ईजेनमोड आयाम: Difference between revisions
(Created page with "{{Short description|Computational electrodynamics technique}} Eigenmode विस्तार (EME) एक कम्प्यूटेशनल इलेक्ट्रोड...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Computational electrodynamics technique}} | {{Short description|Computational electrodynamics technique}} | ||
मालिकाना विस्तार (ईएमई) एक संगणनात्मक विद्युत् गतिकी मॉडलिंग तकनीक है। इसे मोड मिलान तकनीक के रूप में भी जाना जाता है<ref name="mmt" /> या द्विदिश मालिकाना प्रचार विधि (बीईपी विधि)।<ref name="bep" /> मालिकानामोड विस्तार एक रैखिक आवृत्ति-डोमेन विधि है। | |||
[[वेवगाइड (ऑप्टिक्स)]] के मॉडलिंग के लिए [[एफडीटीडी]], परिमित | [[वेवगाइड (ऑप्टिक्स)|तरंग पथक (प्रकाशीय )]] के मॉडलिंग के लिए [[एफडीटीडी]], परिमित अवयव विधि और किरणपुंज प्रचार विधि की तुलना में यह बहुत दृढ लाभ प्रदान करता है।<ref name="phot_cad" /> और यह तन्तु प्रकाशीय और सिलिकॉन फोटोनिक्स उपकरणों में रैखिक प्रभाव मॉडलिंग के लिए एक लोकप्रिय उपकरण है। | ||
== ईएमई पद्धति के सिद्धांत == | == ईएमई पद्धति के सिद्धांत == | ||
मालिकाना विस्तार विद्युत चुम्बकीय प्रसार का अनुकरण करने के लिए एक जटिल तकनीक है जो उपकरण के अनुप्रस्थ काट में स्थित स्थानीय [[eigenmodes|मालिकाना]] के आधार समूह में विद्युत चुम्बकीय क्षेत्रों के अपघटन पर निर्भर करता है। प्रत्येक स्थानीय अनुप्रस्थ काट में मैक्सवेल के समीकरणों को हल करके मालिकानामोड पाए जाते हैं। विधि पूर्ण रूप से सदिश विधि से हो सकती है परंतु कि मोड हलकर्ता स्वयं पूर्ण रूप से सदिश विधि से हों। | |||
एक विशिष्ट | एक विशिष्ट तरंग पथक में, कुछ निर्देशित मोड होते हैं (जो तरंग पथक के साथ युग्मन के बिना प्रचारित होते हैं) और अनंत संख्या में विकिरण मोड (जो प्रकाशीय सामर्थ्य को तरंग पथक से दूर ले जाते हैं)। निर्देशित और विकिरण मोड मिलकर एक पूर्ण आधार समूह बनाते हैं। कई समस्याओं को मात्र साधारण संख्या की विधियों पर विचार करके हल किया जा सकता है, जिससे ईएमई एक बहुत ही शक्तिशाली विधि बन जाता है। | ||
जैसा कि गणितीय सूत्रीकरण से देखा जा सकता है, | जैसा कि गणितीय सूत्रीकरण से देखा जा सकता है, एल्गोरिदम स्वाभाविक रूप से द्वि-दिशात्मक है। यह तरंग पथक के विभिन्न वर्गों में सम्मिलित होने या गैर-समान संरचनाओं को मॉडल करने के लिए प्रकीर्णी आव्यूह ([[ एस मैट्रिक्स | एस आव्यूह]] ) तकनीक का उपयोग करता है। संरचनाओं के लिए जो z-दिशा के साथ निरंतर बदलते रहते हैं, z-विवेकीकरण के एक रूप की आवश्यकता होती है। प्रकाशीय क्रमसूक्ष्मक के मॉडलिंग के लिए उन्नत एल्गोरिदम विकसित किए गए हैं। | ||
== गणितीय सूत्रीकरण == | == गणितीय सूत्रीकरण == | ||
एक संरचना में जहां | एक संरचना में जहां प्रकाशीय [[अपवर्तक सूचकांक]] z दिशा में भिन्न नहीं होता है, मैक्सवेल के समीकरणों के हल एक समतल तरंग का रूप लेते हैं: | ||
: <math> E(x,y,z) = E(x,y)e^{i \beta z}</math> | : <math> E(x,y,z) = E(x,y)e^{i \beta z}</math> | ||
हम यहां | हम यहां <math> \exp(i \omega t) </math> के रूप की एकल तरंग दैर्ध्य और समय पर निर्भरता को मानते हैं। | ||
