एलपी स्पेस: Difference between revisions
No edit summary |
|||
Line 4: | Line 4: | ||
गणित में एलपी रिक्त स्थान कार्यक्रम स्थान हैं जो परिमित-आयामी सदिश रिक्त स्थान के लिए पी-मानदंड के प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित | गणित में एलपी रिक्त स्थान एक कार्यक्रम स्थान हैं जो परिमित-आयामी सदिश रिक्त स्थान के लिए पी-मानदंड के प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित किया जाता है उन्हें कभी-कभी हेनरी लेबेस्ग्यू डनफोर्ड एंड श्वार्ट्ज 1958 के नाम पर लेबेस्ग्यू रिक्त कहा जाता है जबकि बोरबाकी समूह बोरबाकी 1987 के अनुसार उन्हें पहली बार फ्रिगेस रिज्जु द्वारा 1910 में पेश किया गया था। | ||
एलपी रिक्त स्थान कार्यात्मक विश्लेषण और करणीय सदिश रिक्त स्थान में बनच रिक्त स्थान का एक महत्वपूर्ण वर्ग बनाते हैं माप और संभाव्यता रिक्त स्थान के गणितीय विश्लेषण में उनकी महत्वपूर्ण भूमिका के कारण भौतिकी, सांख्यिकी, अर्थशास्त्र, वित्त, इंजीनियरिंग और अन्य विषयों में समस्याओं की सैद्धांतिक चर्चा में भी लेबेस्गु रिक्त स्थान का उपयोग | एलपी रिक्त स्थान कार्यात्मक विश्लेषण और करणीय सदिश रिक्त स्थान में बनच रिक्त स्थान का एक महत्वपूर्ण वर्ग बनाते हैं तथा माप और संभाव्यता रिक्त स्थान के गणितीय विश्लेषण में उनकी महत्वपूर्ण भूमिका के कारण भौतिकी, सांख्यिकी, अर्थशास्त्र, वित्त, इंजीनियरिंग और अन्य विषयों में समस्याओं की सैद्धांतिक चर्चा में भी लेबेस्गु रिक्त स्थान का उपयोग करते हैं। | ||
=== एम्बेडिंग === | === एम्बेडिंग === | ||
सामान्य बोलचाल में अगर <math>1 \leq p < q \leq \infty,</math> है तो इसमें ऐसे <math>L^p(S, \mu)</math> कई कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व <math>L^q(S, \mu)</math> अधिक | सामान्य बोलचाल में अगर <math>1 \leq p < q \leq \infty,</math> है तो इसमें ऐसे <math>L^p(S, \mu)</math> कई कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व <math>L^q(S, \mu)</math> अधिक फैलाये जा सकते हैं तथा रेखा लेबेस्गु माप पर इसमें एक सतत कार्य <math>L^1</math> होता है जो अनंत की ओर तेजी से क्षय नहीं होता तथा यह दूसरी ओर निरंतर कार्य करता है <math>L^\infty</math> को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति भी नहीं है इस तकनीकी के परिणाम निम्नलिखित है <ref name="VillaniEmbeddings2">{{Citation|title=Another note on the inclusion {{math|''L<sup>p</sup>''(''μ'') ⊂ ''L<sup>q</sup>''(''μ'')}}|last=Villani|first=Alfonso|year=1985|journal=Amer. Math. Monthly|volume=92|number=7|pages=485–487|doi=10.2307/2322503|mr=801221|jstor=2322503}}</ref> जैसे कि <math>0 < p < q \leq \infty.</math> तब | ||
# <math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर <math>S</math> परिमित के समूह नहीं होते हैं उदाहरण के लिए कोई परिमित माप। | # <math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर <math>S</math> परिमित के समूह नहीं होते हैं उदाहरण के लिए कोई परिमित माप। | ||
Line 18: | Line 18: | ||
तब | तब | ||
<math display="block">\ \|f\|_p \leq \mu(S)^{1/p - 1/q} \|f\|_q .</math> | <math display="block">\ \|f\|_p \leq \mu(S)^{1/p - 1/q} \|f\|_q .</math> | ||
