विकिरण तनाव: Difference between revisions

From Vigyanwiki
m (7 revisions imported from alpha:विकिरण_तनाव)
(No difference)

Revision as of 11:00, 24 May 2023

समुद्र तटों पर टूटने वाली लहरें विकिरण तनाव में बदलाव लाती हैं, जिससे लंबी धाराएं चलती हैं। परिणामी लांगशोर तलछट परिवहन समुद्र तटों को आकार देता है, और इसके परिणामस्वरूप समुद्र तट का क्षरण या अभिवृद्धि हो सकती है।

द्रव गतिशीलता में, विकिरण तनाव गहराई-एकीकृत है - और उसके तत्पश्चात चरण (तरंगें) -औसत - सतह गुरुत्वाकर्षण तरंगों की उपस्थिति के कारण अतिरिक्त प्रवाह, जो औसत प्रवाह पर लगाया जाता है। विकिरण तनाव दूसरे क्रम के टेंसर के रूप में व्यवहार करता है।

विकिरण तनाव टेन्सर तरंगों की उपस्थिति के कारण अतिरिक्त बल का वर्णन करता है, जो द्रव परत में औसत गहराई-एकीकृत क्षैतिज गति को बदलता है। नतीजतन, अलग-अलग विकिरण तनाव औसत सतह ऊंचाई (लहर सेटअप) और औसत प्रवाह (तरंग प्रेरित धाराओं) में परिवर्तन को प्रेरित करते हैं।

द्रव गति के दोलन में औसत ऊर्जा घनत्व के लिए, एक अमानवीय माध्य-प्रवाह क्षेत्र (भौतिकी) के स्थिति में, और इसकी गतिशीलता (यांत्रिकी) के लिए विकिरण तनाव टेंसर महत्वपूर्ण है।

रेडिएशन स्ट्रेस टेन्सर, साथ ही साथ सतही गुरुत्व तरंगों और माध्य प्रवाह की भौतिकी पर इसके कई निहितार्थ, माइकल एस. लॉन्गुएट-हिगिंस|लोंगुएट-हिगिंस और स्टीवर्ट द्वारा 1960-1964 में पत्रों की एक श्रृंखला में तैयार किए गए थे।

विकिरण तनाव विद्युत चुम्बकीय विकिरण के लिए विकिरण दबाव के अनुरूप प्रभाव से अपना नाम प्राप्त करता है।

भौतिक महत्व

विकिरण तनाव - लहरों की स्थिति के कारण अतिरिक्त गति-प्रवाह - विभिन्न तटीय प्रक्रियाओं की व्याख्या और मॉडलिंग में महत्वपूर्ण भूमिका निभाता है:[1][2][3]

  • वेव सेटअप और सेटडाउन - रेडिएशन स्ट्रेस में रेडिएशन प्रेशर का हिस्सा होता है, जो माध्य प्रवाह के मुक्त सतह एलिवेशन पर होता है। यदि विकिरण तनाव स्थानिक रूप से भिन्न होता है, जैसा कि सर्फ क्षेत्र में होता है जहां लहर की ऊंचाई तरंग टूटने से कम हो जाती है, इसके परिणामस्वरूप औसत सतह ऊंचाई में परिवर्तन होता है जिसे तरंग सेटअप (बढ़े हुए स्तर के मामले में) और सेटडाउन (कम पानी के लिए) कहा जाता है। स्तर);
  • तरंग चालित धारा, विशेष रूप से सर्फ क्षेत्र में एक लंबी तट धारा - एक समुद्र तट पर लहरों की तिरछी घटना के लिए, लहर क्षेत्र के अंदर लहर की ऊंचाई में कमी (तोड़कर) कतरनी-तनाव घटक Sxy की भिन्नता सर्फ जोन की चौड़ाई पर विकिरण तनाव का परिचय देती है। यह एक लहर-चालित लॉन्गशोर करंट की मजबूती प्रदान करता है, जो तलछट परिवहन (वेलांचली अपवाह) और परिणामी तटीय भू-आकृति विज्ञान के लिए महत्वपूर्ण है;
  • बंधी हुई लंबी तरंगें, अवर गुरुत्वाकर्षण तरंगों का हिस्सा - तरंग # संशोधित तरंगों के लिए विकिरण तनाव समूह के साथ भिन्न होता है। नतीजतन, एक गैर-रैखिक लंबी लहर समूह के भीतर संग्राहक लघु तरंगों के समूह वेग पर समूह के साथ मिलकर फैलती है। जबकि, फैलाव (जल तरंगों) के अनुसार, इस लंबाई की एक लंबी लहर को अपने-उच्च-चरण वेग से प्रचारित करना चाहिए। इस बाध्य लंबी लहर का आयाम लहर की ऊंचाई के वर्ग (बीजगणित) के साथ भिन्न होता है, और केवल उथले पानी में महत्वपूर्ण होता है;
  • वेव-करंट इंटरेक्शन - अलग-अलग माध्य प्रवाह में। माध्य-प्रवाह क्षेत्र (भौतिकी), तरंगों और माध्य प्रवाह के बीच ऊर्जा का आदान-प्रदान, साथ ही माध्य-प्रवाह बल, विकिरण तनाव के माध्यम से प्रतिरूपित किया जा सकता है।

