कोणीय संवेग व प्रचक्रण: Difference between revisions

From Vigyanwiki
Line 9: Line 9:
कोणीय संवेग के दो मुख्य प्रकार हैं:
कोणीय संवेग के दो मुख्य प्रकार हैं:


*    कक्षीय कोणीय संवेग: इस प्रकार का कोणीय संवेग किसी केंद्रीय बिंदु या अक्ष के चारों ओर कक्षा में किसी वस्तु की गति से जुड़ा होता है। यह वस्तु के द्रव्यमान, गति और केंद्रीय बिंदु से दूरी पर निर्भर करता है। किसी वस्तु का कक्षीय कोणीय संवेग उसके कक्षीय तल के लंबवत होता है।
* कक्षीय कोणीय संवेग: इस प्रकार का कोणीय संवेग किसी केंद्रीय बिंदु या अक्ष के चारों ओर कक्षा में किसी वस्तु की गति से जुड़ा होता है। यह वस्तु के द्रव्यमान, गति और केंद्रीय बिंदु से दूरी पर निर्भर करता है। किसी वस्तु का कक्षीय कोणीय संवेग उसके कक्षीय तल के लंबवत होता है।
*   प्रचक्रित कोणीय संवेग: इस प्रकार की कोणीय गति एक कण के आंतरिक प्रचक्रण से जुड़ी होती है, जैसे कि इलेक्ट्रॉन, प्रोटॉन या न्यूट्रॉन। यह इन कणों का मूलभूत गुण है और अंतरिक्ष में उनकी गति से संबंधित नहीं है। किसी कण का प्रचक्रण कोणीय संवेग भी उसके प्रचक्रण अक्ष के लम्बवत् होता है।
* प्रचक्रित कोणीय संवेग: इस प्रकार की कोणीय गति एक कण के आंतरिक प्रचक्रण से जुड़ी होती है, जैसे कि इलेक्ट्रॉन, प्रोटॉन या न्यूट्रॉन। यह इन कणों का मूलभूत गुण है और अंतरिक्ष में उनकी गति से संबंधित नहीं है। किसी कण का प्रचक्रण कोणीय संवेग भी उसके प्रचक्रण अक्ष के लम्बवत् होता है।


दोनों प्रकार के कोणीय गति के भौतिकी में महत्वपूर्ण अनुप्रयोग हैं, जैसे कि क्वांटम यांत्रिकी, परमाणु और आणविक भौतिकी और खगोल विज्ञान के अध्ययन में। कोणीय गति का संरक्षण कई भौतिक प्रणालियों में एक महत्वपूर्ण भूमिका निभाता है, और यह शास्त्रीय यांत्रिकी और क्वांटम यांत्रिकी में एक महत्वपूर्ण सिद्धांत है।
दोनों प्रकार के कोणीय गति के भौतिकी में महत्वपूर्ण अनुप्रयोग हैं, जैसे कि क्वांटम यांत्रिकी, परमाणु और आणविक भौतिकी और खगोल विज्ञान के अध्ययन में। कोणीय गति का संरक्षण कई भौतिक प्रणालियों में एक महत्वपूर्ण भूमिका निभाता है, और यह शास्त्रीय यांत्रिकी और क्वांटम यांत्रिकी में एक महत्वपूर्ण सिद्धांत है।
Line 64: Line 64:
<math>{\displaystyle L={\frac {1}{2}}\pi Mfr^{2}}</math>
<math>{\displaystyle L={\frac {1}{2}}\pi Mfr^{2}}</math>


समान द्रव्यमान के रहते हुए भी ,वस्तु के विभिन्न आकारों के कारण, घूर्णी और कोणीय संवेग,अलग अलग हो सकते हैं।ऐसा उस द्रव्यमान वस्तु के आकार भेद से उतपन्न जड़त्व आघूर्ण के बदलाव के कारण होता है (जैसा की संलग्न चित्र में दिखलाया गया है)   
समान द्रव्यमान के रहते हुए भी ,वस्तु के विभिन्न आकारों के कारण, घूर्णी और कोणीय संवेग,अलग अलग हो सकते हैं।ऐसा उस द्रव्यमान वस्तु के आकार भेद से उतपन्न जड़त्व आघूर्ण के बदलाव के कारण होता है (जैसा की संलग्न चित्र में दिखलाया गया है)  
 