उपरोक्त असमानता में दिखाई देने वाले निरंतर अर्थ में | उपरोक्त असमानता में दिखाई देने वाले निरंतर अर्थ में पहचान का [[ऑपरेटर मानदंड|मानदंड]] यह <math>I : L^q(S, \mu) \to L^p(S, \mu)</math> है जहाँ | ||
<math display="block">\|I\|_{q,p} = \mu(S)^{1/p - 1/q}</math> | <math display="block">\|I\|_{q,p} = \mu(S)^{1/p - 1/q}</math> | ||
इसमें समानता ठीक उसी समय प्राप्त | इसमें समानता ठीक उसी समय प्राप्त की जा सकती है <math>f = 1</math> <math>\mu</math> | ||
=== सघन उपस्थान === | === सघन उपस्थान === | ||
इस पूरे खंड में हम यह मानते हैं <math>1 \leq p < \infty.</math>एक माप स्थान बनें एक पूर्णांक सरल कार्य <math>f</math> पर <math>S</math> एक रूप है जो इस प्रकार है | इस पूरे खंड में हम यह मानते हैं <math>1 \leq p < \infty.</math>एक माप स्थान पर बनें एक पूर्णांक जो सरल कार्य <math>f</math> पर <math>S</math> एक सामान्य रूप है जो इस प्रकार है | ||
<math display="block">f = \sum_{j=1}^n a_j \mathbf{1}_{A_j}</math> | <math display="block">f = \sum_{j=1}^n a_j \mathbf{1}_{A_j}</math> | ||
जब <math>a_j</math> अदिश राशि है तो यह <math>A_j \in \Sigma</math> परिमित उपाय है और <math>{\mathbf 1}_{A_j}</math> समूह का सूचक कार्य है <math>A_j,</math>के लिए <math>j = 1, \dots, n.</math> एकीकरण के निर्माण से समाकलनीय सरल फलनों का सदिश स्थान सघन होता है <math>L^p(S, \Sigma, \mu).</math> | जब <math>a_j</math> अदिश राशि है तो यह <math>A_j \in \Sigma</math> परिमित उपाय भी है और <math>{\mathbf 1}_{A_j}</math> समूह का सूचक कार्य है <math>A_j,</math>के लिए <math>j = 1, \dots, n.</math> एकीकरण के निर्माण से समाकलनीय सरल फलनों का सदिश स्थान सघन होता है <math>L^p(S, \Sigma, \mu).</math> | ||
अगर <math>S</math> बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है <math>(V_n)</math> खुले समूहों का परिमित माप है फिर स्थान <math>p</math>-अभिन्न निरंतर कार्य में सघन है तो यह <math>L^p(S, \Sigma, \mu).</math> सीमित निरंतर कार्यों का उपयोग कर सकता है | अगर <math>S</math> बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है <math>(V_n)</math> खुले समूहों का परिमित माप है फिर स्थान <math>p</math>-अभिन्न निरंतर कार्य में सघन है तो यह <math>L^p(S, \Sigma, \mu).</math> सीमित निरंतर कार्यों का उपयोग कर सकता है क्योंकि यह खुले समूहों में गायब हो जाते हैं यह विशेष रूप से तब लागू होता है जब <math>S = \Reals^d</math> और <math>\mu</math> लेबेस्ग उपाय इसमें सम्मिलित होता है तथा निरंतर और समर्थित कार्यों का स्थान सघन होता है जैसे <math>L^p(\Reals^d).</math> इसी तरह यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब <math>d = 1,</math>घिरे हुए आयतों का तथा <math>d = 2</math> परिबद्ध अंतरालों के उत्पादों के रूप में होता है। | ||
इसमें सामान्य कार्यों के कई गुण <math>L^p(\Reals^d)</math> पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है | इसमें सामान्य कार्यों के कई गुण <math>L^p(\Reals^d)</math> पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है |
Revision as of 07:10, 17 May 2023
