मॉड्यूलो (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 17: Line 17:
=== मूल उपयोग ===
=== मूल उपयोग ===
{{main|मॉड्यूलर अंकगणित}}
{{main|मॉड्यूलर अंकगणित}}
गॉस मूल रूप से मॉड्यूलो का उपयोग करने का इरादा रखता है: पूर्णांक ''a'', ''b'' और ''n'' दिया गया है, अभिव्यक्ति  ''a'' ≡ ''b'' (मॉड ''n'') (उच्चारण ''a'' ''b''  मॉड्यूलो ''n'' के अनुरूप है) का अर्थ है कि ''A'' − ''B n'' का एक पूर्णांक गुणक है, या समतुल्य रूप से, a और b दोनों n से भाग देने पर समान शेष छोड़ते हैं। उदाहरण के लिए:
गॉस मूल रूप से मॉड्यूलो का उपयोग करने का अभिप्राय रखता है: पूर्णांक ''a'', ''b'' और ''n'' दिया गया है, अभिव्यक्ति  ''a'' ≡ ''b'' (मॉड ''n'') (उच्चारण ''a'' ''b''  मॉड्यूलो ''n'' के अनुरूप है) का अर्थ है कि ''A'' − ''B n'' का एक पूर्णांक गुणक है, या समतुल्य रूप से, a और b दोनों n से भाग देने पर समान शेष छोड़ते हैं। उदाहरण के लिए:




Line 29: Line 29:
कंप्यूटिंग और [[कंप्यूटर विज्ञान]] में इस शब्द का प्रयोग कई तरह से किया जा सकता है:
कंप्यूटिंग और [[कंप्यूटर विज्ञान]] में इस शब्द का प्रयोग कई तरह से किया जा सकता है:
* कंप्यूटिंग में, यह आमतौर पर मोडुलो ऑपरेशन होता है: दो नंबर (या तो पूर्णांक या वास्तविक), a और n दिए गए हैं, एक [[मापांक]] n, कुछ बाधाओं के तहत n द्वारा संख्यात्मक विभाजन (गणित) का [[शेष]] है।
* कंप्यूटिंग में, यह आमतौर पर मोडुलो ऑपरेशन होता है: दो नंबर (या तो पूर्णांक या वास्तविक), a और n दिए गए हैं, एक [[मापांक]] n, कुछ बाधाओं के तहत n द्वारा संख्यात्मक विभाजन (गणित) का [[शेष]] है।
* [[श्रेणी सिद्धांत]] में जैसा कि कार्यात्मक प्रोग्रामिंग पर लागू होता है, ऑपरेटिंग मॉडुलो विशेष शब्दजाल है जो अवशेषों को हाइलाइट या परिभाषित करके किसी वर्ग के लिए एक फ़ैक्टर को मैप करने के लिए संदर्भित करता है।<ref>{{cite book |page=22 |title=कम्प्यूटिंग विज्ञान के लिए श्रेणी सिद्धांत|last=Barr |last2=Wells |location=London |publisher=Prentice Hall |year=1996 |isbn=0-13-323809-1 }}</ref>
* [[श्रेणी सिद्धांत]] में जैसा कि कार्यात्मक प्रोग्रामिंग पर प्रयुक्त होता है, ऑपरेटिंग मॉडुलो विशेष शब्दजाल है जो अवशेषों को हाइलाइट या परिभाषित करके किसी वर्ग के लिए एक कारक को मैप करने के लिए संदर्भित करता है।<ref>{{cite book |page=22 |title=कम्प्यूटिंग विज्ञान के लिए श्रेणी सिद्धांत|last=Barr |last2=Wells |location=London |publisher=Prentice Hall |year=1996 |isbn=0-13-323809-1 }}</ref>




