ओपन-सर्किट टेस्ट: Difference between revisions

From Vigyanwiki
 
No edit summary
Line 1: Line 1:
[[Image:Open circuit test.png|thumb|upright=1.6|ओपन-सर्किट टेस्ट के लिए सर्किट आरेख]]ओपन-सर्किट टेस्ट, या नो-लोड टेस्ट, [[ट्रांसफार्मर]] की उत्तेजना शाखा में नो-लोड इलेक्ट्रिकल प्रतिबाधा निर्धारित करने के लिए [[ विद्युत अभियन्त्रण ]] में उपयोग की जाने वाली विधियों में से एक है।
[[Image:Open circuit test.png|thumb|upright=1.6|विवर्त -परिपथ परीक्षण के लिए परिपथ आरेख]]विवर्त -परिपथ परीक्षण, या नो-लोड परीक्षण, [[ट्रांसफार्मर]] की उत्तेजना शाखा में नो-लोड इलेक्ट्रिकल प्रतिबाधा निर्धारित करने के लिए [[ विद्युत अभियन्त्रण ]] में उपयोग की जाने वाली विधियों में से एक है।
नो लोड को ओपन सर्किट द्वारा दर्शाया जाता है, जिसे आकृति के दाईं ओर सर्किट के छेद या अधूरे हिस्से के रूप में दर्शाया जाता है।
नो लोड को विवर्त  परिपथ द्वारा दर्शाया जाता है, जिसे आकृति के दाईं ओर परिपथ के छेद या अधूरे भाग के रूप में दर्शाया जाता है।


== विधि ==
== विधि ==
ट्रांसफॉर्मर का सेकेंडरी खुला छोड़ दिया जाता है। एक [[वाटमीटर]] प्राथमिक से जुड़ा होता है। प्राथमिक वाइंडिंग के साथ श्रृंखला में एक [[ एम्मिटर ]] जुड़ा हुआ है। [[ वाल्टमीटर ]] वैकल्पिक है क्योंकि लागू वोल्टेज वोल्टमीटर रीडिंग के समान है। रेटेड वोल्टेज प्राथमिक पर लागू होता है।<ref name=":0">{{Cite web|url=https://www.electrical4u.com/open-and-short-circuit-test-on-transformer/|title=Open and Short Circuit Test of Transformer {{!}} Electrical4u|last=Electrical4U|website=electrical4u.com/|language=en-US|access-date=2020-03-01}}</ref>
ट्रांसफॉर्मर का सेकेंडरी विवर्त छोड़ दिया जाता है। एक [[वाटमीटर]] प्राथमिक से जुड़ा होता है। प्राथमिक वाइंडिंग के साथ श्रृंखला में एक [[ एम्मिटर ]] जुड़ा हुआ है। [[ वाल्टमीटर ]] वैकल्पिक है क्योंकि प्रयुक्त वोल्टेज वोल्टमीटर रीडिंग के समान है। रेटेड वोल्टेज प्राथमिक पर प्रयुक्त होता है।<ref name=":0">{{Cite web|url=https://www.electrical4u.com/open-and-short-circuit-test-on-transformer/|title=Open and Short Circuit Test of Transformer {{!}} Electrical4u|last=Electrical4U|website=electrical4u.com/|language=en-US|access-date=2020-03-01}}</ref>
यदि लागू वोल्टेज सामान्य वोल्टेज है तो सामान्य प्रवाह स्थापित किया जाएगा। चूंकि मैग्नेटिक कोर # कोर लॉस एप्लाइड वोल्टेज का एक फंक्शन है, इसलिए सामान्य आयरन लॉस होगा। इसलिए रेटेड वोल्टेज पर लोहे की हानि अधिकतम होती है। इस अधिकतम लोहे के नुकसान को वाटमीटर का उपयोग करके मापा जाता है। चूंकि ट्रांसफॉर्मर की घुमावदार श्रृंखला और समांतर सर्किट की प्रतिबाधा उत्तेजना शाखा की तुलना में बहुत छोटी है, इसलिए सभी इनपुट वोल्टेज उत्तेजना शाखा में [[ वोल्टेज घटाव ]] है। इस प्रकार वाटमीटर केवल लौह हानि को मापता है। यह परीक्षण केवल संयुक्त लोहे के नुकसान को मापता है जिसमें [[हिस्टैरिसीस हानि]] और एड़ी वर्तमान हानि शामिल है। हालांकि हिस्टैरिसीस हानि एड़ी वर्तमान हानि से कम है, यह नगण्य नहीं है। ट्रांसफॉर्मर को एक चर आवृत्ति स्रोत से चलाकर दो नुकसानों को अलग किया जा सकता है क्योंकि हिस्टैरिसीस हानि आपूर्ति आवृत्ति के साथ रैखिक रूप से भिन्न होती है और एड़ी वर्तमान हानि आवृत्ति वर्ग के साथ भिन्न होती है।<ref name=":0" />


