लिफ्ट गुणांक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Dimensionless quantity relating lift to fluid density and velocity over an area}} | {{Short description|Dimensionless quantity relating lift to fluid density and velocity over an area}} | ||
द्रव गतिकी में '''लिफ्ट गुणांक''' ({{math|'''''C''<sub>L</sub>'''}}) एक [[आयाम रहित मात्रा|आयाम रहित]] राशि है जो अंतरिक्ष यान के चारों ओर [[द्रव घनत्व]], [[द्रव वेग]] और संबंधित [[संदर्भ क्षेत्र]] | द्रव गतिकी में '''लिफ्ट गुणांक''' ({{math|'''''C''<sub>L</sub>'''}}) एक [[आयाम रहित मात्रा|आयाम रहित]] राशि है जो अंतरिक्ष यान के चारों ओर [[द्रव घनत्व]], [[द्रव वेग]] और संबंधित [[संदर्भ क्षेत्र]] पर लगने वाले भार द्वारा उत्पन्न लिफ्ट बल से संबंधित होता है। अंतरिक्ष यान फॉयल या एक पूर्ण फॉयल-बेयरिंग वायुयान है जैसे कि [[ फिक्स्ड-विंग विमान |स्थिर पंख वाला वायुयान]] {{math|''C''<sub>L</sub>}} गतिकी प्रवाह के कोण का एक कार्य है। इसकी रेनॉल्ड्स संख्या और [[रेनॉल्ड्स संख्या]] खंड लिफ्ट गुणांक {{math|''c''<sub>l</sub>}} एक द्वि-आयामी फॉयल अनुप्रस्थ की गतिशील लिफ्ट विशेषताओं को संदर्भित करता है। जिसमें संदर्भ क्षेत्र को फॉयल कॉर्ड द्वारा प्रतिस्थापित किया जाता है।<ref name="Clancy">{{cite book|last=Clancy|first=L. J.|title=वायुगतिकी|year=1975|publisher=John Wiley & Sons|location=New York|at=Sections 4.15 & 5.4}}</ref><ref name="TWS1.2">[[Ira H. Abbott|Abbott, Ira H.]], and Doenhoff, Albert E. von: ''Theory of Wing Sections''. Section 1.2</ref> | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
लिफ्ट गुणांक {{math|''C''<sub>L</sub>}} द्वारा परिभाषित किया गया है:<ref name=TWS1.2/><ref>Clancy, L. J.: ''Aerodynamics''. Section 4.15</ref> | लिफ्ट गुणांक {{math|''C''<sub>L</sub>}} द्वारा परिभाषित किया गया है:<ref name=TWS1.2/><ref>Clancy, L. J.: ''Aerodynamics''. Section 4.15</ref> | ||
:<math>C_\mathrm L \equiv \frac{L}{q \, S} = {\frac{L}{\frac{1}{2}\rho u^2 \, S}} = {\frac{2 L}{\rho u^2S}} </math> , | :<math>C_\mathrm L \equiv \frac{L}{q \, S} = {\frac{L}{\frac{1}{2}\rho u^2 \, S}} = {\frac{2 L}{\rho u^2S}} </math> , | ||
जहाँ <math>L\,</math> | जहाँ <math>L\,</math> लिफ्ट बल है, <math>S\,</math> संबंधित सतह क्षेत्र है और <math>q\,</math> द्रव [[गतिशील दबाव|गतिज दाब]] है जो परिवर्तन में द्रव [[घनत्व]] <math>\rho\,</math> और प्रवाह गति <math>u\,</math> से जुड़ा हुआ है। संदर्भ सतह का चुनाव निर्दिष्ट रूप से किया जाना चाहिए क्योंकि यह अपेक्षाकृत यादृच्छिक होता है। उदाहरण मे बेलनाकार रूपरेखा के लिए (स्पेन संबंधी दिशा में एक वायुयान-फॉयल का 3डी बहिर्वेशन) यह सदैव स्पेन संबंधी दिशा में उन्मुख होता है। लेकिन वायुगतिकी और वायुयान-फॉयल सिद्धांत में सतह को उत्पन्न करने वाली दूसरी धुरी सामान्यतः जीवा की दिशा होती है: | ||
:<math>S_{aer} \equiv c \, s</math> | :<math>S_{aer} \equiv c \, s</math> | ||
जिसके परिणामस्वरूप गुणांक होता है: | जिसके परिणामस्वरूप गुणांक होता है: | ||