Line 37: Line 37:
* एक वलय (गणित) या एक बीजगणित के दो सदस्य सर्वांगसम सापेक्ष एक [[आदर्श (अंगूठी सिद्धांत)|आदर्श (रिंग सिद्धांत)]] हैं, यदि उनके बीच का अंतर आदर्श में है।
* एक वलय (गणित) या एक बीजगणित के दो सदस्य सर्वांगसम सापेक्ष एक [[आदर्श (अंगूठी सिद्धांत)|आदर्श (रिंग सिद्धांत)]] हैं, यदि उनके बीच का अंतर आदर्श में है।
** एक क्रिया के रूप में प्रयोग किया जाता है, एक समूह (या रिंग ) से एक सामान्य उपसमूह (या एक आदर्श) के भागफल समूह के कार्य को अधिकांशतः मोडिंग आउट कहा जाता है ... या अब हम मॉड आउट करते हैं ...।
** एक क्रिया के रूप में प्रयोग किया जाता है, एक समूह (या रिंग ) से एक सामान्य उपसमूह (या एक आदर्श) के भागफल समूह के कार्य को अधिकांशतः मोडिंग आउट कहा जाता है ... या अब हम मॉड आउट करते हैं ...।
* एक अनंत सेट के दो सबसेट 'समान मोडुलो परिमित सेट' होते हैं, यदि उनका [[सममित अंतर]] परिमित है, अर्थात आप पहले उपसमुच्चय से एक परिमित टुकड़ा निकाल सकते हैं, फिर उसमें एक परिमित टुकड़ा जोड़ सकते हैं, और परिणामस्वरूप दूसरा उपसमुच्चय प्राप्त कर सकते हैं।
* एक अनंत सेट के दो उप-सेट  'समान मोडुलो परिमित सेट' होते हैं, यदि उनका [[सममित अंतर]] परिमित है, अर्थात आप पहले उपसमुच्चय से एक परिमित टुकड़ा निकाल सकते हैं, फिर उसमें एक परिमित टुकड़ा जोड़ सकते हैं, और परिणामस्वरूप दूसरा उपसमुच्चय प्राप्त कर सकते हैं।
* नक्शों का एक संक्षिप्त स्पष्ट अनुक्रम एक स्पेस मॉडुलो दूसरे के रूप में [[भागफल स्थान (टोपोलॉजी)]] की परिभाषा की ओर ले जाता है; इस प्रकार, उदाहरण के लिए, कि एक [[सह-समरूपता]] [[विभेदक रूप]] मॉड्यूलो स्पष्ट रूपों का स्थान है।
* नक्शों का एक संक्षिप्त स्पष्ट अनुक्रम एक स्पेस मॉडुलो दूसरे के रूप में [[भागफल स्थान (टोपोलॉजी)]] की परिभाषा की ओर ले जाता है; इस प्रकार, उदाहरण के लिए, कि एक [[सह-समरूपता]] [[विभेदक रूप]] मॉड्यूलो स्पष्ट रूपों का स्थान है।


Line 51: Line 51:
उस स्थिति में, व्यक्ति चक्रीय पारियों द्वारा सुधार कर रहा होता है।
उस स्थिति में, व्यक्ति चक्रीय पारियों द्वारा सुधार कर रहा होता है।


== यह भी देखें                                 ==
'''रिक शब्द है जिसका अर्थ है कि चीजों को समकक्ष घोषित करना अन्यथा अलग माना जाएगा। उदाहरण के लिए, मान लें कि अनुक्रम 1 4 2 8 5 7 को अनुक्रम 7 1 4 2 8 5 के समान माना जाना है, क्योंकि प्रत्येक दूसरे का'''
 
== यह भी देखें                           ==
{{Wiktionary|modulo}}
{{Wiktionary|modulo}}
*[[अनिवार्य रूप से अद्वितीय]]
*[[अनिवार्य रूप से अद्वितीय]]