हिस्टैरिसीस और एड़ी वर्तमान नुकसान:
यदि प्रयुक्त वोल्टेज सामान्य वोल्टेज है तो सामान्य प्रवाह स्थापित किया जाएगा। चूंकि मैग्नेटिक कोर  या कोर लॉस एप्लाइड वोल्टेज का एक कार्य है, इसलिए सामान्य आयरन लॉस होगा। इसलिए रेटेड वोल्टेज पर लोहे की हानि अधिकतम होती है। इस अधिकतम लोहे के हानि को वाटमीटर का उपयोग करके मापा जाता है। चूंकि ट्रांसफॉर्मर की घुमावदार श्रृंखला और समांतर परिपथ की प्रतिबाधा उत्तेजना शाखा की तुलना में बहुत छोटी है, इसलिए सभी इनपुट वोल्टेज उत्तेजना शाखा में [[ वोल्टेज घटाव | वोल्टेज घटाव]] है। इस प्रकार वाटमीटर केवल लौह हानि को मापता है। यह परीक्षण केवल संयुक्त लोहे के हानि को मापता है जिसमें [[हिस्टैरिसीस हानि]] और एड़ी वर्तमान हानि सम्मिलित है। चूंकि हिस्टैरिसीस हानि एड़ी वर्तमान हानि से कम है, यह नगण्य नहीं है। ट्रांसफॉर्मर को एक चर आवृत्ति स्रोत से चलाकर दो हानिया को अलग किया जा सकता है क्योंकि हिस्टैरिसीस हानि आपूर्ति आवृत्ति के साथ रैखिक रूप से भिन्न होती है और एड़ी वर्तमान हानि आवृत्ति वर्ग के साथ भिन्न होती है।<ref name=":0" />
 
हिस्टैरिसीस और एड़ी वर्तमान हानि :


<math>P_h = K_h B_{max}^n f</math>
<math>P_h = K_h B_{max}^n f</math>


<math>P_e = K_e B_{max}^2 f^2</math>
<math>P_e = K_e B_{max}^2 f^2</math>
चूंकि ट्रांसफार्मर का द्वितीयक खुला है, प्राथमिक केवल नो-लोड करंट खींचता है, जिसमें कुछ तांबे का नुकसान होगा। यह नो-लोड करंट बहुत छोटा है और क्योंकि प्राथमिक में तांबे का नुकसान इस करंट के वर्ग के समानुपाती होता है, यह नगण्य है। सेकेंडरी में कॉपर लॉस नहीं होता है क्योंकि सेकेंडरी करंट नहीं होता है।<ref name=":0" />


ट्रांसफार्मर का द्वितीयक पक्ष खुला रहता है, इसलिए द्वितीयक पक्ष पर कोई भार नहीं होता है। इसलिए, इस सन्निकटन में बिजली को अब प्राथमिक से द्वितीयक में स्थानांतरित नहीं किया जाता है, और नगण्य धारा द्वितीयक वाइंडिंग से गुजरती है। चूँकि द्वितीयक वाइंडिंग से कोई करंट नहीं गुजरता है, कोई चुंबकीय क्षेत्र नहीं बनता है, जिसका अर्थ है कि प्राथमिक तरफ शून्य करंट प्रेरित होता है। यह सन्निकटन के लिए महत्वपूर्ण है क्योंकि यह हमें श्रृंखला प्रतिबाधा को अनदेखा करने की अनुमति देता है क्योंकि यह माना जाता है कि इस प्रतिबाधा से कोई धारा नहीं गुजरती है।
चूंकि ट्रांसफार्मर का द्वितीयक विवर्त है, प्राथमिक केवल नो-लोड धारा खींचता है, जिसमें कुछ तांबे का हानि होगा। यह नो-लोड धारा बहुत छोटा है और क्योंकि प्राथमिक में तांबे का हानि इस धारा के वर्ग के समानुपाती होता है, यह नगण्य है। सेकेंडरी में कॉपर लॉस नहीं होता है क्योंकि सेकेंडरी धारा नहीं होता है।<ref name=":0" />
 