:<math>C_{\mathrm L, \, aer} \equiv \frac{L}{q \, c \, s},</math> | :<math>C_{\mathrm L, \, aer} \equiv \frac{L}{q \, c \, s},</math> | ||
जबकि मोटे वायुयान- | जबकि मोटे वायुयान-फॉयल और समुद्री गतिकी के लिए, दूसरी धुरी को कभी-कभी चौड़ाई की दिशा में लिया जाता है: | ||
:<math>S_{mar} = t \, s</math> | :<math>S_{mar} = t \, s</math> | ||
Line 22: | Line 22: | ||
== धारा लिफ्ट गुणांक == | == धारा लिफ्ट गुणांक == | ||
[[Image:Lift curve.svg|thumb|300px|right|कैम्बर्ड वायुयान- | [[Image:Lift curve.svg|thumb|300px|right|कैम्बर्ड वायुयान-फॉयल के लिए आक्रमण कोण अनुप्रस्थ लिफ्ट गुणांक दिखाते हुए एक विशिष्ट वक्र।]]लिफ्ट गुणांक का उपयोग वायुयान-फॉयल के किसी विशेष आकार (या अनुप्रस्थ काट) की विशेषता के रूप में भी किया जा सकता है। इस अनुप्रयोग में इसे अनुप्रस्थ लिफ्ट गुणांक <math>c_\text{l}</math> कहा जाता है। किसी विशेष वायुयान-फॉयल अनुप्रस्थ के लिए अनुप्रस्थ लिफ्ट गुणांक और आक्रमण के कोण के बीच संबंध को प्रदर्शित करना सामान्य है। अनुप्रस्थ लिफ्ट गुणांक और संकर्षण गुणांक के बीच संबंध प्रदर्शित करने के लिए भी यह उपयोगी है।<ref>Abbott, Ira H., and Von Doenhoff, Albert E.: ''Theory of Wing Sections''. Appendix IV</ref> | ||
अनुप्रस्थ लिफ्ट गुणांक अनंत अवधि और गैर-भिन्न अनुप्रस्थ काट के एक पंख पर द्वि-आयामी प्रवाह पर आधारित होता है। इसलिए | अनुप्रस्थ लिफ्ट गुणांक अनंत अवधि और गैर-भिन्न अनुप्रस्थ काट के एक पंख पर द्वि-आयामी प्रवाह पर आधारित होता है। इसलिए लिफ्ट स्पेन संबंधी प्रभावों से स्वतंत्र है और <math>l</math> के संदर्भ में पंख की प्रति इकाई अवधि को लिफ्ट बल के रूप में परिभाषित किया गया है: | ||
:<math>c_\text{l} = \frac{l}{q \, L},</math> | :<math>c_\text{l} = \frac{l}{q \, L},</math> | ||
जहां L वह संदर्भ लंबाई है जिसे सदैव निर्दिष्ट किया जाना चाहिए कि वायुगतिकी और वायुयान- | जहां L वह संदर्भ लंबाई है जिसे सदैव निर्दिष्ट किया जाना चाहिए कि वायुगतिकी और वायुयान-फॉयल सिद्धांत में सामान्यतः वायुयान-फॉयल कॉर्ड <math>c\,</math> को चुना जाता है, जबकि समुद्री गतिकी में और स्ट्रट्स (अतरक) के लिए सामान्यतः चौड़ाई <math>t\,</math> को चुना जाता है। ध्यान दें कि यह सीधे संकर्षण गुणांक के अनुरूप है क्योंकि तार की "क्षेत्र प्रति इकाई अवधि" के रूप में व्याख्या की जा सकती है। | ||
आक्रमण के दिए गए कोण के लिए <math>c_\text{l}</math> की गणना लगभग [[ पतला एयरफॉइल सिद्धांत |वायुयान- | आक्रमण के दिए गए कोण के लिए <math>c_\text{l}</math> की गणना लगभग [[ पतला एयरफॉइल सिद्धांत |वायुयान-फॉयल सिद्धांत]] का उपयोग करके संख्यात्मक रूप से गणना की जाती है।