गणित में एलपी रिक्त स्थान एक कार्यक्रम स्थान हैं जो परिमित-आयामी सदिश रिक्त स्थान के लिए पी-मानदंड के प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित किया जाता है उन्हें कभी-कभी हेनरी लेबेस्ग्यू डनफोर्ड एंड श्वार्ट्ज 1958 के नाम पर लेबेस्ग्यू रिक्त कहा जाता है जबकि बोरबाकी समूह बोरबाकी 1987 के अनुसार उन्हें पहली बार फ्रिगेस रिज्जु द्वारा 1910 में पेश किया गया था।
एलपी रिक्त स्थान कार्यात्मक विश्लेषण और करणीय सदिश रिक्त स्थान में बनच रिक्त स्थान का एक महत्वपूर्ण वर्ग बनाते हैं तथा माप और संभाव्यता रिक्त स्थान के गणितीय विश्लेषण में उनकी महत्वपूर्ण भूमिका के कारण भौतिकी, सांख्यिकी, अर्थशास्त्र, वित्त, इंजीनियरिंग और अन्य विषयों में समस्याओं की सैद्धांतिक चर्चा में भी लेबेस्गु रिक्त स्थान का उपयोग करते हैं।
एम्बेडिंग
सामान्य बोलचाल में अगर है तो इसमें ऐसे कई कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व अधिक फैलाये जा सकते हैं तथा रेखा लेबेस्गु माप पर इसमें एक सतत कार्य होता है जो अनंत की ओर तेजी से क्षय नहीं होता तथा यह दूसरी ओर निरंतर कार्य करता है को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति भी नहीं है इस तकनीकी के परिणाम निम्नलिखित है [1] जैसे कि तब
- अगर परिमित के समूह नहीं होते हैं उदाहरण के लिए कोई परिमित माप।
- और गैर-शून्य के समूह में सम्मिलित नहीं हैं लेकिन छोटे होते हैं।
माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए अग्रसर नहीं हैं ये दोनों ही जगहों में व्याख्या करते हैं जिसकी पहचान एक चालक पर सीमित है को की जगहों में और को क्षण में यह बंद ग्राफ प्रमेय और गुणों का परिणाम है तथा रिक्त स्थान और डोमेन परिमित माप है जो इस प्रकार है-
सघन उपस्थान
इस पूरे खंड में हम यह मानते हैं एक माप स्थान पर बनें एक पूर्णांक जो सरल कार्य पर एक सामान्य रूप है जो इस प्रकार है
अगर बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है खुले समूहों का परिमित माप है फिर स्थान -अभिन्न निरंतर कार्य में सघन है तो यह सीमित निरंतर कार्यों का उपयोग कर सकता है क्योंकि यह खुले समूहों में गायब हो जाते हैं यह विशेष रूप से तब लागू होता है जब और लेबेस्ग उपाय इसमें सम्मिलित होता है तथा निरंतर और समर्थित कार्यों का स्थान सघन होता है जैसे इसी तरह यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब घिरे हुए आयतों का तथा परिबद्ध अंतरालों के उत्पादों के रूप में होता है।
इसमें सामान्य कार्यों के कई गुण पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है
अनुप्रयोग
आंकड़े
आँकड़ों में केंद्रीय प्रवृत्ति और सांख्यिकीय फैलाव के उपाय जैसे कि माध्य , मध्यिका और मानक विचलन के संदर्भ में परिभाषित किए गए हैं गणित और केंद्रीय प्रवृत्ति के उपायों को परिवर्तनशील समस्याओं के समाधान के रूप में चित्रित किया जा सकता है ।
दंडित प्रतिगमन में L1 पेनल्टी और L2 पेनल्टी का अर्थ या तो दंडित करना है किसी समाधान के पैरामीटर मानों के सदिश का मानदण्ड अर्थात् इसके निरपेक्ष मानों का योग या इसके मानदंड तथा इसकी यूक्लिडियन लंबाई तकनीकें जो एलएएसएसओ जैसी L1 दंड का उपयोग करती हैं व समाधान को भी प्रोत्साहित करती हैं जहां कई पैरामीटर शून्य हैं तकनीकें जो L2 पेनल्टी का उपयोग करती हैं जैसे रिज प्रतिगमन उन समाधानों को प्रोत्साहित करती हैं जहां अधिकांश पैरामीटर मान छोटे होते हैं तथा लोचदार शुद्ध नियमितीकरण एक दंड अवधि का उपयोग करता है जो कि संयोजन है तथा मानदंड और पैरामीटर सदिश का मानदंड है।
