एलपी स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
Line 4: Line 4:
गणित में  एलपी स्पेस [[ समारोह स्थान |समारोह का विशेष स्थान]] हैं जिन्हें सामान्य गत पी साधरणतया प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित गया है पी परिमित आयामी सदिश के लिए मानदंड है उन्हें कभी-कभी लेबेस्गु स्पेस भी कहा जाता है जिसका नाम [[हेनरी लेबेस्ग्यू]] के नाम पर रखा गया है  [[निकोलस बोरबाकी|जबकि निकोलस बोरबाकी]] समूह के बोर बाकी 1927वें सबसे पहले फ्राइजेस रेज्जि द्वारा पेश किए गए। {{harv}}.
गणित में  एलपी स्पेस [[ समारोह स्थान |समारोह का विशेष स्थान]] हैं जिन्हें सामान्य गत पी साधरणतया प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित गया है पी परिमित आयामी सदिश के लिए मानदंड है उन्हें कभी-कभी लेबेस्गु स्पेस भी कहा जाता है जिसका नाम [[हेनरी लेबेस्ग्यू]] के नाम पर रखा गया है  [[निकोलस बोरबाकी|जबकि निकोलस बोरबाकी]] समूह के बोर बाकी 1927वें सबसे पहले फ्राइजेस रेज्जि द्वारा पेश किए गए। {{harv}}.


  {{math}}एलपी रिक्त स्थान [[कार्यात्मक विश्लेषण]] और सदिश  स्थान में रिक्त स्थान का एक महत्वपूर्ण वर्ग बनाते हैं जो माप और संभाव्यता रिक्त स्थान के गणितीय विश्लेषण में उनकी महत्वपूर्ण भूमिका के कारण भौतिकी, सांख्यिकी, अर्थशास्त्र,
   
 


=== एम्बेडिंग ===
=== एम्बेडिंग ===


बोलचाल में, अगर <math>1 \leq p < q \leq \infty,</math> तब <math>L^p(S, \mu)</math> ऐसे कार्य शामिल हैं जो अधिक स्थानीय रूप से एकवचन हैं, जबकि के तत्व <math>L^q(S, \mu)</math> अधिक फैलाया जा सकता है। अर्ध रेखा पर लेबेस्गु माप पर विचार करें <math>(0, \infty).</math> में एक सतत कार्य <math>L^1</math> के पास फट सकता है <math>0</math> लेकिन अनंत की ओर पर्याप्त तेजी से क्षय होना चाहिए। दूसरी ओर, निरंतर कार्य करता है <math>L^\infty</math> बिल्कुल भी क्षय की आवश्यकता नहीं है, लेकिन विस्फोट की अनुमति नहीं है। सटीक तकनीकी परिणाम निम्नलिखित है।<ref name="VillaniEmbeddings">{{Citation|title=Another note on the inclusion {{math|''L<sup>p</sup>''(''μ'') ⊂ ''L<sup>q</sup>''(''μ'')}}|last=Villani|first=Alfonso|year=1985|journal=Amer. Math. Monthly|volume=92|number=7|pages=485–487|doi=10.2307/2322503|mr=801221|jstor=2322503}}</ref> लगता है कि <math>0 < p < q \leq \infty.</math> तब:
बोलचाल में अगर <math>1 \leq p < q \leq \infty,</math> तब इसमें ऐसे <math>L^p(S, \mu)</math> कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व <math>L^q(S, \mu)</math> अधिक फैलाया जा सकता है अर्ध रेखा पर लेबेस्गु माप पर विचार करें <math>(0, \infty).</math> इसमें एक सतत कार्य <math>L^1</math> होता है लेकिन अनंत की ओर पर्याप्त तेजी से क्षय होना चाहिए जो दूसरी ओर निरंतर कार्य करता है <math>L^\infty</math> को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति नहीं है नई तकनीकी परिणाम निम्नलिखित है।<ref name="VillaniEmbeddings">{{Citation|title=Another note on the inclusion {{math|''L<sup>p</sup>''(''μ'') ⊂ ''L<sup>q</sup>''(''μ'')}}|last=Villani|first=Alfonso|year=1985|journal=Amer. Math. Monthly|volume=92|number=7|pages=485–487|doi=10.2307/2322503|mr=801221|jstor=2322503}}</ref> लगता है कि <math>0 < p < q \leq \infty.</math> तब