ट्रांसफार्मर का द्वितीयक पक्ष विवर्त रहता है, इसलिए द्वितीयक पक्ष पर कोई भार नहीं होता है। इसलिए, इस सन्निकटन में बिजली को अब प्राथमिक से द्वितीयक में स्थानांतरित नहीं किया जाता है, और नगण्य धारा द्वितीयक वाइंडिंग से गुजरती है। चूँकि द्वितीयक वाइंडिंग से कोई धारा नहीं गुजरता है, कोई चुंबकीय क्षेत्र नहीं बनता है, जिसका अर्थ है कि प्राथमिक तरफ शून्य धारा प्रेरित होता है। यह सन्निकटन के लिए महत्वपूर्ण है क्योंकि यह हमें श्रृंखला प्रतिबाधा को अनदेखा करने की अनुमति देता है क्योंकि यह माना जाता है कि इस प्रतिबाधा से कोई धारा नहीं गुजरती है।


समकक्ष सर्किट आरेख पर समांतर शंट घटक का उपयोग कोर हानियों का प्रतिनिधित्व करने के लिए किया जाता है। ये मुख्य नुकसान प्रवाह और एड़ी धाराओं की दिशा में परिवर्तन से आते हैं। वैकल्पिक प्रवाह के कारण लोहे में प्रेरित धाराओं के कारण एड़ी का वर्तमान नुकसान होता है। समांतर शंट घटक के विपरीत, सर्किट आरेख में श्रृंखला घटक ट्रांसफॉर्मर के कॉइल वाइंडिंग्स के प्रतिरोध के कारण घुमावदार नुकसान का प्रतिनिधित्व करता है।
समकक्ष परिपथ आरेख पर समांतर शंट घटक का उपयोग कोर हानियों का प्रतिनिधित्व करने के लिए किया जाता है। ये मुख्य हानि प्रवाह और एड़ी धाराओं की दिशा में परिवर्तन से आते हैं। वैकल्पिक प्रवाह के कारण लोहे में प्रेरित धाराओं के कारण एड़ी का वर्तमान हानि होता है। समांतर शंट घटक के विपरीत, परिपथ आरेख में श्रृंखला घटक ट्रांसफॉर्मर के कॉइल वाइंडिंग्स के प्रतिरोध के कारण घुमावदार हानि का प्रतिनिधित्व करता है।


[[विद्युत प्रवाह]], [[वोल्टेज]] और [[विद्युत शक्ति]] को [[प्रवेश]] और शक्ति कारक | शक्ति-कारक कोण का पता लगाने के लिए [[प्राथमिक वाइंडिंग]] पर मापा जाता है।
[[विद्युत प्रवाह]], [[वोल्टेज]] और [[विद्युत शक्ति]] को [[प्रवेश]] और शक्ति कारक '''शक्ति-कारक''' कोण का पता लगाने के लिए [[प्राथमिक वाइंडिंग]] पर मापा जाता है।


वास्तविक ट्रांसफॉर्मर की श्रृंखला प्रतिबाधा निर्धारित करने का एक अन्य तरीका [[ शॉर्ट-सर्किट परीक्षण ]] है।
वास्तविक ट्रांसफॉर्मर की श्रृंखला प्रतिबाधा निर्धारित करने का एक अन्य विधि [[ शॉर्ट-सर्किट परीक्षण | शॉर्ट-परिपथ परीक्षण]] है।


== गणना ==
== गणना ==
द करेंट <math>\mathbf{I_0}</math> बहुत छोटी है।
धारा <math>\mathbf{I_0}</math> बहुत छोटा है।


अगर <math>\mathbf{W}</math> वाटमीटर तब पढ़ रहा है,
यदि <math>\mathbf{W}</math> वाटमीटर का पाठ्यांक है तो,