Revision as of 15:54, 17 May 2023

गणित में, 'मॉड्यूलो' शब्द ('विकट:मॉड्यूलस' के लैटिन विभक्ति के एक मापांक के संबंध में) का प्रयोग अधिकांशतः यह प्रमाणित करने के लिए किया जाता है कि दो अलग-अलग गणितीय वस्तुओं को माना जा सकता है समतुल्य - यदि उनके अंतर को एक अतिरिक्त कारक द्वारा वर्णन दिया जाता है। इसे प्रारंभ में 1801 में कार्ल फ्रेडरिक गॉस द्वारा मॉड्यूलर अंकगणित के संदर्भ में गणित में प्रस्तुत किया गया था।[1] तब से, इस शब्द ने कई अर्थ प्राप्त किए हैं - कुछ स्पष्ट और कुछ अभेद्य (जैसे कि को छोड़कर के साथ मॉडुलो की समान करना)।[2] अधिकांश भाग के लिए, शब्द अधिकांशतः फॉर्म के कथनों में होता है:

A B मोडुलो C के समान है

अर्थ

A और B समान हैं - C द्वारा वर्णन या व्याख्या किए गए मतभेदों को छोड़कर।

इतिहास

मोडुलो एक गणितीय शब्दजाल है जिसे 1801 में कार्ल फ्रेडरिक गॉस द्वारा अंकगणितीय शोध पुस्तक में गणित में प्रस्तुत किया गया था।[3] पूर्णांक a, b और n दिए गए हैं, व्यंजक a ≡ b (mod n) , उच्चारित a, b मॉड्यूलो n के अनुरूप है, इसका अर्थ है कि a − b n का एक पूर्णांक गुणक है, या समतुल्य रूप से, a और b दोनों समान साझा करते हैं n से भाग देने पर शेषफल यह विकट का लैटिन विभक्ति है: मापांक, जिसका अर्थ है एक छोटा उपाय[4] इस शब्द ने वर्षों में कई अर्थ प्राप्त किए हैं - कुछ स्पष्ट और कुछ अभेद्य सबसे सामान्य स्पष्ट परिभाषा केवल एक तुल्यता संबंध R के संदर्भ में है, जहां a, b मॉड्यूलो R के समतुल्य (या सर्वांगसम) है यदि aRb अधिक अनौपचारिक रूप से, शब्द फार्म के कथनों में पाया जाता है:

A B मोडुलो C के समान है

अर्थ

A और B समान हैं - C द्वारा वर्णन या व्याख्या किए गए मतभेदों को छोड़कर।

उपयोग

मूल उपयोग

गॉस मूल रूप से मॉड्यूलो का उपयोग करने का अभिप्राय रखता है: पूर्णांक a, b और n दिया गया है, अभिव्यक्ति ab (मॉड n) (उच्चारण a b मॉड्यूलो n के अनुरूप है) का अर्थ है कि A − B n का एक पूर्णांक गुणक है, या समतुल्य रूप से, a और b दोनों n से भाग देने पर समान शेष छोड़ते हैं। उदाहरण के लिए:


13 63 सापेक्ष 10 के सर्वांगसम है

अर्थ कि

13 − 63, 10 का गुणक है (समतुल्य, 13 और 63, 10 के गुणज से भिन्न है)।

कम्प्यूटिंग

कंप्यूटिंग और कंप्यूटर विज्ञान में इस शब्द का प्रयोग कई तरह से किया जा सकता है:

  • कंप्यूटिंग में, यह आमतौर पर मोडुलो ऑपरेशन होता है: दो नंबर (या तो पूर्णांक या वास्तविक), a और n दिए गए हैं, एक मापांक n, कुछ बाधाओं के तहत n द्वारा संख्यात्मक विभाजन (गणित) का शेष है।
  • श्रेणी सिद्धांत में जैसा कि कार्यात्मक प्रोग्रामिंग पर प्रयुक्त होता है, ऑपरेटिंग मॉडुलो विशेष शब्दजाल है जो अवशेषों को हाइलाइट या परिभाषित करके किसी वर्ग के लिए एक कारक को मैप करने के लिए संदर्भित करता है।[5]