गणितीय <math display="inline"> E(x,y) e^{i \beta z}</math> और <math> \beta</math> साधारण | गणितीय रूप से <math display="inline"> E(x,y) e^{i \beta z}</math> और <math> \beta</math> साधारण सुसंगत जेड-निर्भरता वाली स्थितियों के लिए मैक्सवेल के समीकरणों के मालिकाना फलन और मालिकाना मान हैं। | ||
हम मैक्सवेल के समीकरणों के किसी भी | हम मैक्सवेल के समीकरणों के किसी भी हल को आगे और पीछे प्रसार मोड के अध्यारोपण के रूप में व्यक्त कर सकते हैं: | ||
<math display="block">E(x,y,z)= \sum_{k=1}^M {\left(a_k e^{i \beta_k z}+ b_k e^{-i \beta_k z}\right)E_k(x,y)}</math> | <math display="block">E(x,y,z)= \sum_{k=1}^M {\left(a_k e^{i \beta_k z}+ b_k e^{-i \beta_k z}\right)E_k(x,y)}</math><math display="block">H(x,y,z)= \sum_{k=1}^M {\left(a_k e^{i \beta_k z}- b_k e^{-i \beta_k z}\right)H_k(x,y)}</math> | ||
<math display="block">H(x,y,z)= \sum_{k=1}^M {\left(a_k e^{i \beta_k z}- b_k e^{-i \beta_k z}\right)H_k(x,y)}</math> | ये समीकरण एक रेखीय माध्यम में मैक्सवेल के समीकरणों का एक जटिल हल प्रदान करते हैं, मात्र सीमा मोड की परिमित संख्या है। | ||
ये समीकरण एक रेखीय माध्यम में मैक्सवेल के समीकरणों का एक | |||
जब जेड-दिशा के साथ संरचना में परिवर्तन होता है, तो विभिन्न | जब जेड-दिशा के साथ संरचना में परिवर्तन होता है, तो विभिन्न निवेश और निर्गम मोड के बीच युग्मन एक प्रकीर्णी आव्यूह के रूप में प्राप्त किया जा सकता है। अंतरापृष्ठ पर मैक्सवेल के समीकरणों की सीमा प्रतिबन्धों को लागू करके एक असतत चरण के प्रकीर्णी आव्यूह को जटिलता से प्राप्त किया जा सकता है; इसके लिए अंतरापृष्ठ के दोनों किनारों पर मोड और उनके आच्छादन की गणना की आवश्यकता होती है। निरंतर बदलती संरचनाओं (जैसे क्रमसूक्ष्मक) के लिए, जेड-अक्ष के साथ संरचना को अलग करके प्रकीर्णी आव्यूह प्राप्त किया जा सकता है। | ||
== ईएमई विधि की | == ईएमई विधि की दृढ़ता == | ||
* ईएमई विधि | * ईएमई विधि तन्तु और एकीकृत ज्यामिति के लिए निर्देशित प्रकाशीय घटकों के मॉडलिंग के लिए आदर्श है। मोड गणना संरचना की समरूपता का लाभ उठा सकती है; उदाहरण के लिए बेलनाकार सममित संरचनाओं को बहुत कुशलता से प्रतिरूपित किया जा सकता है। | ||
* विधि | * विधि पूर्ण रूप से सदिश है (परंतु कि यह पूर्ण रूप से सदिश मोड हलकर्ता पर निर्भर हो) और पूर्ण रूप से द्विदिश है। | ||
* चूंकि यह | * चूंकि यह प्रकीर्णी आव्यूह दृष्टिकोण पर निर्भर करता है, इसलिए सभी प्रतिबिंबों को ध्यान में रखा जाता है। | ||
* | * किरणपुंज प्रसार विधि के विपरीत, जो मात्र धीरे-धीरे बदलते लिफाफे सन्निकटन के अंतर्गत मान्य है, मालिकानामोड विस्तार मैक्सवेल के समीकरणों के लिए एक जटिल हल प्रदान करता है। | ||
* यह | * यह सामान्यतः एफडीटीडी या परिमित अवयव विधि की तुलना में बहुत अधिक कुशल है क्योंकि इसमें प्रसार की दिशा में ठीक विवेक (अर्थात तरंग दैर्ध्य के पैमाने पर) की आवश्यकता नहीं होती है। | ||
* | * प्रकीर्णी आव्यूह दृष्टिकोण एक नम्य गणना संरचना प्रदान करता है, संभावित रूप से उपयोगकर्ताओं को पैरामीटर क्रमवीक्षण अध्ययन करते समय संरचना के संशोधित भागों की फिर से गणना करने की अनुमति देता है। | ||
