ज़िगज़ैग लेम्मा: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 55: | Line 55: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 08/05/2023]] | [[Category:Created On 08/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 07:53, 22 May 2023
गणित में, विशेष रूप से होमोलॉजिकल बीजगणित, ज़िग-ज़ैग लेम्मा कुछ श्रृंखला परिसरों के होमोलॉजी समूहों में विशेष लंबे स्पष्ट अनुक्रम के अस्तित्व पर ध्यान देती है। परिणाम हर एबेलियन श्रेणी में मान्य है।
कथन
एबेलियन श्रेणी में (जैसे एबेलियन समूह की श्रेणी या किसी दिए गए क्षेत्र (बीजगणित) पर सदिश रिक्त स्थान की श्रेणी), मान लीजिए और चेन कॉम्प्लेक्स बनें; जो निम्नलिखित लघु स्पष्ट अनुक्रम में फिट हों:
- ऐसा क्रम निम्न क्रमविनिमेय आरेख के लिए आशुलिपि है:
[[image:complex_ses_diagram.png|
श्रृंखला परिसरों के संक्षिप्त स्पष्ट अनुक्रम का क्रमविनिमेय आरेख प्रतिनिधित्व
जहाँ पंक्तियाँ स्पष्ट क्रम हैं और प्रत्येक स्तंभ श्रृंखला परिसर है।
ज़िग-ज़ैग लेम्मा यह प्रमाणित करती है कि सीमा मानचित्रों का संग्रह है:
जो निम्नलिखित अनुक्रम को स्पष्ट बनाता है:
[[image:complex_les.png|
ज़िग-ज़ैग लेम्मा द्वारा दी गई समरूपता में लंबा स्पष्ट अनुक्रम
मानचित्र और समरूपता से प्रेरित सामान्य मानचित्र हैं। सीमा मानचित्र नीचे समझाया गया है। अनुक्रम में मानचित्रों के ज़िग-ज़ैग व्यवहार से लेम्मा का नाम उत्पन्न होता है। ज़िग-ज़ैग लेम्मा के भिन्न संस्करण को सामान्यतः "स्नेक लेम्मा" के रूप में जाना जाता है (यह नीचे दिए गए ज़िग-ज़ैग लेम्मा के प्रमाण का सार निकालता है)।
सीमा मानचित्रों का निर्माण
मानचित्र तर्क का अनुसरण करते हुए मानक आरेख का उपयोग करके परिभाषित किया गया है। माना में वर्ग का प्रतिनिधित्व करते हैं, इसलिए आंशिक । पंक्ति की शुद्धता का तात्पर्य है कि विशेषण है, इसलिए के साथ कुछ होना चाहिए। आरेख की क्रमविनिमेयता द्वारा,
स्पष्टता से,
इस प्रकार, चूँकि एकात्मक है, इसलिए अद्वितीय तत्व है, जैसे कि । यह चक्र है, क्योंकि इंजेक्शन है और
तब से । यह है। इसका अर्थ यह है कि चक्र है, इसलिए यह वर्ग का प्रतिनिधित्व करता है। अब हम परिभाषित कर सकते हैं:
परिभाषित सीमा मानचित्रों के साथ, कोई दिखा सकता है कि वे अच्छी तरह से परिभाषित हैं (अर्थात, c और b के विकल्पों से स्वतंत्र)। प्रमाण उपरोक्त के समान तर्कों का अनुसरण करते हुए आरेख का उपयोग करता है। इस तरह के तर्कों का उपयोग यह दिखाने के लिए भी किया जाता है कि समरूपता में अनुक्रम प्रत्येक समूह में स्पष्ट है।
यह भी देखें
- मेयर-विटोरिस अनुक्रम
संदर्भ
- Hatcher, Allen (2002). Algebraic Topology. Cambridge University Press. ISBN 0-521-79540-0.
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556
- Munkres, James R. (1993). Elements of Algebraic Topology. New York: Westview Press. ISBN 0-201-62728-0.