:<math>\mathbf{W} = \mathbf{V_1} \mathbf{I_0} \cos \phi_0 </math>
:<math>\mathbf{W} = \mathbf{V_1} \mathbf{I_0} \cos \phi_0 </math>
Line 66: Line 68:
<math>\mathbf{W}</math> वाटमीटर रीडिंग है
<math>\mathbf{W}</math> वाटमीटर रीडिंग है


<math>\mathbf{V_1}</math> लागू रेटेड वोल्टेज है
<math>\mathbf{V_1}</math> प्रयुक्त रेटेड वोल्टेज है


<math>\mathbf{I_0}</math> नो-लोड करंट है
<math>\mathbf{I_0}</math> नो-लोड धारा है


<math>\mathbf{I_m}</math> नो-लोड करंट का मैग्नेटाइजिंग घटक है
<math>\mathbf{I_m}</math> नो-लोड धारा का मैग्नेटाइजिंग घटक है


<math>\mathbf{I_w}</math> नो-लोड करंट का मुख्य नुकसान घटक है
<math>\mathbf{I_w}</math> नो-लोड धारा का मुख्य हानि घटक है


<math>\mathbf{Z_0}</math> रोमांचक प्रतिबाधा है
<math>\mathbf{Z_0}</math> रोमांचक प्रतिबाधा है
Line 79: Line 81:


== यह भी देखें ==
== यह भी देखें ==
* शॉर्ट-सर्किट परीक्षण
* शॉर्ट-परिपथ परीक्षण
* थेवेनिन प्रमेय
* थेवेनिन प्रमेय
* [[अवरुद्ध रोटर परीक्षण]]
* [[अवरुद्ध रोटर परीक्षण]]

Revision as of 15:32, 10 May 2023

विवर्त -परिपथ परीक्षण के लिए परिपथ आरेख

विवर्त -परिपथ परीक्षण, या नो-लोड परीक्षण, ट्रांसफार्मर की उत्तेजना शाखा में नो-लोड इलेक्ट्रिकल प्रतिबाधा निर्धारित करने के लिए विद्युत अभियन्त्रण में उपयोग की जाने वाली विधियों में से एक है।

नो लोड को विवर्त परिपथ द्वारा दर्शाया जाता है, जिसे आकृति के दाईं ओर परिपथ के छेद या अधूरे भाग के रूप में दर्शाया जाता है।

विधि

ट्रांसफॉर्मर का सेकेंडरी विवर्त छोड़ दिया जाता है। एक वाटमीटर प्राथमिक से जुड़ा होता है। प्राथमिक वाइंडिंग के साथ श्रृंखला में एक एम्मिटर जुड़ा हुआ है। वाल्टमीटर वैकल्पिक है क्योंकि प्रयुक्त वोल्टेज वोल्टमीटर रीडिंग के समान है। रेटेड वोल्टेज प्राथमिक पर प्रयुक्त होता है।[1]

यदि प्रयुक्त वोल्टेज सामान्य वोल्टेज है तो सामान्य प्रवाह स्थापित किया जाएगा। चूंकि मैग्नेटिक कोर या कोर लॉस एप्लाइड वोल्टेज का एक कार्य है, इसलिए सामान्य आयरन लॉस होगा। इसलिए रेटेड वोल्टेज पर लोहे की हानि अधिकतम होती है। इस अधिकतम लोहे के हानि को वाटमीटर का उपयोग करके मापा जाता है। चूंकि ट्रांसफॉर्मर की घुमावदार श्रृंखला और समांतर परिपथ की प्रतिबाधा उत्तेजना शाखा की तुलना में बहुत छोटी है, इसलिए सभी इनपुट वोल्टेज उत्तेजना शाखा में वोल्टेज घटाव है। इस प्रकार वाटमीटर केवल लौह हानि को मापता है। यह परीक्षण केवल संयुक्त लोहे के हानि को मापता है जिसमें हिस्टैरिसीस हानि और एड़ी वर्तमान हानि सम्मिलित है। चूंकि हिस्टैरिसीस हानि एड़ी वर्तमान हानि से कम है, यह नगण्य नहीं है। ट्रांसफॉर्मर को एक चर आवृत्ति स्रोत से चलाकर दो हानिया को अलग किया जा सकता है क्योंकि हिस्टैरिसीस हानि आपूर्ति आवृत्ति के साथ रैखिक रूप से भिन्न होती है और एड़ी वर्तमान हानि आवृत्ति वर्ग के साथ भिन्न होती है।[1]