== छोटे पैमाने की प्रणालियों के लिए : इलेक्ट्रॉनों के लिए उदाहरण ==
बाध्य इलेक्ट्रॉनों के लिए एक संभाव्य व्याख्या लागू होती है, इसका मतलब है कि हिसेनबर्ग के [[:hi:अनिश्चितता_सिद्धान्त|अनिश्चितता सिद्धांत]] द्वारा निर्धारित सीमाओं के भीतर एक परमाणु कक्षा में एक इलेक्ट्रॉन को खोजने की संभावना परिभाषित की जाती है। ऐसे परिदृश्य में कोणीय गति का स्पिन और कक्षीय घटक अभी भी लागू है। 
 
कोणीय गति, क्वांटम संख्या, जिसे <math>l</math> द्वारा दर्शाया गया है, सामान्य आकार या क्षेत्र का वर्णन करता है,जिसमें एक इलेक्ट्रॉन होता है-इसकी कक्षीय आकृति <math>l</math>  का मान मुख्य क्वांटम संख्या, <math>n</math> के मान पर निर्भर करता है। कोणीय गति क्वांटम संख्या में शून्य से <math>n-1</math> के धनात्मक मान हो सकते हैं। अगर <math>n=2, </math>तो  <math>l</math> या तो <math>0</math> अथवा <math>1</math> हो सकता है।   


== संदर्भ ==
== संदर्भ ==

Revision as of 16:43, 16 May 2023

कोणीय संवेग एक भौतिक मात्रा है जो एक अक्ष के चारों ओर किसी वस्तु की घूर्णी गति का वर्णन करती है। इसे किसी वस्तु के जड़त्व आघूर्ण और उसके कोणीय वेग के उत्पाद के रूप में परिभाषित किया जाता है। जड़ता का क्षण किसी वस्तु के घूर्णी गति के प्रतिरोध का एक उपाय है, और कोणीय वेग वह दर है जिस पर वस्तु अक्ष के चारों ओर घूमती है।

प्रयोगशाला ग्रेड जाइरोस्कोप

गणितीय रूप से, कोणीय संवेग को के रूप में व्यक्त किया जाता है, जहाँ जड़ता का क्षण है और कोणीय वेग है। कोणीय संवेग की इकाई किलोग्राम मीटर वर्ग प्रति सेकंड है।

एक बंद प्रणाली में कोणीय संवेग,संरक्षित रहता है ,जहां उस प्रणाली पर कोई बाहरी बलाघूर्ण कार्य नहीं कर रहा हो। भौतिकी में,इस संरक्षण नियम के महत्वपूर्ण अनुप्रयोग हैं, जैसे आकाशीय यांत्रिकी, परमाणु भौतिकी और क्वांटम यांत्रिकी के अध्ययन में। विशेष रूप से, कोणीय संवेग का संरक्षण कई अवलोकित परिघटनाओं की व्याख्या करने में मदद करता है, जैसे की एक प्रचक्रित लट्टू के पुरस्सरण में, सौर मंडल में ग्रहों की गति, और उपपरमाण्विक कणों का व्यवहार।

अंतरिक्ष में एक बिंदु बिना उलझे लगातार घूम सकता है। ध्यान दें कि 360 डिग्री घूमने के बाद, सर्पिल दक्षिणावर्त और वामावर्त झुकाव के बीच फ़्लिप करता है। पूर्ण 720 डिग्री घूमने के बाद यह अपने मूल विन्यास में लौट आता है।

मुख्य प्रकार

कोणीय संवेग के दो मुख्य प्रकार हैं:

  • कक्षीय कोणीय संवेग: इस प्रकार का कोणीय संवेग किसी केंद्रीय बिंदु या अक्ष के चारों ओर कक्षा में किसी वस्तु की गति से जुड़ा होता है। यह वस्तु के द्रव्यमान, गति और केंद्रीय बिंदु से दूरी पर निर्भर करता है। किसी वस्तु का कक्षीय कोणीय संवेग उसके कक्षीय तल के लंबवत होता है।
  • प्रचक्रित कोणीय संवेग: इस प्रकार की कोणीय गति एक कण के आंतरिक प्रचक्रण से जुड़ी होती है, जैसे कि इलेक्ट्रॉन, प्रोटॉन या न्यूट्रॉन। यह इन कणों का मूलभूत गुण है और अंतरिक्ष में उनकी गति से संबंधित नहीं है। किसी कण का प्रचक्रण कोणीय संवेग भी उसके प्रचक्रण अक्ष के लम्बवत् होता है।