संरचनाएं

मोडुलो शब्द का अलग-अलग उपयोग किया जा सकता है - जब विभिन्न गणितीय संरचनाओं का जिक्र किया जाता है। उदाहरण के लिए:

  • एक समूह (गणित) के दो सदस्य a और b एक सामान्य उपसमूह के सर्वांगसम मॉड्यूल हैं, यदि और केवल यदि ab−1 सामान्य उपसमूह का सदस्य है (अधिक के लिए भागफल समूह और समरूपता प्रमेय देखें)।
  • एक वलय (गणित) या एक बीजगणित के दो सदस्य सर्वांगसम सापेक्ष एक आदर्श (रिंग सिद्धांत) हैं, यदि उनके बीच का अंतर आदर्श में है।
    • एक क्रिया के रूप में प्रयोग किया जाता है, एक समूह (या रिंग ) से एक सामान्य उपसमूह (या एक आदर्श) के भागफल समूह के कार्य को अधिकांशतः मोडिंग आउट कहा जाता है ... या अब हम मॉड आउट करते हैं ...।
  • एक अनंत सेट के दो उप-सेट 'समान मोडुलो परिमित सेट' होते हैं, यदि उनका सममित अंतर परिमित है, अर्थात आप पहले उपसमुच्चय से एक परिमित टुकड़ा निकाल सकते हैं, फिर उसमें एक परिमित टुकड़ा जोड़ सकते हैं, और परिणामस्वरूप दूसरा उपसमुच्चय प्राप्त कर सकते हैं।
  • नक्शों का एक संक्षिप्त स्पष्ट अनुक्रम एक स्पेस मॉडुलो दूसरे के रूप में भागफल स्थान (टोपोलॉजी) की परिभाषा की ओर ले जाता है; इस प्रकार, उदाहरण के लिए, कि एक सह-समरूपता विभेदक रूप मॉड्यूलो स्पष्ट रूपों का स्थान है।

मोडिंग आउट

सामान्यतः, मोडिंग आउट कुछ हद तक अनौपचारिक शब्द है जिसका अर्थ है कि चीजों को समकक्ष घोषित करना अन्यथा अलग माना जाएगा। उदाहरण के लिए, मान लें कि अनुक्रम 1 4 2 8 5 7 को अनुक्रम 7 1 4 2 8 5 के समान माना जाना है, क्योंकि प्रत्येक दूसरे का चक्रीय रूप से स्थानांतरित संस्करण है:

उस स्थिति में, व्यक्ति चक्रीय पारियों द्वारा सुधार कर रहा होता है।

रिक शब्द है जिसका अर्थ है कि चीजों को समकक्ष घोषित करना अन्यथा अलग माना जाएगा। उदाहरण के लिए, मान लें कि अनुक्रम 1 4 2 8 5 7 को अनुक्रम 7 1 4 2 8 5 के समान माना जाना है, क्योंकि प्रत्येक दूसरे का

यह भी देखें

संदर्भ

  1. "मॉड्यूलर अंकगणित". Encyclopedia Britannica (in English). Retrieved 2019-11-21.
  2. "मापांक". catb.org. Retrieved 2019-11-21.
  3. Bullynck, Maarten (2009-02-01). "Modular arithmetic before C.F. Gauss: Systematizations and discussions on remainder problems in 18th-century Germany". Historia Mathematica. 36 (1): 48–72. doi:10.1016/j.hm.2008.08.009. ISSN 0315-0860.
  4. "modulo", The Free Dictionary, retrieved 2019-11-21
  5. Barr; Wells (1996). कम्प्यूटिंग विज्ञान के लिए श्रेणी सिद्धांत. London: Prentice Hall. p. 22. ISBN 0-13-323809-1.


बाहरी संबंध