रेखीय तरंग सिद्धांत से प्राप्त परिभाषाएँ और मूल्य

एक आयामी तरंग प्रसार

एक-दिशात्मक तरंग प्रसार के लिए - x-निर्देशांक दिशा में कह सकते है - गतिकी (यांत्रिकी) के विकिरण तनाव टेंसर का घटक Sxx है. इसे इस प्रकार परिभाषित किया गया है:[4]

जहाँ p(x,z,t) द्रव दाब है, प्रवाह वेग सदिश (गणित और भौतिकी) के दोलन का क्षैतिज x-घटक है, z ऊर्ध्वाधर समन्वय है, t समय है, z = −h(x) द्रव परत की तल ऊंचाई है, और z= η (x, t) सतह का उन्नयन है। आगे ρ द्रव घनत्व है और g पृथ्वी का गुरुत्वाकर्षण है, जबकि एक ओवरबार चरण (तरंगों) औसत को दर्शाता है। दाहिनी ओर का अंतिम पद, ½ρg(h+η)2, स्थिर जल की गहराई पर द्रवस्थैतिक दाब का अभिन्न अंग है।

सबसे कम (दूसरे) क्रम में, विकिरण तनाव Sxx वायु तरंग सिद्धांत xके अनुसार आवधिक तरंगों की यात्रा के लिए सतह गुरुत्वाकर्षण तरंगों के गुणों से निर्धारित किया जा सकता है:[5][6]

जहां cp चरण गति है और cg तरंगों की समूह गति है। आगे E क्षैतिज क्षेत्र की प्रति इकाई औसत गहराई-एकीकृत तरंग ऊर्जा घनत्व (गतिज ऊर्जा और संभावित ऊर्जा का योग) है। हवादार तरंग सिद्धांत के परिणामों से, दूसरे क्रम में, औसत ऊर्जा घनत्व E बराबर होता है:[7]

a तरंग आयाम और H = 2a तरंग ऊंचाई के साथ। ध्यान दें कि यह समीकरण आवधिक तरंगों के लिए है: यादृच्छिक प्रक्रिया में जड़-माध्य-वर्ग तरंग ऊंचाई Hrms के साथ प्रयोग करना चाहिएHrms= Hm0 / 2, जहां Hm0 महत्वपूर्ण लहर ऊंचाई है। तब E = 1⁄16ρgHm02.

द्वि-आयामी तरंग प्रसार

दो क्षैतिज आयामों में तरंग प्रसार के लिए विकिरण तनाव द्वितीय कोटि का टेन्सर है[8][9] घटकों के साथ:

कार्तीय समन्वय प्रणाली (x, y, z) के साथ:[4]

जहाँ और ऑसिलेटरी भाग के क्षैतिज x- और y-घटक हैं प्रवाह वेग वेक्टर का।

दूसरे क्रम में - तरंग आयाम में - प्रगतिशील आवधिक तरंगों के लिए विकिरण तनाव टेंसर के घटक हैं:[5]

जहां kx और ky तरंग संख्या सदिश 'k' के x- और y-घटक हैं, लंबाई k = |'k'| =kx2+ky2 और वेव क्रेस्ट (भौतिकी) के लंबवत वेक्टर k चरण और समूह गति, cp और cg क्रमशः चरण और समूह वेग वैक्टर की लंबाई हैं: cp= |cp| और cg= |cg|.

