ट्रांसमिशन गेट: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|A CMOS-based biderectional relay circuit}} | {{Short description|A CMOS-based biderectional relay circuit}} | ||
एक ट्रांसमिशन गेट (टीजी) एक [[रिले]] के समान एक एनालॉग गेट है जो लगभग किसी भी वोल्टेज क्षमता के साथ नियंत्रण संकेत द्वारा दोनों दिशाओं या ब्लॉक में संचालन कर सकता है।<ref>{{Cite web|url=https://www.maximintegrated.com/en/app-notes/index.mvp/id/4243|title=What is a Transmission Gate (Analog Switch)? - Tutorial - Maxim|website=www.maximintegrated.com|access-date=2019-05-21}}</ref> यह एक [[सीएमओएस]]-आधारित स्विच है | एक ट्रांसमिशन गेट (टीजी) एक [[रिले]] के समान एक एनालॉग गेट है जो लगभग किसी भी वोल्टेज क्षमता के साथ नियंत्रण संकेत द्वारा दोनों दिशाओं या ब्लॉक में संचालन कर सकता है।<ref>{{Cite web|url=https://www.maximintegrated.com/en/app-notes/index.mvp/id/4243|title=What is a Transmission Gate (Analog Switch)? - Tutorial - Maxim|website=www.maximintegrated.com|access-date=2019-05-21}}</ref> यह एक [[सीएमओएस]]-आधारित स्विच है जिसमें पीएमओएस शसक्त 1 किंतु खराब 0 पास करता है और एनएमओएस शसक्त 0 किंतु खराब 1 पास करता है। [[पीएमओएस तर्क]] और [[एनएमओएस तर्क]] दोनों एक साथ काम करते हैं। | ||
== संरचना == | == संरचना == | ||
[[File:Transmission gate.svg|thumb|right|ट्रांसमिशन गेट का सिद्धांत आरेख। नियंत्रण इनपुट एसटी को आपूर्ति वोल्टेज और स्विचिंग वोल्टेज के विभिन्न तर्क स्तरों के आधार पर नियंत्रित करने में सक्षम होना चाहिए।]]सिद्धांत रूप में | [[File:Transmission gate.svg|thumb|right|ट्रांसमिशन गेट का सिद्धांत आरेख। नियंत्रण इनपुट एसटी को आपूर्ति वोल्टेज और स्विचिंग वोल्टेज के विभिन्न तर्क स्तरों के आधार पर नियंत्रित करने में सक्षम होना चाहिए।]]सिद्धांत रूप में एक ट्रांसमिशन गेट दो [[क्षेत्र-प्रभाव ट्रांजिस्टर]] (एफईटी) से बना होता है, जिसमें - पारंपरिक असतत क्षेत्र-प्रभाव ट्रांजिस्टर के विपरीत- सब्सट्रेट टर्मिनल (बल्क) आंतरिक रूप से स्रोत टर्मिनल से जुड़ा नहीं होता है। दो ट्रांजिस्टर एक एन-चैनल एमओएसएफईटी और एक पी-चैनल एमओएसएफईटी एक साथ जुड़े दो ट्रांजिस्टर के नाली और स्रोत टर्मिनलों के साथ समानांतर में जुड़े हुए हैं। नियंत्रण टर्मिनल बनाने के लिए उनके गेट टर्मिनल एक दूसरे से एक गेट ([[इन्वर्टर (लॉजिक गेट)]]) द्वारा जुड़े हुए हैं। | ||
[[File:Transmission_gate_bowtie_symbol_variants.svg|thumb|right|सामान्यतः परिपथ आरेखों में ट्रांसमिशन गेट का प्रतिनिधित्व करने के लिए [[बो टाई]] प्रतीक के दो वेरिएंट का उपयोग किया जाता है]]असतत एफईटी के विपरीत, सब्सट्रेट टर्मिनल स्रोत कनेक्शन से जुड़ा नहीं है। इसके अतिरिक्त | [[File:Transmission_gate_bowtie_symbol_variants.svg|thumb|right|सामान्यतः परिपथ आरेखों में ट्रांसमिशन गेट का प्रतिनिधित्व करने के लिए [[बो टाई]] प्रतीक के दो वेरिएंट का उपयोग किया जाता