दोनों प्रकार के कोणीय गति के भौतिकी में महत्वपूर्ण अनुप्रयोग हैं, जैसे कि क्वांटम यांत्रिकी, परमाणु और आणविक भौतिकी और खगोल विज्ञान के अध्ययन में। कोणीय गति का संरक्षण कई भौतिक प्रणालियों में एक महत्वपूर्ण भूमिका निभाता है, और यह शास्त्रीय यांत्रिकी और क्वांटम यांत्रिकी में एक महत्वपूर्ण सिद्धांत है।

कोणीय संवेग और प्रचक्रण में संबंध

कोणीय गति, जिसे कभी-कभी स्पिन के रूप में संदर्भित किया जाता है, किसी वस्तु के द्रव्यमान, उसके वेग और द्रव्यमान के घूमने के बिंदु से कितनी दूर तक फैला हुआ है, द्वारा निर्धारित किया जाता है। द्रव्यमान अपने अक्ष बिंदु के जितना निकट होता है - या जितना अधिक समेकित वह उस अक्ष के चारों ओर होता है - उसका वेग उतना ही अधिक होता है।

प्रचक्रण (स्पिन) कोणीय गति, एक कण, जैसे कि एक इलेक्ट्रॉन,प्रोटॉन या न्यूट्रॉन की,आंतरिक कोणीय गति(वेग) से जुड़ी होती है। प्रचक्रण (स्पिन) कोणीय गति किसी भी माध्यम से कण की गति से संबंधित नहीं है। कण के गतिमान होने की व्यवस्था में ,कण की गति, तात्कालिक व बाहय पहलु है,जब की एक प्र्चक्रित कण की प्रचक्रण गति तात्कालिक होने के साथ साथ उसका आंतरिक गुण है। यहाँ ध्यान देने योग्य बात यह भी है की इस गतिशील व्यवस्था में वेग मात्र चक्रित, मात्र कोणीय, मात्र रैखिक अथवा वेग के इन रूपों के विभिन्न संयोजन संयोजनों में उपस्थित हो।

किसी कण का स्पिन कोणीय संवेग परिमाणित होता है, जिसका अर्थ है कि इसमें केवल कुछ असतत मान हो सकते हैं, जो कण के गुणों पर निर्भर करते हैं। उदाहरण के लिए, एक इलेक्ट्रॉन का स्पिन 1/2 होता है, जिसका अर्थ है कि इसके स्पिन कोणीय गति के केवल दो संभावित मान हो सकते हैं: प्लैंक स्थिरांक की इकाइयों में या को से विभाजित किया जाता है।

चक्रण के अतिरिक्त, कणों में कक्षीय कोणीय संवेग भी हो सकता है, जो एक केंद्रीय बिंदु या अक्ष के चारों ओर उनकी गति से जुड़ा होता है। किसी कण का कुल कोणीय संवेग उसके प्रचक्रण और कक्षीय कोणीय संवेग का योग होता है।

स्पिन और कक्षीय कोणीय गति सहित कोणीय गति की अवधारणा क्वांटम यांत्रिकी, परमाणु और आणविक भौतिकी और खगोल विज्ञान सहित भौतिकी के कई क्षेत्रों के लिए मौलिक है। इन क्षेत्रों में कोणीय संवेग का संरक्षण एक महत्वपूर्ण सिद्धांत है, और इसका उपयोग कई देखी गई घटनाओं की व्याख्या करने के लिए किया जाता है।