गतिशील महत्व

तरंगों और औसत प्रवाह के बीच चरण-औसत गतिशील बातचीत के विवरण में विकिरण तनाव टेंसर एक महत्वपूर्ण मात्रा है। यहां, गहराई से एकीकृत गतिशील संरक्षण समीकरण दिए गए हैं, लेकिन - सतही तरंगों द्वारा पारस्परिक व्यवहार के साथ त्रि-आयामी माध्य प्रवाह को मॉडल करने के लिए - द्रव परत पर विकिरण तनाव के त्रि-आयामी विवरण की आवश्यकता है।[10]

मास ट्रांसपोर्ट वेलोसिटी

प्रसार तरंगें एक - अपेक्षाकृत छोटे - तरंग प्रसार दिशा में बड़े पैमाने पर प्रवाह को प्रेरित करती हैं, जिसे तरंग (छद्म) गति भी कहा जाता है।[11] निम्नतम क्रम के लिए, तरंग गति Mw है, क्षैतिज क्षेत्र की प्रति इकाई:[12]

जो अघूर्णी प्रवाह में स्थायी रूप की प्रगतिशील तरंगों के लिए सटीक है। ऊपर, cp औसत प्रवाह के सापेक्ष चरण गति है:

σ आंतरिक कोणीय आवृत्ति के साथ, जैसा कि एक पर्यवेक्षक द्वारा क्षैतिज प्रवाह-वेग के साथ चलते हुए देखा गया है v जबकि ω आराम पर एक पर्यवेक्षक की स्पष्ट कोणीय आवृत्ति है ('पृथ्वी' के संबंध में)। अंतर 'k'⋅v डॉपलर शिफ्ट है।[13]

औसत क्षैतिज संवेग M, क्षैतिज क्षेत्र की प्रति इकाई भी, गहराई पर संवेग के अभिन्न अंग का माध्य मान है:

साथ v(x,y,z,t) मुक्त सतह के नीचे किसी भी बिंदु पर कुल प्रवाह वेग zη(x,y,t). माध्य क्षैतिज संवेग M भी गहराई-एकीकृत क्षैतिज द्रव्यमान प्रवाह का माध्य है, और इसमें दो योगदान होते हैं: एक माध्य धारा द्वारा और दूसरा (Mw) तरंगों के कारण होता है।

अब बड़े पैमाने पर परिवहन वेग u परिभाषित किया जाता है:[14][15]

गौर करें कि पहले गहराई से एकीकृत क्षैतिज गति का औसत निकाला जाता है, इससे पहले पानी की औसत गहराई (h+η) से बना होता है।

द्रव्यमान और संवेग संरक्षण

धरातलवेक्टर संकेतन

माध्य द्रव्यमान संरक्षण का समीकरण सदिश संकेतन में है:[14]

साथ u लहर गति Mw के योगदान सहित.

क्षैतिज माध्य संवेग के संरक्षण के लिए समीकरण है:[14]

जहाँu ⊗ u के टेंसर उत्पाद को दर्शाता है u स्वयं के साथ, और τw मुक्त सतह पर औसत पवन कतरनी तनाव है, जबकि τb धरातल कतरनी तनाव है। इसके अलावा पहचान ''I'' टेन्सर है, क्रोनकर डेल्टा δij द्वारा दिए गए घटकों के साथl ध्यान दें कि संवेग समीकरण के दाहिने हाथ की ओर धरातल ढलान ∇h का गैर-रूढ़िवादी योगदान प्रदान करता है,[16] साथ ही हवा और धरातल के घर्षण से विवश होना।

क्षैतिज संवेग M के संदर्भ में उपरोक्त समीकरण बन जाते हैं:[14]

कार्तीय निर्देशांक में घटक रूप

कार्तीय समन्वय प्रणाली में, द्रव्यमान संरक्षण समीकरण बन जाता है:

साथ ux और uy द्रव्यमान परिवहन वेग के क्रमशः x और y घटक u.