हॉसडॉर्फ-यंग असमानता
लिप्यंतरण वास्तविक रेखा के लिए रूपांतरित होता है या आवधिक कार्यों के लिए लिप्यन्तरण नक्शे को क्रमशः यह रिज-थोरिन इंटरपोलेशन प्रमेय का परिणाम कहा जाता है और हौसडॉर्फ-यंग असमानता के साथ बनाया गया है ।
इसके विपरीत लिप्यन्तरण ट्रांसफॉर्म में नक्शा नहीं होता है।
हिल्बर्ट रिक्त स्थान
वर्ग-समाकलनीय समीकरण कार्यक्रम
प्रमात्रा यांत्रिकी से लेकर भारी गणना तक हिल्बर्ट रिक्त कई अनुप्रयोगों के लिए केंद्रीय हैं रिक्त स्थान दोनों हिल्बर्ट रिक्त स्थान हैं वास्तव में हिल्बर्ट आधार चुनकर एक अधिकतम प्रसामान्य उप समूह कोई हिल्बर्ट रिक्त कोई सममित रूप से समरूप का एक हिल्बर्ट स्थान है।
परिमित आयामों में पी - मानदंड
इकाई वृत्तों के उदाहरण भिन्न पर आधारित है जैसे नॉर्म्स मूल इकाई वृत्त तक प्रत्येक सदिश की लंबाई एक होती है क्योंकि लम्बाई की गणना इसी के सूत्र के साथ की जाती है
एक सदिश की लंबाई में-आयामी वास्तविक सदिश अंतरिक्ष आमतौर पर यूक्लिडियन मानदंड द्वारा दिया जाता है
दो बिंदुओं के बीच यूक्लिडियन दूरी और लंबाई है दो बिंदुओं के बीच की सीधी रेखा कई स्थितियों में किसी दिए गए स्थान में वास्तविक दूरी को पकड़ने के लिए यूक्लिडियन दूरी अपर्याप्त है एक ग्रिड स्ट्रीट योजना में टैक्सी चालकों द्वारा इसका एक सादृश्य सुझाया गया है जिन्हें दूरी को अपने गंतव्य तक सीधी रेखा की लंबाई के संदर्भ में नहीं बल्कि सीधी रेखा की दूरी को संदर्भ में मापना चाहिए जो इस बात को ध्यान में रखता है कि सड़कें या तो समकोण हैं या एक दूसरे के समानांतर वर्ग का मानदंड इन दो उदाहरणों का सामान्यीकरण करते हैं और गणित , भौतिकी ,और कंप्यूटर विज्ञान के कई हिस्सों में अनुप्रयोगों की सहायता करते हैं।
इकाई वृत्त प्रवेशिका
यह बिल्कुल सजातीय कार्य को परिभाषित करता जबकि यह कार्यक्रम को परिभाषित नहीं करता है क्योंकि उप-योगात्मक नहीं है दूसरी ओर यह सूत्र है
पूर्ण एकरूपता खोने की कीमत पर उप-योगात्मक कार्य को परिभाषित करता है यह एक एफ-मानदंड को परिभाषित करता है क्योंकि डिग्री सजातीय है
इसलिए समारोह एक प्रवेशिका परिभाषित करता है प्रवेशिका स्थान द्वारा निरूपित किया जाता है
जबकि इकाई प्रवेशिका में मूल के आसपास अवतल है जिसे संस्थानिक परिभाषित करता है प्रवेशिका द्वारा सामान्य सदिश रिक्त संस्थानिक है इस तरह स्थानीय रूप से उत्तल संस्थानिक सदिश रिक्त है इस गुणात्मक कथन से परे उत्तलता की कमी को मापने का एक मात्रात्मक तरीका निरूपित करना है सबसे छोटा स्थिरांक जैसे कि अदिश गुणक की-इकाई वृत्त में उत्तल हल होता है जो बराबर है तथ्य यह है कि निश्चित करने के लिए अपने पास
अनंत-आयामी अनुक्रम स्थान नीचे परिभाषित तथा स्थानीय रूप से उत्तल नहीं है। [ उद्धरण वांछित ]
जब पी = 0
यह एक मानदंड है जिसे आदर्श या अन्य कार्य भी कहा जाता है