हिस्टैरिसीस और एड़ी वर्तमान हानि :

चूंकि ट्रांसफार्मर का द्वितीयक विवर्त है, प्राथमिक केवल नो-लोड धारा खींचता है, जिसमें कुछ तांबे का हानि होगा। यह नो-लोड धारा बहुत छोटा है और क्योंकि प्राथमिक में तांबे का हानि इस धारा के वर्ग के समानुपाती होता है, यह नगण्य है। सेकेंडरी में कॉपर लॉस नहीं होता है क्योंकि सेकेंडरी धारा नहीं होता है।[1]

ट्रांसफार्मर का द्वितीयक पक्ष विवर्त रहता है, इसलिए द्वितीयक पक्ष पर कोई भार नहीं होता है। इसलिए, इस सन्निकटन में बिजली को अब प्राथमिक से द्वितीयक में स्थानांतरित नहीं किया जाता है, और नगण्य धारा द्वितीयक वाइंडिंग से गुजरती है। चूँकि द्वितीयक वाइंडिंग से कोई धारा नहीं गुजरता है, कोई चुंबकीय क्षेत्र नहीं बनता है, जिसका अर्थ है कि प्राथमिक तरफ शून्य धारा प्रेरित होता है। यह सन्निकटन के लिए महत्वपूर्ण है क्योंकि यह हमें श्रृंखला प्रतिबाधा को अनदेखा करने की अनुमति देता है क्योंकि यह माना जाता है कि इस प्रतिबाधा से कोई धारा नहीं गुजरती है।

समकक्ष परिपथ आरेख पर समांतर शंट घटक का उपयोग कोर हानियों का प्रतिनिधित्व करने के लिए किया जाता है। ये मुख्य हानि प्रवाह और एड़ी धाराओं की दिशा में परिवर्तन से आते हैं। वैकल्पिक प्रवाह के कारण लोहे में प्रेरित धाराओं के कारण एड़ी का वर्तमान हानि होता है। समांतर शंट घटक के विपरीत, परिपथ आरेख में श्रृंखला घटक ट्रांसफॉर्मर के कॉइल वाइंडिंग्स के प्रतिरोध के कारण घुमावदार हानि का प्रतिनिधित्व करता है।

विद्युत प्रवाह, वोल्टेज और विद्युत शक्ति को प्रवेश और शक्ति कारक शक्ति-कारक कोण का पता लगाने के लिए प्राथमिक वाइंडिंग पर मापा जाता है।

वास्तविक ट्रांसफॉर्मर की श्रृंखला प्रतिबाधा निर्धारित करने का एक अन्य विधि शॉर्ट-परिपथ परीक्षण है।

गणना

धारा बहुत छोटा है।

यदि वाटमीटर का पाठ्यांक है तो,

उस समीकरण को फिर से लिखा जा सकता है,

इस प्रकार,


प्रतिबाधा

उपरोक्त समीकरणों का उपयोग करके, और के रूप में गणना की जा सकती है,

इस प्रकार,

या


प्रवेश

प्रवेश प्रतिबाधा का विलोम है। इसलिए,

चालन के रूप में गणना की जा सकती है,

इसलिए आशंका,

या

यहाँ,

वाटमीटर रीडिंग है

प्रयुक्त रेटेड वोल्टेज है

नो-लोड धारा है

नो-लोड धारा का मैग्नेटाइजिंग घटक है

नो-लोड धारा का मुख्य हानि घटक है

रोमांचक प्रतिबाधा है

रोमांचक प्रवेश है

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Electrical4U. "Open and Short Circuit Test of Transformer | Electrical4u". electrical4u.com/ (in English). Retrieved 2020-03-01.
  • Kosow (2007). Electric Machinery and Transformers. Pearson Education India.
  • Smarajit Ghosh (2004). Fundamentals of Electrical and Electronics Engineering. PHI Learning Pvt. Ltd.
  • Wildi, Wildi Theodore (2007). Electrical Machines , Drives And Power Systems, 6th edtn. Pearson.
  • Grainger. Stevenson (1994). Power System Analysis. McGraw-Hill.