है]]असतत एफईटी के विपरीत, सब्सट्रेट टर्मिनल स्रोत कनेक्शन से जुड़ा नहीं है। इसके अतिरिक्त सब्सट्रेट टर्मिनलों को संबंधित आपूर्ति क्षमता से जोड़ा जाता है जिससे यह सुनिश्चित किया जा सके कि परजीवी सब्सट्रेट डायोड (स्रोत/नाली और सब्सट्रेट के बीच) सदैव उलटा पक्षपाती है और इसलिए संकेत प्रवाह को प्रभावित नहीं करता है। इस प्रकार पी-चैनल एमओएसएफईटी का सब्सट्रेट टर्मिनल सकारात्मक आपूर्ति क्षमता से जुड़ा है, और एन-चैनल एमओएसएफईटी का सब्सट्रेट टर्मिनल ऋणात्मक आपूर्ति क्षमता से जुड़ा है। | ||
== कार्य == | == कार्य == | ||
[[File:Transmission gate resistor.svg|thumb|right|ट्रांसमिशन गेट की प्रतिरोध विशेषता। VTHN और VTHP उन स्थितियों को निरूपित करते हैं जिन पर स्विच किया जाने वाला वोल्टेज एक क्षमता तक पहुँच गया है, जहाँ संबंधित ट्रांजिस्टर का थ्रेशोल्ड वोल्टेज पहुँच गया है।]]जब नियंत्रण इनपुट एक तर्क शून्य (ऋणात्मक बिजली आपूर्ति क्षमता) होता है | [[File:Transmission gate resistor.svg|thumb|right|ट्रांसमिशन गेट की प्रतिरोध विशेषता। VTHN और VTHP उन स्थितियों को निरूपित करते हैं जिन पर स्विच किया जाने वाला वोल्टेज एक क्षमता तक पहुँच गया है, जहाँ संबंधित ट्रांजिस्टर का थ्रेशोल्ड वोल्टेज पहुँच गया है।]]जब नियंत्रण इनपुट एक तर्क शून्य (ऋणात्मक बिजली आपूर्ति क्षमता) होता है तो एन-चैनल एमओएसएफईटी का गेट भी ऋणात्मक आपूर्ति वोल्टेज क्षमता पर होता है। पी-चैनल एमओएसएफईटी का गेट टर्मिनल सकारात्मक आपूर्ति वोल्टेज क्षमता के इन्वर्टर के कारण होता है। तथापि ट्रांसमिशन गेट (ए या बी) के स्विचिंग टर्मिनल पर वोल्टेज लगाया जाता है (अनुमेय सीमा के अंदर) एन-चैनल एमओएसएफईटी का गेट-सोर्स वोल्टेज सदैव ऋणात्मक होता है और पी-चैनल एमओएसएफईटी सदैव सकारात्मक होता है। . अनुरूप दोनों में से कोई भी ट्रांजिस्टर चालन नहीं करेगा और ट्रांसमिशन गेट बंद हो जाता है। | ||
जब नियंत्रण इनपुट एक तार्किक इनपुट होता है, तो एन-चैनल एमओएसएफईटी का गेट टर्मिनल सकारात्मक आपूर्ति वोल्टेज क्षमता पर स्थित होता है। इन्वर्टर द्वारा | जब नियंत्रण इनपुट एक तार्किक इनपुट होता है, तो एन-चैनल एमओएसएफईटी का गेट टर्मिनल सकारात्मक आपूर्ति वोल्टेज क्षमता पर स्थित होता है। इन्वर्टर द्वारा पी-चैनल एमओएसएफईटी का गेट टर्मिनल अब एक ऋणात्मक आपूर्ति वोल्टेज क्षमता पर है। चूंकि ट्रांजिस्टर का सब्सट्रेट टर्मिनल स्रोत टर्मिनल से जुड़ा नहीं है, नाली और स्रोत टर्मिनल लगभग समान हैं और ट्रांजिस्टर गेट टर्मिनल के बीच वोल्टेज अंतर पर संचालन करना प्रारंभ करते हैं और इनमें से एक आचरण करता है। | ||