गणितीय मानदंड बनच के रैखिक संचालन के सिद्धांत द्वारा स्थापित किया गया था यहॉं अनुक्रमों के स्थान में एफ-मानदंड द्वारा प्रदान की गई एक पूर्ण प्रवेशिका संस्थानिक है जिस पर प्रवेशिका रिक्त में स्टीफन रोलविक्ज़ द्वारा चर्चा की गई है सामान्य स्थान का कार्यात्मक विश्लेषण संभाव्यता सिद्धांत और हार्मोनिक विश्लेषण में अध्ययन किया जाता है इसे एक और समारोह कहा जाता था डेविड डोनोहो द्वारा मानक जिसका उद्धरण चिह्न चेतावनी देता है कि यह कार्यक्रम एक उचित मानदंड नहीं है किन्तु यह सदिश की गैर-शून्य प्रविष्टियों की संख्या है[ उद्धरण वांछित ] कई लेखक उद्धरण चिह्नों को छोड़ कर शब्दावली का दुरुपयोग करते हैं जो परिभाषित शून्य आदर्श के बराबर है
यह एक आदर्श नहीं है क्योंकि यह सजातीय नहीं है उदाहरण के लिए रियेक्टर स्केलिंग आदि
एक सकारात्मक स्थिरांक से मानक नहीं बदलता है गणितीय मानदंड के रूप में इन दोषों के बाद भी गैर-शून्य गणना मानक का वैज्ञानिक गणितीय सूचना सिद्धांत और सांख्यिकी में उपयोग होता है विशेष रूप से सिग्नल प्रोसेसिंग और अभिकलन हार्मोनिक विश्लेषण में संपीड़ित संवेदन में मानदंड न होने के बाद संबद्ध प्रवेशिका जिसे हैमिंग दूरी के रूप में जाना जाता है यह एक मान्य दूरी है क्योंकि दूरियों के लिए एकरूपता की आवश्यकता नहीं होती है।
जहां दाईं ओर अभिसरण का अर्थ है कि केवल गिने-चुने योग शून्य नहीं हैं
जो अंतरिक्ष बनच स्थान बन जाता है कई स्थानों के साथ परिमित तत्व हैं यह निर्माण उपज देता है साथ ही मानदंड परिभाषित करता है अगर यह गणनीय रूप से अनंत है तो यह बिल्कुल अनुक्रम स्थान है इसमें समूह के लिए यह एक गैर- वियोज्य बनच स्थान है जिसे स्थानीय रूप से उत्तल प्रत्यक्ष सीमा के रूप में देखा जा सकता है-अनुक्रम रिक्त स्थान
के लिए मानदंड भी एक सतत आंतरिक उत्पाद से प्रेरित है इसमें यूक्लिडियन में आंतरिक उत्पाद है जिसका अर्थ है किसी भी वैज्ञानिक रॉशि को सदिश धारण करता है यह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके आदर्श के रूप में व्यक्त किया जा सकता है।
जबकि अंतरिक्ष के लिए एक माप स्थान के साथ जुड़ा हुआ है जिसमें सभी वर्ग-पूर्ण कार्यक्रम सम्मिलित हैं।
बंद उप-स्थान
अगर मापने योग्य स्थान पर एक संभाव्यता माप है तो यह कोई सकारात्मक वास्तविक संख्या है और एक सदिश उप समष्टि है तब बंद उप समष्टि है अगर परिमित-आयामी है[2] तो इस प्रमेय में जो अलेक्जेंडर ग्रोथेंडिक के कारण हैं [2] यह महत्वपूर्ण है जैसे सदिश स्थान का उपसमुच्चय हो तो अनंत-विमीय बंद सदिश उप समष्टि का निर्माण संभव है कहाँ इकाई वृत्त की माप है और संभाव्यता माप है जो इसे इसके द्रव्यमान से विभाजित करने का परिणाम है जैसे [2]
Lp (0 < p < 1)
वेक्टर के पास उत्तल पड़ोस की मूलभूत प्रणाली नहीं हैविशेष रूप से, यह सच है यदि माप स्थान
S में परिमित धनात्मक माप के असंयुक्त मापने योग्य समूहों का एक अनंत परिवार होता है। केवल गैर-खाली उत्तल खुला समूह स्थान है (रुडिन 1991) एक विशेष परिणाम के रूप में कोई गैर-शून्य निरंतर रैखिक कार्य नहीं हैं सतत दोहरा स्थान शून्य स्थान है प्राकृतिक संख्याओं पर गिनती माप के स्थान में अनुक्रम स्थान का निर्माण इस प्रकार है इसमें परिबद्ध रेखीय फलन ℓ अर्थात् वे जो क्रम में दिए गए हैं ℓ ∞ . जबकि ℓ में गैर-तुच्छ उत्तल खुले समूह होते हैं यह टोपोलॉजी के लिए आधार देने के लिए उनमें से पर्याप्त होने में विफल रहता है जैसे
सामान्यीकरण और विस्तार
समान्यीकरण
समान्यीकरण एक माप स्थान है और वास्तविक या जटिल मूल्यों के साथ एक औसत दर्जे का कार्य का संचयी वितरण समारोह के लिए परिभाषित किया गया है जैसे द्वारा इसे दर्शाया गया है जहाँ
