एलपी स्पेस: Difference between revisions

From Vigyanwiki
Line 8: Line 8:
=== एम्बेडिंग ===
=== एम्बेडिंग ===


बोलचाल में अगर <math>1 \leq p < q \leq \infty,</math> तब इसमें ऐसे <math>L^p(S, \mu)</math>  कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व <math>L^q(S, \mu)</math> अधिक फैलाया जा सकता है अर्ध रेखा पर लेबेस्गु माप पर विचार करें <math>(0, \infty).</math> इसमें एक सतत कार्य <math>L^1</math> होता है लेकिन अनंत की ओर पर्याप्त तेजी से क्षय होना चाहिए जो दूसरी ओर निरंतर कार्य करता है <math>L^\infty</math> को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति नहीं है नई तकनीकी परिणाम निम्नलिखित है।<ref name="VillaniEmbeddings">{{Citation|title=Another note on the inclusion {{math|''L<sup>p</sup>''(''μ'') ⊂ ''L<sup>q</sup>''(''μ'')}}|last=Villani|first=Alfonso|year=1985|journal=Amer. Math. Monthly|volume=92|number=7|pages=485–487|doi=10.2307/2322503|mr=801221|jstor=2322503}}</ref> लगता है कि <math>0 < p < q \leq \infty.</math> तब
बोलचाल में अगर <math>1 \leq p < q \leq \infty,</math> तब इसमें ऐसे <math>L^p(S, \mu)</math>  कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व <math>L^q(S, \mu)</math> अधिक फैलाया जा सकता है अर्ध रेखा पर लेबेस्गु माप पर विचार करें <math>(0, \infty).</math> इसमें एक सतत कार्य <math>L^1</math> होता है लेकिन अनंत की ओर पर्याप्त तेजी से क्षय होना चाहिए जो दूसरी ओर निरंतर कार्य करता है <math>L^\infty</math> को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति नहीं है नई तकनीकी परिणाम निम्नलिखित है <ref name="VillaniEmbeddings">{{Citation|title=Another note on the inclusion {{math|''L<sup>p</sup>''(''μ'') ⊂ ''L<sup>q</sup>''(''μ'')}}|last=Villani|first=Alfonso|year=1985|journal=Amer. Math. Monthly|volume=92|number=7|pages=485–487|doi=10.2307/2322503|mr=801221|jstor=2322503}}</ref> लगता है कि <math>0 < p < q \leq \infty.</math> तब


#<math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर <math>S</math> परिमित के समूह नहीं होते हैं लेकिन मनमाने ढंग से बड़े माप उदाहरण के लिए कोई परिमित माप
#<math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर <math>S</math> परिमित के समूह नहीं होते हैं लेकिन मनमाने ढंग से बड़े माप उदाहरण के लिए कोई परिमित माप
Line 32: Line 32:
<math display="block">\forall f \in L^p \left(\Reals^d\right) : \quad \left\|\tau_t f - f \right\|_p \to 0,\quad \text{as } \Reals^d \ni t \to 0,</math>
<math display="block">\forall f \in L^p \left(\Reals^d\right) : \quad \left\|\tau_t f - f \right\|_p \to 0,\quad \text{as } \Reals^d \ni t \to 0,</math>
तब
तब
<math display="block">(\tau_t f)(x) = f(x - t).</math>
<math display="block">(\tau_t f)(x) = f(x - t).</math>स्थान




Line 41: Line 41:
=={{math|''L<sup>p</sup>'' (0 < ''p'' < 1)}}==
=={{math|''L<sup>p</sup>'' (0 < ''p'' < 1)}}==


