पुनरावृत्त बाइनरी ऑपरेशन: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 69: | Line 69: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 13/05/2023]] | [[Category:Created On 13/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 13:25, 24 May 2023
गणित में, पुनरावर्तित बाइनरी संचालन एक समुच्चय (गणित) S पर बाइनरी संचालन का विस्तार है | जो बार-बार अनुप्रयोग के माध्यम से S के तत्वों के परिमित अनुक्रम पर फलन (गणित) तक होता है।[1] सामान्य उदाहरणों में संकलन संक्रिया में जोड़ संक्रिया का विस्तार, और गुणन संक्रिया का उत्पाद (गणित) संक्रिया तक विस्तार सम्मिलित है। अन्य संचालन, उदाहरण के लिए, समुच्चय-थ्योरिटिक संचालन संघ (समुच्चय सिद्धांत) और प्रतिच्छेदन (समुच्चय सिद्धांत) भी अधिकांशतः दोहराए जाते हैं | किन्तु पुनरावृत्तियों को अलग-अलग नाम नहीं दिए जाते हैं। प्रिंट में, योग और उत्पाद विशेष प्रतीकों द्वारा दर्शाए जाते हैं | किन्तु अन्य पुनरावृत्त संचालको को अधिकांशतः साधारण बाइनरी संचालक के प्रतीक के बड़े वेरिएंट द्वारा दर्शाया जाता है। इस प्रकार, ऊपर वर्णित चार परिचालनों के पुनरावृत्तियों को निरूपित किया गया है |
- और , क्रमशः
अधिक सामान्यतः, बाइनरी फलन का पुनरावृत्ति सामान्यतः स्लैश द्वारा दर्शाया जाता है | पुनरावृत्ति अनुक्रम के ऊपर द्वारा निरूपित किया जाता है | , बर्ड-मीर्टेंस औपचारिकता में फोल्ड (उच्च-क्रम फलन) के लिए संकेतन के बाद किया जाता है।
सामान्यतः, परिमित अनुक्रमों पर संचालित करने के लिए बाइनरी संचालन का विस्तार करने का एक से अधिक विधि है | यह इस तथ्य पर निर्भर करता है कि क्या संचालक साहचर्य है, और क्या संचालक के पास पहचान तत्व हैं।
परिभाषा
j ≥ 0 और k ≥ j, के साथ j ≤ i < k के लिए सदस्यों (ai) के साथ S के तत्वों की लंबाई k = j के परिमित अनुक्रम को aj,k से निरूपित करें। ध्यान दें कि यदि k = j अनुक्रम खाली है।
f के लिए: f : S × S के तत्वों के परिमित गैररिक्त अनुक्रमों पर एक नया फलन Fl परिभाषित करता है |
यदि f साहचर्य है, तो Fl Fr के समान, और हम बस F लिख सकते हैं। इसके अतिरिक्त, यदि कोई पहचान तत्व e उपस्थित है, तो यह अद्वितीय है (मोनॉयड देखें)।
यदि f क्रमविनिमेय और साहचर्य है, तो F किसी भी गैर-खाली परिमित मल्टीसेट पर इसे मल्टीसेट की अच्चानुसार गणना पर प्रयुक्त करके संचालित कर सकता है। यदि इसके अतिरिक्त f में पहचान तत्व e है, तो इसे खाली मल्टीसेट पर F के मान के रूप में परिभाषित किया जाता है। यदि f व्यर्थ है, तो उपरोक्त परिभाषाओं को परिमित समुच्चय तक बढ़ाया जा सकता है।
यदि S भी आव्यूह (गणित) या अधिक सामान्यतः टोपोलॉजी से लैस है | जो हॉसडॉर्फ स्पेस है | जिससे अनुक्रम की सीमा की अवधारणा को S में परिभाषित किया जा सके, तो S में गणनीय अनुक्रम पर अनंतता पुनरावृति को ठीक उसी समय परिभाषित किया जाता है | जब परिमित पुनरावृत्तियों का संगत क्रम अभिसरण करता है। इस प्रकार, उदाहरण के लिए, यदि a0, a1, a2, a3,, … वास्तविक संख्याओं का अनंत क्रम है | फिर अनंत गुणनफल परिभाषित है, और के समान है | यदि और केवल यदि वह सीमा उपस्थित है।
गैर-सहयोगी बाइनरी संचालन
मैग्मा (बीजगणित) द्वारा सामान्य, गैर-सहयोगी बाइनरी संचालन दिया जाता है। गैर-सहयोगी बाइनरी संचालन पर पुनरावृति के कार्य को बाइनरी ट्री के रूप में दर्शाया जा सकता है।
टिप्पणी
पुनरावृत्त बाइनरी संचालन का उपयोग संचालन का प्रतिनिधित्व करने के लिए किया जाता है | जिसे कुछ बाधाओं के अधीन समुच्चय पर दोहराया जाएगा। सामान्यतः प्रतिबंध की निचली सीमा प्रतीक के नीचे लिखी जाती है, और ऊपरी सीमा प्रतीक के ऊपर लिखी जाती है | चूँकि उन्हें कॉम्पैक्ट टिप्पणी में सुपरस्क्रिप्ट और सबस्क्रिप्ट के रूप में भी लिखा जा सकता है। इंटरपोलेशन निचले से ऊपरी बाउंड तक सकारात्मक पूर्णांक पर किया जाता है | समुच्चय का उत्पादन करने के लिए जिसे संकेत में प्रतिस्थापित किया जाएगा (नीचे i के रूप में दर्शाया गया है)) बार-बार संचालन के लिए।
सामान्य संकेतन में बड़ा सिग्मा (सारांश) और बड़ा पाई (उत्पाद (गणित)) अंकन सम्मिलित हैं।
यह भी देखें
- निरंतर भिन्न
- फोल्ड (उच्च क्रम फलन)
- अनंत उत्पाद
- अनंत श्रंखला
संदर्भ
- ↑ Saunders MacLane (1971). कामकाजी गणितज्ञ के लिए श्रेणियाँ. New York: Springer-Verlag. p. 142. ISBN 0387900357.
- ↑ Weisstein, Eric W. "मिलन". mathworld.wolfram.com (in English). Wolfram Mathworld. Retrieved 30 January 2018.