भारित Lp रिक्त स्थान
पहले की तरह माप स्थान है तथा एक मापने योग्य कार्य हो वें भारित अंतरिक्ष के रूप में परिभाषित किया गया है जो पैमाना
द्वारा परिभाषित
Lp कई गुना पर रिक्त स्थान
Lp कई रिक्त स्थान परिभाषित कर सकता है पर कई गुना आंतरिक माना जाता है पर घनत्व का उपयोग करते हुए रिक्त स्थान निम्न हैं।
सदिश-मूल्यवान Lp रिक्त स्थान
एक माप स्थान दिया गया और स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान इसके रिक्त स्थान को परिभाषित करता है यहाँ -पूर्ण करने योग्य -मूल्यवान कार्यों पर कई तरह से परिभाषित किया गया है जो इस प्रकार है तथा यह टेन्सर उत्पाद द्वारा निरूपित किया गया है।
यह भी देखें
- गणितीय अवध। ारणा
- सांस्थितिक रिक्त।
- हार्डी रिक्त - जटिल विश्लेषण के भीतर अवधारणा।
- रीज़्ज़-थोरिन प्रमेय - ऑपरेटर प्रक्षेप पर प्रमेय।
- होल्डर माध्य - दी गई संख्याओं के अंकगणितीय माध्य का N-वाँ मूल घात n तक बढ़ाया जाता है।
- होल्डर स्थान - एक जटिल-मूल्यवान कार्यक्रम की निरंतरता का प्रकार।
- मूल माध्य वर्ग - माध्य वर्ग का वर्गमूल।
- कम से कम निरपेक्ष विचलन - सांख्यिकीय इष्टतमता मानदंड।
- स्थानीय रूप से अभिन्न कार्य ।
- कम से कम वर्ग वर्णक्रमीय विश्लेषण - आवधिकता संगणना विधि।
- बनच स्थानों की सूची।
- मिन्कोस्की दूरी - सदिशों या बिन्दुओं के बीच की दूरी को निर्देशांक अंतरों की घातों के योग के मूल के रूप में परिकलित किया जाता है।
- एल पी राशि।
टिप्पणियाँ
संदर्भ
- Adams, Robert A.; Fournier, John F. (2003), Sobolev Spaces (Second ed.), Academic Press, ISBN 978-0-12-044143-3.
- Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël (2011). Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften. Vol. 343. Berlin, Heidelberg: Springer. ISBN 978-3-642-16830-7. OCLC 704397128.
- Bourbaki, Nicolas (1987), Topological vector spaces, Elements of mathematics, Berlin: Springer-Verlag, ISBN 978-3-540-13627-9.
- DiBenedetto, Emmanuele (2002), Real analysis, Birkhäuser, ISBN 3-7643-4231-5.
- Dunford, Nelson; Schwartz, Jacob T. (1958), Linear operators, volume I, Wiley-Interscience.
- Duren, P. (1970), Theory of Hp-Spaces, New York: Academic Press
- Grafakos, Loukas (2004), Classical and Modern Fourier Analysis, Pearson Education, Inc., pp. 253–257, ISBN 0-13-035399-X.
- Hewitt, Edwin; Stromberg, Karl (1965), Real and abstract analysis, Springer-Verlag.
- Kalton, Nigel J.; Peck, N. Tenney; Roberts, James W. (1984), An F-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge: Cambridge University Press, doi:10.1017/CBO9780511662447, ISBN 0-521-27585-7, MR 0808777
- Riesz, Frigyes (1910), "Untersuchungen über Systeme integrierbarer Funktionen", Mathematische Annalen, 69 (4): 449–497, doi:10.1007/BF01457637, S2CID 120242933
- Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
- Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-054234-1, MR 0924157
- Titchmarsh, EC (1976), The theory of functions, Oxford University Press, ISBN 978-0-19-853349-8