#<math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर और केवल अगर <math>S</math> परिमित के सेट नहीं होते हैं लेकिन मनमाने ढंग से बड़े माप (उदाहरण के लिए कोई परिमित माप)।
#<math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर <math>S</math> परिमित के समूह नहीं होते हैं लेकिन मनमाने ढंग से बड़े माप उदाहरण के लिए कोई परिमित माप
#<math>L^p(S, \mu) \subseteq L^q(S, \mu)</math> अगर और केवल अगर <math>S</math> गैर-शून्य के सेट शामिल नहीं हैं लेकिन मनमाने ढंग से छोटे उपाय (गिनती के उपाय, उदाहरण के लिए)।
#<math>L^p(S, \mu) \subseteq L^q(S, \mu)</math> अगर और केवल अगर <math>S</math> गैर-शून्य के समूह सम्मिलित नहीं हैं लेकिन मनमाने ढंग से छोटे होते हैं।


Lebesgue माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है, जबकि दोनों स्थितियाँ किसी परिमित सेट पर गिनती माप के लिए हैं। दोनों ही मामलों में एम्बेडिंग निरंतर है, जिसमें पहचान ऑपरेटर एक सीमित रैखिक मानचित्र है <math>L^q</math> को <math>L^p</math> पहले मामले में, और <math>L^p</math> को <math>L^q</math> क्षण में।
माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए हैं दोनों ही जगहों में व्याख्या निरंतर है जिसमें पहचान चालक एक सीमित रैखिक मानचित्र है <math>L^q</math> को <math>L^p</math> पहले जगहों में और <math>L^p</math> को <math>L^q</math> क्षण में यह [[बंद ग्राफ प्रमेय]] और गुणों का परिणाम है तथा <math>L^p</math> रिक्त स्थान अगर डोमेन <math>S</math> परिमित माप है
(यह [[बंद ग्राफ प्रमेय]] और गुणों का परिणाम है <math>L^p</math> रिक्त स्थान।)
दरअसल, अगर डोमेन <math>S</math> परिमित माप है, होल्डर की असमानता का उपयोग करके निम्नलिखित स्पष्ट गणना की जा सकती है
<math display="block">\ \|\mathbf{1}f^p\|_1 \leq \|\mathbf{1}\|_{q/(q-p)} \|f^p\|_{q/p}</math>
<math display="block">\ \|\mathbf{1}f^p\|_1 \leq \|\mathbf{1}\|_{q/(q-p)} \|f^p\|_{q/p}</math>
के लिए अग्रणी
तब
<math display="block">\ \|f\|_p \leq \mu(S)^{1/p - 1/q} \|f\|_q .</math>
<math display="block">\ \|f\|_p \leq \mu(S)^{1/p - 1/q} \|f\|_q .</math>
उपरोक्त असमानता में दिखाई देने वाला निरंतर इष्टतम है, इस अर्थ में कि पहचान का [[ऑपरेटर मानदंड]] <math>I : L^q(S, \mu) \to L^p(S, \mu)</math> ठीक है
उपरोक्त असमानता में दिखाई देने वाला निरंतर इष्टतम है इस अर्थ में कि पहचान का [[ऑपरेटर मानदंड|मानदंड]] <math>I : L^q(S, \mu) \to L^p(S, \mu)</math> ठीक है
<math display="block">\|I\|_{q,p} = \mu(S)^{1/p - 1/q}</math>
<math display="block">\|I\|_{q,p} = \mu(S)^{1/p - 1/q}</math>
समानता का मामला ठीक उसी समय प्राप्त किया जा रहा है <math>f = 1</math> <math>\mu</math>-लगभग हर जगह।
समानता ठीक उसी समय प्राप्त किया जा रहा है <math>f = 1</math> <math>\mu</math>