* यह लंबे उपकरणों या धातुओं से बने उपकरणों को मॉडल करने की एक उत्कृष्ट तकनीक है। | * यह लंबे उपकरणों या धातुओं से बने उपकरणों को मॉडल करने की एक उत्कृष्ट तकनीक है। | ||
* 1D+Z संरचनाओं के मॉडलिंग के लिए | * 1D+Z संरचनाओं के मॉडलिंग के लिए पूर्ण रूप से विश्लेषणात्मक हल प्राप्त किए जा सकते हैं। | ||
== ईएमई पद्धति की सीमाएं == | == ईएमई पद्धति की सीमाएं == | ||
* | * ईएमई रैखिक समस्याओं तक सीमित है; गैर-रैखिक समस्याओं को पुनरावृत्त तकनीकों का उपयोग करके प्रतिरूपित किया जा सकता है। | ||
* ईएमई मॉडलिंग संरचनाओं के लिए अक्षम हो सकता है जिसके लिए बहुत बड़ी संख्या में मोड की आवश्यकता होती है, जो 3डी समस्याओं के लिए | * ईएमई मॉडलिंग संरचनाओं के लिए अक्षम हो सकता है जिसके लिए बहुत बड़ी संख्या में मोड की आवश्यकता होती है, जो 3डी समस्याओं के लिए अनुप्रस्थ काट के आकार को सीमित करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स]] | * [[कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स|संगणनात्मक विद्युत चुम्बकीय]] | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 14:27, 17 May 2023
मालिकाना विस्तार (ईएमई) एक संगणनात्मक विद्युत् गतिकी मॉडलिंग तकनीक है। इसे मोड मिलान तकनीक के रूप में भी जाना जाता है[1] या द्विदिश मालिकाना प्रचार विधि (बीईपी विधि)।[2] मालिकानामोड विस्तार एक रैखिक आवृत्ति-डोमेन विधि है।
तरंग पथक (प्रकाशीय ) के मॉडलिंग के लिए एफडीटीडी, परिमित अवयव विधि और किरणपुंज प्रचार विधि की तुलना में यह बहुत दृढ लाभ प्रदान करता है।[3] और यह तन्तु प्रकाशीय और सिलिकॉन फोटोनिक्स उपकरणों में रैखिक प्रभाव मॉडलिंग के लिए एक लोकप्रिय उपकरण है।
ईएमई पद्धति के सिद्धांत
मालिकाना विस्तार विद्युत चुम्बकीय प्रसार का अनुकरण करने के लिए एक जटिल तकनीक है जो उपकरण के अनुप्रस्थ काट में स्थित स्थानीय मालिकाना के आधार समूह में विद्युत चुम्बकीय क्षेत्रों के अपघटन पर निर्भर करता है। प्रत्येक स्थानीय अनुप्रस्थ काट में मैक्सवेल के समीकरणों को हल करके मालिकानामोड पाए जाते हैं। विधि पूर्ण रूप से सदिश विधि से हो सकती है परंतु कि मोड हलकर्ता स्वयं पूर्ण रूप से सदिश विधि से हों।
एक विशिष्ट तरंग पथक में, कुछ निर्देशित मोड होते हैं (जो तरंग पथक के साथ युग्मन के बिना प्रचारित होते हैं) और अनंत संख्या में विकिरण मोड (जो प्रकाशीय सामर्थ्य को तरंग पथक से दूर ले जाते हैं)। निर्देशित और विकिरण मोड मिलकर एक पूर्ण आधार समूह बनाते हैं। कई समस्याओं को मात्र साधारण संख्या की विधियों पर विचार करके हल किया जा सकता है, जिससे ईएमई एक बहुत ही शक्तिशाली विधि बन जाता है।
जैसा कि गणितीय सूत्रीकरण से देखा जा सकता है, एल्गोरिदम स्वाभाविक रूप से द्वि-दिशात्मक है। यह तरंग पथक के विभिन्न वर्गों में सम्मिलित होने या गैर-समान संरचनाओं को मॉडल करने के लिए प्रकीर्णी आव्यूह ( एस आव्यूह ) तकनीक का उपयोग करता है। संरचनाओं के लिए जो z-दिशा के साथ निरंतर बदलते रहते हैं, z-विवेकीकरण के एक रूप की आवश्यकता होती है। प्रकाशीय क्रमसूक्ष्मक के मॉडलिंग के लिए उन्नत एल्गोरिदम विकसित किए गए हैं।
गणितीय सूत्रीकरण
एक संरचना में जहां प्रकाशीय अपवर्तक सूचकांक z दिशा में भिन्न नहीं होता है, मैक्सवेल के समीकरणों के हल एक समतल तरंग का रूप लेते हैं:
