जैकबियन किस्म: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, [[जीनस (गणित)]] ''g'' के गैर-एकवचन [[बीजगणितीय वक्र]] ''C'' की जेकोबियन क़िस्म ''J''(''C'') डिग्री 0 [[लाइन बंडल|रेखा समूहों]] का [[मोडुली स्पेस]] है। यह '''C''<nowiki/>' के [[पिकार्ड समूह]] में पहचान का जुड़ा हुआ घटक है, इसलिए [[एबेलियन किस्म|एबेलियन क़िस्म]] कहलाता है।
गणित में, [[जीनस (गणित)]] ''g'' के गैर-एकवचन [[बीजगणितीय वक्र]] ''C'' की जेकोबियन क़िस्म ''J''(''C'') डिग्री 0 [[लाइन बंडल|रेखा समूहों]] का [[मोडुली स्पेस|मोडुली स्थान]] है। यह '''C''<nowiki/>' के [[पिकार्ड समूह]] में पहचान का जुड़ा हुआ घटक है, इसलिए [[एबेलियन किस्म|एबेलियन क़िस्म]] कहलाता है।


== परिचय ==
== परिचय ==
Line 30: Line 30:
== यह भी देखें ==
== यह भी देखें ==


* अवधि आव्यूह - आवर्त आव्यूह एक वक्र के जैकबियन की गणना के लिए एक उपयोगी तकनीक है
* अवधि आव्यूह - आवर्त आव्यूह वक्र के जैकबियन की गणना के लिए उपयोगी प्रविधि है।
* [[हॉज संरचना]] - ये जैकोबियंस के सामान्यीकरण हैं
* [[हॉज संरचना]] - ये जैकोबियंस के सामान्यीकरण हैं।
*होंडा-टेट प्रमेय - एबेलियन क़िस्मों को परिमित क्षेत्रों में आइसोजेनी तक वर्गीकृत करता है
*होंडा-टेट प्रमेय - एबेलियन क़िस्मों को परिमित क्षेत्रों में आइसोजेनी तक वर्गीकृत करता है।
* इंटरमीडिएट जैकबियन
* इंटरमीडिएट जैकबियन



Revision as of 13:40, 5 May 2023

गणित में, जीनस (गणित) g के गैर-एकवचन बीजगणितीय वक्र C की जेकोबियन क़िस्म J(C) डिग्री 0 रेखा समूहों का मोडुली स्थान है। यह 'C' के पिकार्ड समूह में पहचान का जुड़ा हुआ घटक है, इसलिए एबेलियन क़िस्म कहलाता है।

परिचय

जैकबियन क़िस्म का नाम कार्ल गुस्ताव जैकोबी के नाम पर रखा गया है, जिन्होंने एबेल-जैकोबी प्रमेय के पूर्ण संस्करण को प्रमाणित कर दिया, जिससे नील्स एबेल के इंजेक्शन कथन को समरूपता में परिवर्तित कर दिया गया। यह मुख्य रूप से ध्रुवीकृत एबेलियन क़िस्म है, जिसका आयाम g है, एवं इसलिए, कठिन संख्याओं पर, यह कठिन टोरस है। यदि p, C का बिंदु है, तो वक्र C को J की पहचान के लिए दिए गए बिंदु p मानचित्रण के साथ J की उप-विविधता में मैप किया जा सकता है, एवं C समूह (गणित) के रूप में J उत्पन्न करता है।

कठिन वक्रों के लिए निर्माण

कठिन संख्याओं पर, जेकोबियन क़िस्म को भागफल स्थान (रैखिक बीजगणित) V/L के रूप में अनुभव किया जा सकता है, जहाँ V, C पर सभी वैश्विक होलोमोर्फिक अंतरों के सदिश स्थान का दोहरा है एवं L प्रपत्र V के सभी तत्वों की जाली है।

जहां γ C में संवृत पथ (टोपोलॉजी) है। दूसरे शब्दों में,

साथ में स्थापित उपरोक्त मानचित्र के माध्यम से यह थीटा कार्यों के उपयोग के साथ स्पष्ट रूप से किया जा सकता है।[1] मनमाना क्षेत्र पर वक्र के जैकोबियन का निर्माण वेइल Weil (1948) द्वारा परिमित क्षेत्र पर घटता के लिए रीमैन परिकल्पना स्वयं के प्रमाण के भाग के रूप में निर्मित किया गया था।

एबेल-जैकोबी प्रमेय कहता है कि इस क़िस्म निर्मित टोरस क़िस्म है, वक्र का शास्त्रीय जैकोबियन, जो वास्तव में डिग्री 0 रेखा समूहों को पैरामीट्रिज करता है, अर्थात, इसे डिग्री 0 भाजक मॉडुलो रैखिक तुल्यता की स्वयं पिकार्ड विविधता के साथ पहचाना जा सकता है।

बीजगणितीय संरचना

समूह के रूप में, वक्र की जैकोबियन विविधता प्रमुख विभाजकों के उपसमूह, अर्थात तर्कसंगत कार्यों के विभाजकों द्वारा डिग्री शून्य के विभाजकों के समूह के भागफल के लिए समरूप है। यह उन क्षेत्रों के लिए प्रारम्भ होता है जो बीजगणितीय रूप से संवृत नहीं होते हैं, कि उस क्षेत्र में परिभाषित विभाजक एवं कार्यों पर विचार किया जाए।

अभिमुख के विचार

टोरेली के प्रमेय में कहा गया है कि कठिन वक्र उसके जैकबियन (इसके ध्रुवीकरण के साथ) द्वारा निर्धारित किया जाता है।

शोट्की कठिनाई पूछती है, कि मुख्य रूप से ध्रुवीकृत एबेलियन क़िस्में कर्व्स के जैकबियन हैं। पिकार्ड क़िस्म, अल्बानिया क़िस्म, सामान्यीकृत जैकबियन एवं मध्यवर्ती जैकबियन उच्च-आयामी क़िस्मों के लिए जैकबियन के सामान्यीकरण होते हैं। उच्च आयाम की क़िस्मों के लिए होलोमोर्फिक 1-रूपों के स्थान के भागफल के रूप में जैकोबियन क़िस्म का निर्माण अल्बानिया क़िस्म देने के लिए सामान्य होता है, किन्तु सामान्यतः यह पिकार्ड क़िस्म के लिए समरूपी नहीं होना चाहिए।

यह भी देखें

  • अवधि आव्यूह - आवर्त आव्यूह वक्र के जैकबियन की गणना के लिए उपयोगी प्रविधि है।
  • हॉज संरचना - ये जैकोबियंस के सामान्यीकरण हैं।
  • होंडा-टेट प्रमेय - एबेलियन क़िस्मों को परिमित क्षेत्रों में आइसोजेनी तक वर्गीकृत करता है।
  • इंटरमीडिएट जैकबियन

संदर्भ

  1. David, Mumford; Nori, Madhav; Previato, Emma; Stillman, Mike. थीटा I पर टाटा व्याख्यान. Springer.



संगणना तकनीक

आइसोजेनी वर्ग

क्रिप्टोग्राफी

  • arxiv:1807.05270|वक्र, जेकोबियन एवं क्रिप्टोग्राफी

सामान्य

श्रेणी:एबेलियन क़िस्में श्रेणी:बीजगणितीय वक्र श्रेणी:भाजकों की ज्यामिति श्रेणी:मोडुली सिद्धांत