=== सघन उपस्थान ===
=== सघन उपस्थान ===


इस पूरे खंड में हम यह मानते हैं <math>1 \leq p < \infty.</math>
इस पूरे खंड में हम यह मानते हैं <math>1 \leq p < \infty.</math>
होने देना <math>(S, \Sigma, \mu)</math> एक माप स्थान बनें। एक पूर्णांक सरल कार्य <math>f</math> पर <math>S</math> एक रूप है
होने देना <math>(S, \Sigma, \mu)</math> एक माप स्थान बनें एक पूर्णांक सरल कार्य <math>f</math> पर <math>S</math> एक रूप है जो इस प्रकार है
<math display="block">f = \sum_{j=1}^n a_j \mathbf{1}_{A_j}</math>
<math display="block">f = \sum_{j=1}^n a_j \mathbf{1}_{A_j}</math>
कहाँ <math>a_j</math> अदिश हैं, <math>A_j \in \Sigma</math> परिमित उपाय है और <math>{\mathbf 1}_{A_j}</math> सेट का सूचक कार्य है <math>A_j,</math> के लिए <math>j = 1, \dots, n.</math> Lebesgue एकीकरण के निर्माण से, समाकलनीय सरल फलनों का सदिश स्थान सघन होता है <math>L^p(S, \Sigma, \mu).</math>
जब <math>a_j</math> अदिश हैं <math>A_j \in \Sigma</math> परिमित उपाय है और <math>{\mathbf 1}_{A_j}</math> समूह का सूचक कार्य है <math>A_j,</math>के लिए <math>j = 1, \dots, n.</math> एकीकरण के निर्माण से समाकलनीय सरल फलनों का सदिश स्थान सघन होता है <math>L^p(S, \Sigma, \mu).</math>
अधिक कहा जा सकता है जब <math>S</math> एक [[सामान्य स्थान]] सामयिक स्थान है और <math>\Sigma</math> यह बोरेल बीजगणित है | बोरेल {{sigma}}–बीजगणित, यानी सबसे छोटा {{sigma}}–के सबसेट का बीजगणित <math>S</math> खुले सेट युक्त।


कल्पना करना <math>V \subseteq S</math> के साथ एक खुला सेट है <math>\mu(V) < \infty.</math> यह साबित किया जा सकता है कि हर बोरेल सेट के लिए <math>A \in \Sigma</math> में निहित <math>V,</math> और प्रत्येक के लिए <math>\varepsilon > 0,</math> एक बंद सेट मौजूद है <math>F</math> और एक खुला सेट <math>U</math> ऐसा है कि
अगर <math>S</math> बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है <math>(V_n)</math> खुले समूहों का परिमित माप है फिर स्थान <math>p</math>-अभिन्न निरंतर कार्य सघन है <math>L^p(S, \Sigma, \mu).</math> अधिक रूप से कोई भी सीमित निरंतर कार्यों का उपयोग कर सकता है जो खुले समूहों में से एक के बाहर गायब हो जाते हैं <math>V_n.</math> यह विशेष रूप से तब लागू होता है जब <math>S = \Reals^d</math> और जब <math>\mu</math> लेबेस्ग उपाय है निरंतर और कुछ रूप से समर्थित कार्यों का स्थान सघन है <math>L^p(\Reals^d).</math> इसी तरह यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब <math>d = 1,</math> घिरे हुए आयतों का तथा <math>d = 2</math> और आमतौर पर परिबद्ध अंतरालों के उत्पादों के रूप में होता है।
<math display="block">F \subseteq A \subseteq U \subseteq V \quad \text{and} \quad \mu(U) - \mu(F) = \mu(U \setminus F) < \varepsilon</math>
यह इस प्रकार है कि एक निरंतर उरीसोहन की लेम्मा#औपचारिक बयान मौजूद है <math>0 \leq \varphi \leq 1</math> पर <math>S</math> वह है <math>1</math> पर <math>F</math> और <math>0</math> पर <math>S \setminus U,</math> साथ
<math display="block">\int_S |\mathbf{1}_A - \varphi| \, \mathrm{d}\mu < \varepsilon \, .</math>
अगर <math>S</math> बढ़ते अनुक्रम द्वारा कवर किया जा सकता है <math>(V_n)</math> खुले सेटों का परिमित माप है, फिर का स्थान <math>p</math>-अभिन्न निरंतर कार्य सघन है <math>L^p(S, \Sigma, \mu).</math> अधिक सटीक रूप से, कोई भी सीमित निरंतर कार्यों का उपयोग कर सकता है जो खुले सेटों में से एक के बाहर गायब हो जाते हैं <math>V_n.</math> यह विशेष रूप से तब लागू होता है जब <math>S = \Reals^d</math> और जब <math>\mu</math> लेबेस्ग उपाय है। निरंतर और कॉम्पैक्ट रूप से समर्थित कार्यों का स्थान सघन है <math>L^p(\Reals^d).</math> इसी तरह, इंटीग्रेबल स्टेप फ़ंक्शंस का स्थान सघन है <math>L^p(\Reals^d);</math> यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब <math>d = 1,</math> घिरे हुए आयतों का जब <math>d = 2</math> और आमतौर पर परिबद्ध अंतरालों के उत्पादों की।