हम यहां के रूप की एकल तरंग दैर्ध्य और समय पर निर्भरता को मानते हैं।
गणितीय रूप से और साधारण सुसंगत जेड-निर्भरता वाली स्थितियों के लिए मैक्सवेल के समीकरणों के मालिकाना फलन और मालिकाना मान हैं।
हम मैक्सवेल के समीकरणों के किसी भी हल को आगे और पीछे प्रसार मोड के अध्यारोपण के रूप में व्यक्त कर सकते हैं:
जब जेड-दिशा के साथ संरचना में परिवर्तन होता है, तो विभिन्न निवेश और निर्गम मोड के बीच युग्मन एक प्रकीर्णी आव्यूह के रूप में प्राप्त किया जा सकता है। अंतरापृष्ठ पर मैक्सवेल के समीकरणों की सीमा प्रतिबन्धों को लागू करके एक असतत चरण के प्रकीर्णी आव्यूह को जटिलता से प्राप्त किया जा सकता है; इसके लिए अंतरापृष्ठ के दोनों किनारों पर मोड और उनके आच्छादन की गणना की आवश्यकता होती है। निरंतर बदलती संरचनाओं (जैसे क्रमसूक्ष्मक) के लिए, जेड-अक्ष के साथ संरचना को अलग करके प्रकीर्णी आव्यूह प्राप्त किया जा सकता है।
ईएमई विधि की दृढ़ता
- ईएमई विधि तन्तु और एकीकृत ज्यामिति के लिए निर्देशित प्रकाशीय घटकों के मॉडलिंग के लिए आदर्श है। मोड गणना संरचना की समरूपता का लाभ उठा सकती है; उदाहरण के लिए बेलनाकार सममित संरचनाओं को बहुत कुशलता से प्रतिरूपित किया जा सकता है।
- विधि पूर्ण रूप से सदिश है (परंतु कि यह पूर्ण रूप से सदिश मोड हलकर्ता पर निर्भर हो) और पूर्ण रूप से द्विदिश है।
- चूंकि यह प्रकीर्णी आव्यूह दृष्टिकोण पर निर्भर करता है, इसलिए सभी प्रतिबिंबों को ध्यान में रखा जाता है।
- किरणपुंज प्रसार विधि के विपरीत, जो मात्र धीरे-धीरे बदलते लिफाफे सन्निकटन के अंतर्गत मान्य है, मालिकानामोड विस्तार मैक्सवेल के समीकरणों के लिए एक जटिल हल प्रदान करता है।
- यह सामान्यतः एफडीटीडी या परिमित अवयव विधि की तुलना में बहुत अधिक कुशल है क्योंकि इसमें प्रसार की दिशा में ठीक विवेक (अर्थात तरंग दैर्ध्य के पैमाने पर) की आवश्यकता नहीं होती है।
- प्रकीर्णी आव्यूह दृष्टिकोण एक नम्य गणना संरचना प्रदान करता है, संभावित रूप से उपयोगकर्ताओं को पैरामीटर क्रमवीक्षण अध्ययन करते समय संरचना के संशोधित भागों की फिर से गणना करने की अनुमति देता है।
- यह लंबे उपकरणों या धातुओं से बने उपकरणों को मॉडल करने की एक उत्कृष्ट तकनीक है।
- 1D+Z संरचनाओं के मॉडलिंग के लिए पूर्ण रूप से विश्लेषणात्मक हल प्राप्त किए जा सकते हैं।
ईएमई पद्धति की सीमाएं
- ईएमई रैखिक समस्याओं तक सीमित है; गैर-रैखिक समस्याओं को पुनरावृत्त तकनीकों का उपयोग करके प्रतिरूपित किया जा सकता है।
- ईएमई मॉडलिंग संरचनाओं के लिए अक्षम हो सकता है जिसके लिए बहुत बड़ी संख्या में मोड की आवश्यकता होती है, जो 3डी समस्याओं के लिए अनुप्रस्थ काट के आकार को सीमित करता है।
यह भी देखें
संदर्भ
- ↑ G.V. Eleftheriades (1994). "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique". IEEE Transactions on Microwave Theory and Techniques. 42 (10): 1896–1903. Bibcode:1994ITMTT..42.1896E. doi:10.1109/22.320771.
- ↑ J. Petracek (2011). "Bidirectional eigenmode propagation algorithm for 3D waveguide structures". 2011 13th International Conference on Transparent Optical Networks. pp. 1–4. doi:10.1109/ICTON.2011.5971039. ISBN 978-1-4577-0881-7.
- ↑ D. Gallagher (2008). "Photonics CAD Matures" (PDF). LEOS Newsletter.