ट्रांसमिशन गेट के स्विचिंग टर्मिनलों में से एक को ऋणात्मक आपूर्ति वोल्टेज के पास वोल्टेज में उठाया जाता है, एन-चैनल एमओएसएफईटी पर एक सकारात्मक गेट-स्रोत वोल्टेज (गेट-टू-ड्रेन वोल्टेज) होगा | ट्रांसमिशन गेट के स्विचिंग टर्मिनलों में से एक को ऋणात्मक आपूर्ति वोल्टेज के पास वोल्टेज में उठाया जाता है, एन-चैनल एमओएसएफईटी पर एक सकारात्मक गेट-स्रोत वोल्टेज (गेट-टू-ड्रेन वोल्टेज) होगा और ट्रांजिस्टर का संचालन प्रारंभ होता है और ट्रांसमिशन गेट आयोजित करता है। ट्रांसमिशन गेट के स्विचिंग टर्मिनलों में से एक पर वोल्टेज अब लगातार सकारात्मक आपूर्ति वोल्टेज क्षमता तक बढ़ा दिया जाता है, इसलिए एन-चैनल एमओएसएफईटी पर गेट-सोर्स वोल्टेज कम हो जाता है (गेट-ड्रेन वोल्टेज), और यह चालू होना प्रारंभ हो जाता है बंद उसी समय, पी-चैनल एमओएसएफईटी में एक ऋणात्मक गेट-सोर्स वोल्टेज (गेट-टू-ड्रेन वोल्टेज) बनता है जिससे यह ट्रांजिस्टर संचालन करना प्रारंभ कर देता है और ट्रांसमिशन गेट स्विच हो जाता है। | ||
जिससे यह प्राप्त किया जाता है कि ट्रांसमिशन गेट पूरे वोल्टेज | जिससे यह प्राप्त किया जाता है कि ट्रांसमिशन गेट पूरे वोल्टेज सीमा से गुजरता है। ट्रांसमिशन गेट का संक्रमण प्रतिरोध स्विच किए जाने वाले वोल्टेज के आधार पर भिन्न होता है, और दो ट्रांजिस्टर के प्रतिरोध घटता के सुपरपोजिशन से मेल खाता है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
Line 46: | Line 46: | ||
{{main|पास ट्रांजिस्टर तर्क}} | {{main|पास ट्रांजिस्टर तर्क}} | ||
पारंपरिक सीएमओएस पुल-अप और पुल-डाउन नेटवर्क के अतिरिक्त ट्रांसमिशन गेट्स की सहायता से लॉजिक परिपथ का निर्माण किया जा सकता है। ऐसे परिपथों को अधिकांशतः अधिक कॉम्पैक्ट बनाया जा सकता है | पारंपरिक सीएमओएस पुल-अप और पुल-डाउन नेटवर्क के अतिरिक्त ट्रांसमिशन गेट्स की सहायता से लॉजिक परिपथ का निर्माण किया जा सकता है। ऐसे परिपथों को अधिकांशतः अधिक कॉम्पैक्ट बनाया जा सकता है जो सिलिकॉन कार्यान्वयन में एक महत्वपूर्ण विचार हो सकता है। | ||
=== ऋणात्मक वोल्टेज === | === ऋणात्मक वोल्टेज === | ||
वैकल्पिक वोल्टेज (जैसे: ऑडियो संकेत) को स्विच करने के लिए ट्रांसमिशन गेट का उपयोग करके | वैकल्पिक वोल्टेज (जैसे: ऑडियो संकेत) को स्विच करने के लिए ट्रांसमिशन गेट का उपयोग करके ऋणात्मक विद्युत आपूर्ति क्षमता न्यूनतम संकेत क्षमता से कम होनी चाहिए। यह सुनिश्चित करता है कि ऋणात्मक वोल्टेज पर भी सब्सट्रेट डायोड गैर-संवाहक रहेगा। चूंकि ट्रांसमिशन गेट अभी भी लॉजिक वोल्टेज स्तरों पर स्विच कर सकता है एकीकृत स्तर शिफ्टर्स के साथ विशेष संस्करण हैं। एक अच्छा उदाहरण, 4053 मानक चिप है, जो सामान्यतः एक ऑडियो एम्पलीफायर के एनालॉग इनपुट के बीच चयन करने के लिए उपयोग किया जाता है, इसमें एक अलग ग्राउंड (पिन 8) और ऋणात्मक सब्सट्रेट कनेक्शन (पिन 7) होता है जो लेवल शिफ्टर की आपूर्ति भी करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[त्रि-राज्य तर्क|त्रि-स्थिति तर्क]] | * [[त्रि-राज्य तर्क|त्रि-स्थिति तर्क]] |
Revision as of 12:34, 21 May 2023
एक ट्रांसमिशन गेट (टीजी) एक रिले के समान एक एनालॉग गेट है जो लगभग किसी भी वोल्टेज क्षमता के साथ नियंत्रण संकेत द्वारा दोनों दिशाओं या ब्लॉक में संचालन कर सकता है।[1] यह एक सीएमओएस-आधारित स्विच है जिसमें पीएमओएस शसक्त 1 किंतु खराब 0 पास करता है और एनएमओएस शसक्त 0 किंतु खराब 1 पास करता है। पीएमओएस तर्क और एनएमओएस तर्क दोनों एक साथ काम करते हैं।