एक माप स्थान बनें जहाँ <math>0 < p < 1,</math> तब <math>L^p(\mu)</math> ऊपर के रूप में परिभाषित किया जा सकता है यह उन औसत दर्जे के कार्यों का भागफल सदिश स्थान है <math>f</math> ऐसा है कि
एक माप स्थान बनें जहाँ <math>0 < p < 1,</math> तब <math>L^p(\mu)</math> ऊपर के रूप में परिभाषित किया जा सकता है यह उन औसत दर्जे के कार्यों का भागफल सदिश है <math>f</math> ऐसा है कि
<math display="block">N_p(f) = \int_S |f|^p\, d\mu < \infty.</math>
<math display="block">N_p(f) = \int_S |f|^p\, d\mu < \infty.</math>


Line 69: Line 69:
=== वेक्टर-मूल्यवान {{math|''L<sup>p</sup>''}} रिक्त स्थान ===
=== वेक्टर-मूल्यवान {{math|''L<sup>p</sup>''}} रिक्त स्थान ===


एक माप स्थान दिया गया <math>(\Omega, \Sigma, \mu)</math> और स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान <math>E</math> इसके रिक्त स्थान को परिभाषित करना संभव है <math>p</math>-पूर्ण करने योग्य <math>E</math>-मूल्यवान कार्यों पर <math>\Omega</math> कई तरह से परिभाषित किया जाए <math>L^p(\Omega, \Sigma, \mu) \otimes_\pi E,</math> और टेन्सर उत्पाद द्वारा निरूपित <math>L^p(\Omega, \Sigma, \mu) \otimes_\varepsilon E.</math> किया जाता है।  
एक माप स्थान दिया गया <math>(\Omega, \Sigma, \mu)</math> और स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान <math>E</math> इसके रिक्त स्थान को परिभाषित करना संभव है <math>p</math>-पूर्ण करने योग्य <math>E</math>-मूल्यवान कार्यों पर <math>\Omega</math> कई तरह से परिभाषित किया जाए <math>L^p(\Omega, \Sigma, \mu) \otimes_\pi E,</math> और यह टेन्सर उत्पाद द्वारा निरूपित <math>L^p(\Omega, \Sigma, \mu) \otimes_\varepsilon E.</math> किया जाता है।  


== यह भी देखें ==
== यह भी देखें ==

Revision as of 16:43, 26 April 2023

गणित में एलपी स्पेस समारोह का विशेष स्थान हैं जिन्हें सामान्य गत पी साधरणतया प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित गया है पी परिमित आयामी सदिश के लिए मानदंड है उन्हें कभी-कभी लेबेस्गु स्पेस भी कहा जाता है जिसका नाम हेनरी लेबेस्ग्यू के नाम पर रखा गया है जबकि निकोलस बोरबाकी समूह के बोर बाकी 1927वें सबसे पहले फ्राइजेस रेज्जि द्वारा पेश किए गए। ([[#CITEREF|]]).


एम्बेडिंग

बोलचाल में अगर तब इसमें ऐसे कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व अधिक फैलाया जा सकता है अर्ध रेखा पर लेबेस्गु माप पर विचार करें इसमें एक सतत कार्य होता है लेकिन अनंत की ओर पर्याप्त तेजी से क्षय होना चाहिए जो दूसरी ओर निरंतर कार्य करता है को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति नहीं है नई तकनीकी परिणाम निम्नलिखित है [1] लगता है कि तब

  1. अगर परिमित के समूह नहीं होते हैं लेकिन मनमाने ढंग से बड़े माप उदाहरण के लिए कोई परिमित माप
  2. अगर और केवल अगर गैर-शून्य के समूह सम्मिलित नहीं हैं लेकिन मनमाने ढंग से छोटे होते हैं।

माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए हैं दोनों ही जगहों में व्याख्या निरंतर है जिसमें पहचान चालक एक सीमित रैखिक मानचित्र है को पहले जगहों में और को क्षण में यह बंद ग्राफ प्रमेय और गुणों का परिणाम है तथा रिक्त स्थान अगर डोमेन परिमित माप है

तब
उपरोक्त असमानता में दिखाई देने वाला निरंतर इष्टतम है इस अर्थ में कि पहचान का मानदंड ठीक है
समानता ठीक उसी समय प्राप्त किया जा रहा है