क्षैतिज संवेग समीकरण हैं:

ऊर्जा संरक्षण

एक अदृश्य प्रवाह के लिए कुल प्रवाह की औसत यांत्रिक ऊर्जा - जो औसत प्रवाह की ऊर्जा और उतार-चढ़ाव वाली गति का योग है - संरक्षित है।[17] हालांकि, उतार-चढ़ाव वाली गति की औसत ऊर्जा स्वयं संरक्षित नहीं होती है, न ही औसत प्रवाह की ऊर्जा होती है। उतार-चढ़ाव गति की औसत ऊर्जा E (गतिज ऊर्जा और संभावित ऊर्जा का योग संतुष्ट करता है:[18]

जहां ":" dyadics | डबल-डॉट उत्पाद को दर्शाता है, और ε माध्य यांत्रिक ऊर्जा के अपव्यय को दर्शाता है (उदाहरण के लिए वेव ब्रेकिंग द्वारा)। शब्द तरंग-वर्तमान बातचीत के कारण औसत गति के साथ ऊर्जा का आदान-प्रदान होता है। औसत क्षैतिज तरंग-ऊर्जा परिवहन (u + cgE में दो योगदान सम्मिलित हैं:

  • u E: माध्य प्रवाह द्वारा तरंग ऊर्जा का परिवहन, और
  • cg E: समूह वेग cg के साथ लहरों द्वारा स्वयं का ऊर्जा परिवहन तरंग-ऊर्जा परिवहन वेग के रूप में।

कार्तीय समन्वय प्रणाली में, प्रवाह में उतार-चढ़ाव की औसत ऊर्जा E के लिए उपरोक्त समीकरण बन जाता है:

तो विकिरण तनाव केवल स्थानिक-समानता और विषमता वर्तमान क्षेत्र के मामले में तरंग ऊर्जा E को बदलता है (ux,uy).

टिप्पणियाँ

  1. Longuet-Higgins & Stewart (1964,1962).
  2. Phillips (1977), pp. 70–81.
  3. Battjes, J. A. (1974). पवन जनित तरंगों के कारण सेट-अप, लॉन्गशोर करंट, रन-अप और ओवरटॉपिंग की गणना (Thesis). Delft University of Technology. Retrieved 2010-11-25.
  4. 4.0 4.1 मई (2003), पृ. 457.
  5. 5.0 5.1 मई (2003), पृ. 97.
  6. Phillips (1977), p. 68.
  7. Phillips (1977), p. 39.
  8. Longuet-Higgins & Stewart (1961).
  9. Dean, R.G.; Walton, T.L. (2009), "Wave setup", in Young C. Kim (ed.), Handbook of Coastal and Ocean Engineering, World Scientific, pp. 1–23, ISBN 978-981-281-929-1.
  10. Walstra, D. J. R.; Roelvink, J. A.; Groeneweg, J. (2000), "Calculation of wave-driven currents in a 3D mean flow model", Proceedings of the 27th International Conference on Coastal Engineering, Sydney: ASCE, pp. 1050–1063, doi:10.1061/40549(276)81
  11. Mcintyre, M. E. (1981), "On the 'wave momentum' myth", Journal of Fluid Mechanics, 106: 331–347, Bibcode:1981JFM...106..331M, doi:10.1017/S0022112081001626, S2CID 18232994
  12. Phillips (1977), p. 40.
  13. Phillips (1977), pp. 23–24.
  14. 14.0 14.1 14.2 14.3 फिलिप्स (1977), पीपी. 61–63.
  15. Mei (2003), p. 453.
  16. By Noether's theorem, an inhomogeneous medium – in this case a non-horizontal bed, h(x,y) not a constant – results in non-conservation of the depth-integrated horizontal momentum.
  17. Phillips (1977), pp. 63–65.
  18. Phillips (1977), pp. 65–66.

संदर्भ

Primary sources
Further reading