में सामान्य कार्यों के कई गुण <math>L^p(\Reals^d)</math> पहले निरंतर और कॉम्पैक्ट रूप से समर्थित कार्यों (कभी-कभी चरण कार्यों के लिए) के लिए सिद्ध होते हैं, फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं। उदाहरण के लिए, यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है <math>L^p(\Reals^d),</math> निम्नलिखित अर्थ में:
इसमें सामान्य कार्यों के कई गुण <math>L^p(\Reals^d)</math> पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है
<math display="block">\forall f \in L^p \left(\Reals^d\right) : \quad \left\|\tau_t f - f \right\|_p \to 0,\quad \text{as } \Reals^d \ni t \to 0,</math>
<math display="block">\forall f \in L^p \left(\Reals^d\right) : \quad \left\|\tau_t f - f \right\|_p \to 0,\quad \text{as } \Reals^d \ni t \to 0,</math>
कहाँ
तब
<math display="block">(\tau_t f)(x) = f(x - t).</math>
<math display="block">(\tau_t f)(x) = f(x - t).</math>


Line 57: Line 49:
और इसलिए समारोह
और इसलिए समारोह
<math display="block">d_p(f ,g) = N_p(f - g) = \|f - g\|_p^p</math>
<math display="block">d_p(f ,g) = N_p(f - g) = \|f - g\|_p^p</math>
पर एक मीट्रिक है <math>L^p(\mu).</math> परिणामी मीट्रिक स्थान पूर्ण मीट्रिक स्थान है;{{sfn|Rudin|1991|p=37}} सत्यापन परिचित मामले के समान है जब <math>p \geq 1.</math>
पर एक मीट्रिक है <math>L^p(\mu).</math> परिणामी मीट्रिक स्थान पूर्ण मीट्रिक स्थान है;{{sfn|Rudin|1991|p=37}} सत्यापन परिचित समान है जब <math>p \geq 1.</math>
गेंदें
गेंदें
<math display=block>B_r = \{f \in L^p : N_p(f) < r\}</math>
<math display=block>B_r = \{f \in L^p : N_p(f) < r\}</math>
इस टोपोलॉजी के मूल में एक स्थानीय आधार बनाते हैं, जैसे <math>r > 0</math> सकारात्मक वास्तविकताओं की सीमा होती है।{{sfn|Rudin|1991|p=37}} ये गेंदें संतुष्ट करती हैं <math>B_r = r^{1/p} B_1</math> सभी वास्तविक के लिए <math>r > 0,</math> जो विशेष रूप से दर्शाता है <math>B_1</math> उत्पत्ति का एक घिरा हुआ सेट (टोपोलॉजिकल वेक्टर स्पेस) पड़ोस है;{{sfn|Rudin|1991|p=37}} दूसरे शब्दों में, यह स्थान स्थानीय रूप से बँधा हुआ है, वैसे ही हर आदर्श स्थान के बावजूद <math>\|\cdot\|_p</math> आदर्श नहीं होना।
इस टोपोलॉजी के मूल में एक स्थानीय आधार बनाते हैं, जैसे <math>r > 0</math> सकारात्मक वास्तविकताओं की सीमा होती है।{{sfn|Rudin|1991|p=37}} ये गेंदें संतुष्ट करती हैं <math>B_r = r^{1/p} B_1</math> सभी वास्तविक के लिए <math>r > 0,</math> जो विशेष रूप से दर्शाता है <math>B_1</math> उत्पत्ति का एक घिरा हुआ सेट (टोपोलॉजिकल वेक्टर स्पेस) पड़ोस है;{{sfn|Rudin|1991|p=37}} दूसरे शब्दों में, यह स्थान स्थानीय रूप से बँधा हुआ है, वैसे ही हर आदर्श स्थान के बावजूद <math>\|\cdot\|_p</math> आदर्श नहीं होना।



Revision as of 15:05, 26 April 2023

गणित में एलपी स्पेस समारोह का विशेष स्थान हैं जिन्हें सामान्य गत पी साधरणतया प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित गया है पी परिमित आयामी सदिश के लिए मानदंड है उन्हें कभी-कभी लेबेस्गु स्पेस भी कहा जाता है जिसका नाम हेनरी लेबेस्ग्यू के नाम पर रखा गया है जबकि निकोलस बोरबाकी समूह के बोर बाकी 1927वें सबसे पहले फ्राइजेस रेज्जि द्वारा पेश किए गए। ([[#CITEREF|]]).