संरचना
सिद्धांत रूप में एक ट्रांसमिशन गेट दो क्षेत्र-प्रभाव ट्रांजिस्टर (एफईटी) से बना होता है, जिसमें - पारंपरिक असतत क्षेत्र-प्रभाव ट्रांजिस्टर के विपरीत- सब्सट्रेट टर्मिनल (बल्क) आंतरिक रूप से स्रोत टर्मिनल से जुड़ा नहीं होता है। दो ट्रांजिस्टर एक एन-चैनल एमओएसएफईटी और एक पी-चैनल एमओएसएफईटी एक साथ जुड़े दो ट्रांजिस्टर के नाली और स्रोत टर्मिनलों के साथ समानांतर में जुड़े हुए हैं। नियंत्रण टर्मिनल बनाने के लिए उनके गेट टर्मिनल एक दूसरे से एक गेट (इन्वर्टर (लॉजिक गेट)) द्वारा जुड़े हुए हैं।
असतत एफईटी के विपरीत, सब्सट्रेट टर्मिनल स्रोत कनेक्शन से जुड़ा नहीं है। इसके अतिरिक्त सब्सट्रेट टर्मिनलों को संबंधित आपूर्ति क्षमता से जोड़ा जाता है जिससे यह सुनिश्चित किया जा सके कि परजीवी सब्सट्रेट डायोड (स्रोत/नाली और सब्सट्रेट के बीच) सदैव उलटा पक्षपाती है और इसलिए संकेत प्रवाह को प्रभावित नहीं करता है। इस प्रकार पी-चैनल एमओएसएफईटी का सब्सट्रेट टर्मिनल सकारात्मक आपूर्ति क्षमता से जुड़ा है, और एन-चैनल एमओएसएफईटी का सब्सट्रेट टर्मिनल ऋणात्मक आपूर्ति क्षमता से जुड़ा है।
कार्य
जब नियंत्रण इनपुट एक तर्क शून्य (ऋणात्मक बिजली आपूर्ति क्षमता) होता है तो एन-चैनल एमओएसएफईटी का गेट भी ऋणात्मक आपूर्ति वोल्टेज क्षमता पर होता है। पी-चैनल एमओएसएफईटी का गेट टर्मिनल सकारात्मक आपूर्ति वोल्टेज क्षमता के इन्वर्टर के कारण होता है। तथापि ट्रांसमिशन गेट (ए या बी) के स्विचिंग टर्मिनल पर वोल्टेज लगाया जाता है (अनुमेय सीमा के अंदर) एन-चैनल एमओएसएफईटी का गेट-सोर्स वोल्टेज सदैव ऋणात्मक होता है और पी-चैनल एमओएसएफईटी सदैव सकारात्मक होता है। . अनुरूप दोनों में से कोई भी ट्रांजिस्टर चालन नहीं करेगा और ट्रांसमिशन गेट बंद हो जाता है।
जब नियंत्रण इनपुट एक तार्किक इनपुट होता है, तो एन-चैनल एमओएसएफईटी का गेट टर्मिनल सकारात्मक आपूर्ति वोल्टेज क्षमता पर स्थित होता है। इन्वर्टर द्वारा पी-चैनल एमओएसएफईटी का गेट टर्मिनल अब एक ऋणात्मक आपूर्ति वोल्टेज क्षमता पर है। चूंकि ट्रांजिस्टर का सब्सट्रेट टर्मिनल स्रोत टर्मिनल से जुड़ा नहीं है, नाली और स्रोत टर्मिनल लगभग समान हैं और ट्रांजिस्टर गेट टर्मिनल के बीच वोल्टेज अंतर पर संचालन करना प्रारंभ करते हैं और इनमें से एक आचरण करता है।
ट्रांसमिशन गेट के स्विचिंग टर्मिनलों में से एक को ऋणात्मक आपूर्ति वोल्टेज के पास वोल्टेज में उठाया जाता है, एन-चैनल एमओएसएफईटी पर एक सकारात्मक गेट-स्रोत वोल्टेज (गेट-टू-ड्रेन वोल्टेज) होगा और ट्रांजिस्टर का संचालन प्रारंभ होता है और ट्रांसमिशन गेट आयोजित करता है। ट्रांसमिशन गेट के स्विचिंग टर्मिनलों में से एक पर वोल्टेज अब लगातार सकारात्मक आपूर्ति वोल्टेज क्षमता तक बढ़ा दिया जाता है, इसलिए एन-चैनल एमओएसएफईटी पर गेट-सोर्स वोल्टेज कम हो जाता है (गेट-ड्रेन वोल्टेज), और यह चालू होना प्रारंभ हो जाता है बंद उसी समय, पी-चैनल एमओएसएफईटी में एक ऋणात्मक गेट-सोर्स वोल्टेज (गेट-टू-ड्रेन वोल्टेज) बनता है जिससे यह ट्रांजिस्टर संचालन करना प्रारंभ कर देता है और ट्रांसमिशन गेट स्विच हो जाता है।
