांत के चैपमैन के विस्तार और सरलीकरण पर आधारित है।[18] समीकरण का विकास 1995 में शेल द्वारा वित्तपोषित शोध परियोजना के रूप में शुरू हुआ, और 1996 में लेख प्रकाशित हुआ जिसने अवस्था के सीपीए समीकरण को प्रस्तुत किया।[19][20]

संघ अवधि में साइट ए पर बंधित नहीं होने वाले अणुओं का मोल अंश है।

संदर्भ

  1. Chang, Raymond; Thoman, Jr., John W. (2014). रासायनिक विज्ञान के लिए भौतिक रसायन. New York: University Science Books.
  2. Redlich, Otto.; Kwong, J. N. S. (1949-02-01). "समाधानों के ऊष्मप्रवैगिकी पर। V. राज्य का एक समीकरण। गैसीय विलयन की फुगसिटी।". Chemical Reviews. 44 (1): 233–244. doi:10.1021/cr60137a013. ISSN 0009-2665. PMID 18125401.
  3. Soave, Giorgio (1972). "Equilibrium constants from a modified Redlich–Kwong equation of state". Chemical Engineering Science. 27 (6): 1197–1203. doi:10.1016/0009-2509(72)80096-4.
  4. Soave, Giorgio (1972). "Equilibrium constants from a modified Redlich–Kwong equation of state". Chemical Engineering Science. 27 (6): 1197–1203. doi:10.1016/0009-2509(72)80096-4.
  5. Peneloux, A.; Rauzy, E.; Freze, R. (1982). "A Consistent Correction for Redlich–Kwong–Soave Volumes". Fluid Phase Equilibria. 8 (1982): 7–23. doi:10.1016/0378-3812(82)80002-2.
  6. Soave, G.; Fermeglia, M. (1990). "सिंथेटिक उच्च दबाव वीएलई मापन के लिए राज्य के घन समीकरण के आवेदन पर". Fluid Phase Equilibria. 60 (1990): 261–271. doi:10.1016/0378-3812(90)85056-G.
  7. Zéberg-Mikkelsen, C.K. (2001). Viscosity study of hydrocarbon fluids at reservoir conditions – modeling and measurements. pp. 1–271. ISBN 9788790142742. {{cite book}}: |journal= ignored (help)
  8. Pedersen, K. S.; Fredenslund, Aa.; Thomassen, P. (1989). तेल और प्राकृतिक गैसों के गुण. pp. 1–252. ISBN 9780872015883. {{cite book}}: |journal= ignored (help)
  9. Knudsen, K. (1992). "चरण संतुलन और मल्टीफ़ेज़ सिस्टम का परिवहन". Ph.D. Thesis at the Technical University of Denmark. Department of Chemical Engineering (1992).
  10. Peng, D. Y.; Robinson, D. B. (1976). "राज्य का एक नया दो-स्थिर समीकरण". Industrial and Engineering Chemistry: Fundamentals. 15: 59–64. doi:10.1021/i160057a011. S2CID 98225845.
  11. Pierre Donnez (2007). "जलाशय इंजीनियरिंग की अनिवार्यता". 1: 151. {{cite journal}}: Cite journal requires |journal= (help)
  12. 12.0 12.1 12.2 Stryjek, R.; Vera, J. H. (1986). "PRSV: An improved Peng–Robinson equation of state for pure compounds and mixtures". The Canadian Journal of Chemical Engineering. 64 (2): 323–333. doi:10.1002/cjce.5450640224.
  13. 13.0 13.1 Stryjek, R.; Vera, J. H. (1986). "PRSV2: A cubic equation of state for accurate vapor—liquid equilibria calculations". The Canadian Journal of Chemical Engineering. 64 (5): 820–826. doi:10.1002/cjce.5450640516.
  14. "जलाशय द्रव प्रणालियों के थर्मोडायनामिक संपत्ति भविष्यवाणी में राज्य के विभिन्न समीकरणों के प्रदर्शन का तुलनात्मक विश्लेषण". ResearchGate (in English). Retrieved 2021-01-08.
  15. 15.0 15.1 J. Richard Jr. Elliott; S. Jayaraman Suresh; Marc D. Donohue (1990). "अगोलीय और संबद्ध अणुओं के लिए अवस्था का एक सरल समीकरण". Ind. Eng. Chem. Res. 29 (7): 1476–1485. doi:10.1021/ie00103a057.
  16. 16.0 16.1 16.2 Chapman, Walter G. (1988). "संबद्ध तरल मिश्रण का सिद्धांत और अनुकरण". Doctoral Dissertation, Cornell University (in English).
  17. 17.0 17.1 17.2 Chapman, Walter G.; Jackson, G.; Gubbins, K.E. (11 July 1988). "Phase equilibria of associating fluids: Chain molecules with multiple bonding sites". Molecular Physics (in English). 65: 1057–1079. doi:10.1080/00268978800101601.
  18. 18.0 18.1 Wertheim, Michael S. (31 May 1985). "अत्यधिक दिशात्मक आकर्षक बल वाले तरल पदार्थ। तृतीय। एकाधिक आकर्षण साइटें". J. Stat. Phys. (in English). 42 (3–4): 459–476. doi:10.1007/BF01127721. S2CID 122840701.
  19. Kontogeorgis, Georgios M.; Michelsen, Michael L.; Folas, Georgios K.; Derawi, Samer; von Solms, Nicolas; Stenby, Erling H. (2006). "राज्य के सीपीए (क्यूबिक-प्लस-एसोसिएशन) समीकरण के साथ दस साल। भाग 1। शुद्ध यौगिक और स्व-एसोसिएटिंग सिस्टम". Industrial and Engineering Chemistry Research. 45 (14): 4855–4868. doi:10.1021/ie051305v.
  20. Kontogeorgis, Georgios M.; Voutsas, Epaminondas C.; Yakoumis, Iakovos V.; Tassios, Dimitrios P. (1996). "संबद्ध तरल पदार्थ के लिए राज्य का एक समीकरण". Industrial & Engineering Chemistry Research. 35 (11): 4310–4318. doi:10.1021/ie9600203.