एम्बेडिंग

बोलचाल में अगर तब इसमें ऐसे कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व अधिक फैलाया जा सकता है अर्ध रेखा पर लेबेस्गु माप पर विचार करें इसमें एक सतत कार्य होता है लेकिन अनंत की ओर पर्याप्त तेजी से क्षय होना चाहिए जो दूसरी ओर निरंतर कार्य करता है को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति नहीं है नई तकनीकी परिणाम निम्नलिखित है।[1] लगता है कि तब

  1. अगर परिमित के समूह नहीं होते हैं लेकिन मनमाने ढंग से बड़े माप उदाहरण के लिए कोई परिमित माप
  2. अगर और केवल अगर गैर-शून्य के समूह सम्मिलित नहीं हैं लेकिन मनमाने ढंग से छोटे होते हैं।

माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए हैं दोनों ही जगहों में व्याख्या निरंतर है जिसमें पहचान चालक एक सीमित रैखिक मानचित्र है को पहले जगहों में और को क्षण में यह बंद ग्राफ प्रमेय और गुणों का परिणाम है तथा रिक्त स्थान अगर डोमेन परिमित माप है

तब
उपरोक्त असमानता में दिखाई देने वाला निरंतर इष्टतम है इस अर्थ में कि पहचान का मानदंड ठीक है
समानता ठीक उसी समय प्राप्त किया जा रहा है

सघन उपस्थान

इस पूरे खंड में हम यह मानते हैं होने देना एक माप स्थान बनें एक पूर्णांक सरल कार्य पर एक रूप है जो इस प्रकार है

जब अदिश हैं परिमित उपाय है और समूह का सूचक कार्य है के लिए एकीकरण के निर्माण से समाकलनीय सरल फलनों का सदिश स्थान सघन होता है

अगर बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है खुले समूहों का परिमित माप है फिर स्थान -अभिन्न निरंतर कार्य सघन है अधिक रूप से कोई भी सीमित निरंतर कार्यों का उपयोग कर सकता है जो खुले समूहों में से एक के बाहर गायब हो जाते हैं यह विशेष रूप से तब लागू होता है जब और जब लेबेस्ग उपाय है निरंतर और कुछ रूप से समर्थित कार्यों का स्थान सघन है इसी तरह यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब घिरे हुए आयतों का तथा और आमतौर पर परिबद्ध अंतरालों के उत्पादों के रूप में होता है।

इसमें सामान्य कार्यों के कई गुण पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है

तब


बंद उप-स्थान

अगर मापने योग्य स्थान पर एक संभाव्यता माप है कोई सकारात्मक वास्तविक संख्या है, और एक सदिश उपसमष्टि है, तब की बंद उपसमष्टि है अगर और केवल अगर परिमित-आयामी है[2] (ध्यान दें कि से स्वतंत्र चुना गया था ). इस प्रमेय में, जो अलेक्जेंडर ग्रोथेंडिक के कारण है,[2] यह महत्वपूर्ण है कि सदिश स्थान का उपसमुच्चय हो क्योंकि अनंत-विमीय बंद सदिश उपसमष्टि का निर्माण संभव है (यह भी का एक सबसेट है ), कहाँ यूनिट सर्कल पर Lebesgue माप है और संभाव्यता माप है जो इसे इसके द्रव्यमान से विभाजित करने का परिणाम है [2]

Lp (0 < p < 1)

होने देना एक माप स्थान बनें। अगर तब ऊपर के रूप में परिभाषित किया जा सकता है: यह उन औसत दर्जे के कार्यों का भागफल वेक्टर स्थान है ऐसा है कि