जिससे यह प्राप्त किया जाता है कि ट्रांसमिशन गेट पूरे वोल्टेज सीमा से गुजरता है। ट्रांसमिशन गेट का संक्रमण प्रतिरोध स्विच किए जाने वाले वोल्टेज के आधार पर भिन्न होता है, और दो ट्रांजिस्टर के प्रतिरोध घटता के सुपरपोजिशन से मेल खाता है।
अनुप्रयोग
इलेक्ट्रॉनिक स्विच
इलेक्ट्रॉनिक स्विच और एनालॉग बहुसंकेतक को प्रयुक्त करने के लिए ट्रांसमिशन गेट्स का उपयोग किया जाता है। यदि कोई संकेत अलग-अलग आउटपुट (स्विच पर परिवर्तन , मल्टीप्लेक्सर्स) से जुड़ा है, तो कई ट्रांसमिशन गेट्स को ट्रांसमिशन गेट के रूप में उपयोग किया जा सकता है या तो संचालन या ब्लॉक (सरल स्विच) किया जा सकता है। एक विशिष्ट उदाहरण 4066 4-वे एनालॉग स्विच के रूप में जाना जाता है जो विभिन्न निर्माताओं से उपलब्ध है।[2]
एनालॉग मल्टीप्लेक्सर
कई मिश्रित-संकेत प्रणाली कई एनालॉग इनपुट चैनलों को एक एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण में रूट करने के लिए एक एनालॉग मल्टीप्लेक्सर का उपयोग करते हैं। [3][4][5]
तर्क परिपथ
पारंपरिक सीएमओएस पुल-अप और पुल-डाउन नेटवर्क के अतिरिक्त ट्रांसमिशन गेट्स की सहायता से लॉजिक परिपथ का निर्माण किया जा सकता है। ऐसे परिपथों को अधिकांशतः अधिक कॉम्पैक्ट बनाया जा सकता है जो सिलिकॉन कार्यान्वयन में एक महत्वपूर्ण विचार हो सकता है।
ऋणात्मक वोल्टेज
वैकल्पिक वोल्टेज (जैसे: ऑडियो संकेत) को स्विच करने के लिए ट्रांसमिशन गेट का उपयोग करके ऋणात्मक विद्युत आपूर्ति क्षमता न्यूनतम संकेत क्षमता से कम होनी चाहिए। यह सुनिश्चित करता है कि ऋणात्मक वोल्टेज पर भी सब्सट्रेट डायोड गैर-संवाहक रहेगा। चूंकि ट्रांसमिशन गेट अभी भी लॉजिक वोल्टेज स्तरों पर स्विच कर सकता है एकीकृत स्तर शिफ्टर्स के साथ विशेष संस्करण हैं। एक अच्छा उदाहरण, 4053 मानक चिप है, जो सामान्यतः एक ऑडियो एम्पलीफायर के एनालॉग इनपुट के बीच चयन करने के लिए उपयोग किया जाता है, इसमें एक अलग ग्राउंड (पिन 8) और ऋणात्मक सब्सट्रेट कनेक्शन (पिन 7) होता है जो लेवल शिफ्टर की आपूर्ति भी करता है।
यह भी देखें
संदर्भ
- ↑ "What is a Transmission Gate (Analog Switch)? - Tutorial - Maxim". www.maximintegrated.com. Retrieved 2019-05-21.
- ↑ 4066 Datenblätter
- ↑ Franco Zappa. "Electronic Systems". Section 6.9: Analog Multiplexers.
- ↑ John G. Webster. "Electrical Measurement, Signal Processing, and Displays". 2003. p. 36-12.
- ↑ Robert A. Pease. "Troubleshooting Analog Circuits". 2013. p. 132.
- Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik. 12. Auflage, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-42849-6.
- Erwin Böhmer: Elemente der angewandten Elektronik. 15. Auflage, Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden 2007, ISBN 978-3-8348-0124-1.
- Klaus Fricke: Digitaltechnik. 6. Auflage, Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden 2009, ISBN 978-3-8348-0459-4.