सघन उपस्थान

इस पूरे खंड में हम यह मानते हैं एक माप स्थान बनें एक पूर्णांक सरल कार्य पर एक रूप है जो इस प्रकार है

जब अदिश हैं परिमित उपाय है और समूह का सूचक कार्य है के लिए एकीकरण के निर्माण से समाकलनीय सरल फलनों का सदिश स्थान सघन होता है

अगर बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है खुले समूहों का परिमित माप है फिर स्थान -अभिन्न निरंतर कार्य सघन है अधिक रूप से कोई भी सीमित निरंतर कार्यों का उपयोग कर सकता है जो खुले समूहों में से एक के बाहर गायब हो जाते हैं यह विशेष रूप से तब लागू होता है जब और जब लेबेस्ग उपाय है निरंतर और कुछ रूप से समर्थित कार्यों का स्थान सघन है इसी तरह यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब घिरे हुए आयतों का तथा और आमतौर पर परिबद्ध अंतरालों के उत्पादों के रूप में होता है।

इसमें सामान्य कार्यों के कई गुण पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है

तब
स्थान


बंद उप-स्थान

अगर मापने योग्य स्थान पर एक संभाव्यता माप है कोई सकारात्मक वास्तविक संख्या है और एक सदिश उपसमष्टि है तब की बंद उपसमष्टि है अगर और केवल अगर परिमित-आयामी है[2] इस प्रमेय में जो अलेक्जेंडर ग्रोथेंडिक के कारण है [2] यह महत्वपूर्ण है कि सदिश स्थान का उपसमुच्चय हो क्योंकि अनंत-विमीय बंद सदिश उपसमष्टि का निर्माण संभव है कहाँ इकाई वृत्त की माप है और संभाव्यता माप है जो इसे इसके द्रव्यमान से विभाजित करने का परिणाम है [2]

Lp (0 < p < 1)

एक माप स्थान बनें जहाँ तब ऊपर के रूप में परिभाषित किया जा सकता है यह उन औसत दर्जे के कार्यों का भागफल सदिश है ऐसा है कि

सामान्यीकरण और विस्तार

समान्यीकरण

समान्यीकरण एक माप स्थान है और वास्तविक या जटिल मूल्यों के साथ एक औसत दर्जे का कार्य का संचयी वितरण समारोह के लिए परिभाषित किया गया है द्वारा

अगर में है कुछ के लिए साथ फिर मार्कोव की असमानता से
एक समारोह अंतरिक्ष में कमजोर कहा जाता है , या यदि कोई स्थिरांक है ऐसा कि, सभी के लिए
सबसे अच्छा स्थिरांक इस असमानता के लिए है -मानक और द्वारा दर्शाया गया है

भारित Lp रिक्त स्थान

पहले की तरह माप स्थान है तथा एक मापने योग्य कार्य हो वें भारित अंतरिक्ष के रूप में परिभाषित किया गया है जो पैमाना द्वारा परिभाषित


Lp कई गुना पर रिक्त स्थान

कोई रिक्त स्थान भी परिभाषित कर सकता है कई गुना पर आंतरिक माना जाता है पर घनत्व का उपयोग करते हुए रिक्त स्थान निम्न हैं।

वेक्टर-मूल्यवान Lp रिक्त स्थान

एक माप स्थान दिया गया और स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान इसके रिक्त स्थान को परिभाषित करना संभव है -पूर्ण करने योग्य -मूल्यवान कार्यों पर कई तरह से परिभाषित किया जाए और यह टेन्सर उत्पाद द्वारा निरूपित किया जाता है।

यह भी देखें

टिप्पणियाँ

  1. Villani, Alfonso (1985), "Another note on the inclusion Lp(μ) ⊂ Lq(μ)", Amer. Math. Monthly, 92 (7): 485–487, doi:10.2307/2322503, JSTOR 2322503, MR 0801221
  2. 2.0 2.1 2.2 Rudin 1991, pp. 117–119.


संदर्भ


बाहरी संबंध