पहले की तरह, हम पेश कर सकते हैं -आदर्श लेकिन इस मामले में त्रिभुज असमानता को संतुष्ट नहीं करता है, और केवल अर्ध-मानक को परिभाषित करता है। असमानता के लिए मान्य इसका आशय है (Rudin 1991, §1.47)
और इसलिए समारोह
पर एक मीट्रिक है परिणामी मीट्रिक स्थान पूर्ण मीट्रिक स्थान है;[3] सत्यापन परिचित समान है जब गेंदें
इस टोपोलॉजी के मूल में एक स्थानीय आधार बनाते हैं, जैसे सकारात्मक वास्तविकताओं की सीमा होती है।[3] ये गेंदें संतुष्ट करती हैं सभी वास्तविक के लिए जो विशेष रूप से दर्शाता है उत्पत्ति का एक घिरा हुआ सेट (टोपोलॉजिकल वेक्टर स्पेस) पड़ोस है;[3] दूसरे शब्दों में, यह स्थान स्थानीय रूप से बँधा हुआ है, वैसे ही हर आदर्श स्थान के बावजूद आदर्श नहीं होना।

इस सेटिंग में विपरीत मिन्कोव्स्की असमानता को संतुष्ट करता है, जो कि के लिए है


टोपोलॉजी को किसी भी मीट्रिक द्वारा परिभाषित किया जा सकता है फार्म का

कहाँ निरंतर अवतल और गैर-घटते हुए घिरा हुआ है साथ और कब (उदाहरण के लिए, इस तरह के एक मीट्रिक को पॉल लेवी (गणितज्ञ) कहा जाता है|लेवी-मीट्रिक के लिए इस मीट्रिक के तहत अंतरिक्ष पूरा हो गया है (यह फिर से एक एफ-स्पेस है)। अंतरिक्ष सामान्य रूप से स्थानीय रूप से बाध्य नहीं है, और स्थानीय रूप से उत्तल नहीं है।

अनंत Lebesgue उपाय के लिए पर पड़ोस की मूलभूत प्रणाली की परिभाषा को निम्नानुसार संशोधित किया जा सकता है

परिणामी स्थान टोपोलॉजिकल वेक्टर स्पेस के साथ मेल खाता है किसी सकारात्मक के लिए -पूर्ण घनत्व


सामान्यीकरण और विस्तार

कमजोर Lp

होने देना एक माप स्थान बनें, और वास्तविक या जटिल मूल्यों के साथ एक औसत दर्जे का कार्य का संचयी वितरण समारोह के लिए परिभाषित किया गया है द्वारा

अगर में है कुछ के लिए साथ फिर मार्कोव की असमानता से,
एक समारोह अंतरिक्ष में कमजोर कहा जाता है , या यदि कोई स्थिरांक है ऐसा कि, सभी के लिए
सबसे अच्छा स्थिरांक इस असमानता के लिए है -मानक और द्वारा दर्शाया गया है
कमज़ोर लोरेंत्ज़ रिक्त स्थान के साथ मेल खाता है इसलिए इस संकेतन का उपयोग उन्हें निरूपित करने के लिए भी किया जाता है। वें>-मानदंड सही मानदंड नहीं है, क्योंकि त्रिकोण असमानता धारण करने में विफल रहती है। फिर भी, के लिए में
खास तरीके से वास्तव में, एक है
और सत्ता में वृद्धि और सुप्रीमम को अंदर ले जाना किसी के पास
सम्मेलन के तहत कि दो कार्य समान हैं यदि वे समान हैं लगभग हर जगह, फिर रिक्त स्थान पूर्ण हैं (Grafakos 2004).

किसी के लिए इजहार

की तुलना में है -आदर्श। मामले में आगे यह अभिव्यक्ति एक मानदंड को परिभाषित करती है इसलिए के लिए कमज़ोर रिक्त स्थान बनच स्थान हैं (Grafakos 2004).

एक प्रमुख परिणाम जो उपयोग करता है -स्पेस मार्सिंक्यूविज़ इंटरपोलेशन है, जिसमें हार्मोनिक विश्लेषण और एकवचन इंटीग्रल के अध्ययन के लिए व्यापक अनुप्रयोग हैं।

भारित Lp रिक्त स्थान

पहले की तरह, माप स्थान पर विचार करें होने देना एक मापने योग्य कार्य हो। वें> भारित अंतरिक्ष के रूप में परिभाषित किया गया है कहाँ मतलब पैमाना द्वारा परिभाषित