उदाहरण

किसी वस्तु के कोणीय संवेग को मापते समय यह देखा जाता है की वह वस्तु किस व्यवस्था का अंग है। ऐसी स्थिति में सौर्य मंडल में प्रचक्रण करते,कक्षीय अवस्था में पाए आने वाले ग्रह (जैसे की सूर्य की परिक्रमा करती पृथ्वी) और एक परमाणु के नाभिक प्रभाव क्षेत्र के इर्द गिर्द पाए जाने वाले इलेक्ट्रान के कोणीय संवेग के दो हिज्जे (प्र्चक्रित एवं कक्षीय पहलु ) को नापने की विधि मूलतः एक सी होने पर भी, दृष्टिकोण भेद से ग्रसित है।

गणना सापेक्षतावादी विचारों पर भी निर्भर करती है। सूर्य के चारों ओर पृथ्वी की गति के सरल (आ-सापेक्ष) मामले पर विचार करें

एक कक्षा में किसी द्रव्यमान के पिंड, के कोणीय संवेग का साधारण सम्बन्ध

द्वारा दिया जाता है

जहाँ , कक्षा की आवृत्ति है और की त्रिज्या है।

इसके बजाय अपनी धुरी के चारों ओर घूमने वाले एक समान कठोर गोले का कोणीय संवेग

द्वारा दिया जाता है

जहाँ गोले का द्रव्यमान है, घूर्णन की आवृत्ति है और गोले की त्रिज्या है।

इस प्रकार, उदाहरण के लिए, सूर्य के संबंध में पृथ्वी का कक्षीय कोणीय संवेग लगभग 2.66 × 1040 kg⋅m2⋅s−1 है[1], जबकि इसका प्रचक्रण (घूर्णी) कोणीय संवेग लगभग 7.05 × 1033 kg⋅m2⋅s−1 है।

अपनी धुरी के चारों ओर घूमने वाले एकसमान कठोर गोले के मामले में, यदि इसके द्रव्यमान के बजाय, इसका घनत्व ज्ञात हो, तो कोणीय संवेग द्वारा दिया जाता है

कुछ आकृतियों के जड़त्व आघूर्ण

जहाँ गोले का घनत्व है, घूर्णन की आवृत्ति है और गोले की त्रिज्या है।

स्पिनिंग डिस्क के सरलतम मामले में, कोणीय संवेग द्वारा दिया जाता है [2]

जहाँ डिस्क का द्रव्यमान है, घूर्णन की आवृत्ति है और डिस्क की त्रिज्या है।

यदि इसके बजाय डिस्क अपने व्यास के बारे में घूमती है (जैसे सिक्के का लट्टू के रूप में घूर्ण ), तो इसका कोणीय संवेग [2] द्वारा दिया जाता है

समान द्रव्यमान के रहते हुए भी ,वस्तु के विभिन्न आकारों के कारण, घूर्णी और कोणीय संवेग,अलग अलग हो सकते हैं।ऐसा उस द्रव्यमान वस्तु के आकार भेद से उतपन्न जड़त्व आघूर्ण के बदलाव के कारण होता है (जैसा की संलग्न चित्र में दिखलाया गया है)।

छोटे पैमाने की प्रणालियों के लिए : इलेक्ट्रॉनों के लिए उदाहरण

बाध्य इलेक्ट्रॉनों के लिए एक संभाव्य व्याख्या लागू होती है, इसका मतलब है कि हिसेनबर्ग के अनिश्चितता सिद्धांत द्वारा निर्धारित सीमाओं के भीतर एक परमाणु कक्षा में एक इलेक्ट्रॉन को खोजने की संभावना परिभाषित की जाती है। ऐसे परिदृश्य में कोणीय गति का स्पिन और कक्षीय घटक अभी भी लागू है।

कोणीय गति, क्वांटम संख्या, जिसे द्वारा दर्शाया गया है, सामान्य आकार या क्षेत्र का वर्णन करता है,जिसमें एक इलेक्ट्रॉन होता है-इसकी कक्षीय आकृति का मान मुख्य क्वांटम संख्या, के मान पर निर्भर करता है। कोणीय गति क्वांटम संख्या में शून्य से के धनात्मक मान हो सकते हैं। अगर तो या तो अथवा हो सकता है।

संदर्भ

  1. "Angular Momentum".
  2. 2.0 2.1 "भौतिकी और खगोल विज्ञान विभाग, जॉर्जिया स्टेट यूनिवर्सिटी। "Moment of Inertia: Thin Disk" हाइपरफिजिक्स 17 मार्च 2023 को पुनःप्राप्त".