या, रैडॉन-निकोडिम प्रमेय के संदर्भ में | रैडॉन-निकोडीम व्युत्पन्न, के लिए सामान्य (गणित)। स्पष्ट रूप से है
जैसा -स्पेस, वेटेड स्पेस में कुछ खास नहीं है, क्योंकि के बराबर है लेकिन वे हार्मोनिक विश्लेषण में कई परिणामों के लिए प्राकृतिक रूपरेखा हैं (Grafakos 2004); वे उदाहरण के लिए मुकेनहोउट वजन: फॉर में दिखाई देते हैं शास्त्रीय हिल्बर्ट परिवर्तन पर परिभाषित किया गया है कहाँ यूनिट सर्कल को दर्शाता है और लेबेस्ग उपाय; (नॉनलाइनियर) हार्डी-लिटिलवुड मैक्सिमल ऑपरेटर बाउंडेड है मकेनहाउप्ट प्रमेय वजन का वर्णन करता है ऐसा है कि हिल्बर्ट परिवर्तन पर बँधा रहता है और अधिकतम ऑपरेटर चालू


Lp कई गुना पर रिक्त स्थान

कोई रिक्त स्थान भी परिभाषित कर सकता है कई गुना पर आंतरिक कहा जाता है मैनिफोल्ड पर घनत्व का उपयोग करते हुए मैनिफोल्ड के रिक्त स्थान निम्न हैं।

वेक्टर-मूल्यवान Lp रिक्त स्थान

एक माप स्थान दिया गया और स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान (यहां पूर्ण टोपोलॉजिकल वेक्टर स्पेस माना जाता है), इसके रिक्त स्थान को परिभाषित करना संभव है -पूर्ण करने योग्य -मूल्यवान कार्यों पर कई तरह से। एक तरीका यह है कि Bochner इंटीग्रल और पेटीस अभिन्न फ़ंक्शंस के स्पेस को परिभाषित किया जाए, और फिर उन्हें स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस वेक्टर टोपोलॉजी के साथ संपन्न किया जाए। TVS-टोपोलॉजी जो (प्रत्येक अपने तरीके से) सामान्य का एक प्राकृतिक सामान्यीकरण है टोपोलॉजी। दूसरे तरीके में टोपोलॉजिकल टेन्सर उत्पाद शामिल हैं साथ वेक्टर अंतरिक्ष का तत्व सरल टेन्सर के परिमित योग हैं जहां प्रत्येक साधारण टेन्सर समारोह से पहचाना जा सकता है जो भेजता है यह टेंसर उत्पाद इसके बाद स्थानीय रूप से उत्तल टोपोलॉजी के साथ संपन्न होता है जो इसे एक टोपोलॉजिकल टेन्सर उत्पाद में बदल देता है, जिनमें से सबसे आम प्रक्षेपी टेन्सर उत्पाद हैं, जिन्हें इसके द्वारा निरूपित किया जाता है और इंजेक्शन टेन्सर उत्पाद, द्वारा निरूपित सामान्य तौर पर, इनमें से कोई भी स्थान पूर्ण नहीं होता है, इसलिए उनका पूर्ण टोपोलॉजिकल वेक्टर स्थान निर्मित होता है, जिसे क्रमशः निरूपित किया जाता है और (यह स्केलर-मूल्यवान सरल कार्यों की जगह के समान है जब किसी के द्वारा अर्धवृत्ताकार पूर्ण नहीं है इसलिए एक पूर्णता का निर्माण किया जाता है, जिसके द्वारा उद्धृत किए जाने के बाद बनच स्थान के लिए आइसोमेट्रिक रूप से आइसोमोर्फिक है ). अलेक्जेंडर ग्रोथेंडिक ने दिखाया कि कब एक परमाणु स्थान है (एक अवधारणा जिसे उन्होंने पेश किया), फिर ये दो निर्माण क्रमशः, कैनोनिक रूप से टीवीएस-आइसोमॉर्फिक हैं, जिसमें बोचनर और पेटीस अभिन्न कार्यों के स्थान पहले उल्लेखित हैं; संक्षेप में, वे अप्रभेद्य हैं।

यह भी देखें

टिप्पणियाँ

  1. Villani, Alfonso (1985), "Another note on the inclusion Lp(μ) ⊂ Lq(μ)", Amer. Math. Monthly, 92 (7): 485–487, doi:10.2307/2322503, JSTOR 2322503, MR 0801221
  2. 2.0 2.1 2.2 Rudin 1991, pp. 117–119.
  3. 3.0 3.1 3.2 Rudin 1991, p. 37.


संदर्भ


बाहरी संबंध