<ref>Clancy, L. J.: ''Aerodynamics''. Section 8.2</ref> या परिमित-लंबाई परीक्षण भाग पर टर्मिनल परीक्षणों से निर्धारित होती है, जिसमें तीन-आयामी प्रभावों को सुधारने के लिए डिज़ाइन किया गया अंत-प्लेट होता है। आक्रमण के कोण {{math|'''''C''<sub>L</sub>'''}} के प्लॉट सभी वायुयान-फॉयल के लिए सामान्यतः समान आकार के प्रदर्शित होते हैं, लेकिन विशेष संख्याएं अलग-अलग प्रदर्शित होती हैं। वे लिफ्ट प्रवणता के रूप में जाने वाले ढाल के साथ आक्रमण के बढ़ते कोण के साथ लिफ्ट गुणांक में लगभग रैखिक वृद्धि दर्शाते हैं। किसी भी आकार के पतले वायुयान-फॉयल के लिए लिफ्ट प्रवणता π<sup>2</sup>/90 ≃ 0.11 प्रति डिग्री होती है। जिसको उच्च कोणों पर अधिकतम बिंदु तक अभिगम्य किया जाता है। जिसके बाद लिफ्ट गुणांक कम हो जाता है। जिस कोण पर अधिकतम लिफ्ट गुणांक होता है। वह वायुयान-फॉयल का विवृत कोण होता है जो एक विशिष्ट वायुयान-फॉयल पर लगभग 10 से 15 डिग्री होता है। | ||
रेनॉल्ड्स संख्या के बढ़ते मानो के साथ किसी दिए गए | रेनॉल्ड्स संख्या के बढ़ते मानो के साथ किसी दिए गए कोण के लिए विवृत कोण भी बढ़ता है। उच्च गति पर वास्तव में विवृत कोण की स्थिति में देरी के लिए प्रवाह बाह्य रूपरेखा से संबद्ध रहता है।<ref>{{Cite book|last=Katz|first=J.|title=रेस कार एरोडायनामिक्स|publisher=Bentley Publishers|year=2004|isbn=0-8376-0142-8|location=Cambridge, MA|pages=93}}</ref><ref>{{Cite book|last=Katz|first=J|title=Low-Speed Aerodynamics: From Wing Theory to Panel Methods|last2=Plotkin|first2=A|publisher=Cambridge University Press|year=2001|pages=525}}</ref> इस कारण से कभी-कभी कृत्रिम वास्तविक जीवन की स्थिति की तुलना में अपेक्षाकृत कम रेनॉल्ड्स संख्या में किए गए टर्मिनल परीक्षण कभी-कभी वास्तविक प्रतिक्रिया दे सकते हैं जो कृत्रिम विवृत कोण को कम करके गणना करते हैं। | ||
सममित वायुयान- | सममित वायुयान-फॉयल में {{math|'''''C''<sub>L</sub>'''}} अक्ष की स्थिति में आक्रमण सममित के {{math|'''''C''<sub>L</sub>'''}} कोण के प्लॉट होते हैं, लेकिन धनात्मक वक्रता के साथ किसी भी वायुयान-फॉयल के लिए अर्थात विषम, उत्तल, शून्य से कम आक्रमण के कोणों के साथ छोटा लेकिन धनात्मक लिफ्ट गुणांक होता है। अर्थात वह कोण जिस पर cl = 0 ऋणात्मक होता है। आक्रमण के शून्य कोण पर ऐसे वायुयान-फॉयल पर ऊपरी सतह पर दाब निचली सतह की तुलना में अपेक्षाकृत कम होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 45: | Line 45: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{reflist|30em}} | {{reflist|30em}} | ||
== संदर्भ == | == संदर्भ == | ||
* [[L. J. Clancy]] (1975): ''Aerodynamics''. Pitman Publishing Limited, London, {{ISBN|0-273-01120-0}} | * [[L. J. Clancy]] (1975): ''Aerodynamics''. Pitman Publishing Limited, London, {{ISBN|0-273-01120-0}} |
Revision as of 20:27, 21 May 2023
द्रव गतिकी में लिफ्ट गुणांक (CL) एक आयाम रहित राशि है जो अंतरिक्ष यान के चारों ओर द्रव घनत्व, द्रव वेग और संबंधित संदर्भ क्षेत्र पर लगने वाले भार द्वारा उत्पन्न लिफ्ट बल से संबंधित होता है। अंतरिक्ष यान फॉयल या एक पूर्ण फॉयल-बेयरिंग वायुयान है जैसे कि स्थिर पंख वाला वायुयान CL गतिकी प्रवाह के कोण का एक कार्य है। इसकी रेनॉल्ड्स संख्या और रेनॉल्ड्स संख्या खंड लिफ्ट गुणांक cl एक द्वि-आयामी फॉयल अनुप्रस्थ की गतिशील लिफ्ट विशेषताओं को संदर्भित करता है। जिसमें संदर्भ क्षेत्र को फॉयल कॉर्ड द्वारा प्रतिस्थापित किया जाता है।[1][2]
परिभाषाएँ
लिफ्ट गुणांक CL द्वारा परिभाषित किया गया है:[2][3]
- ,
जहाँ लिफ्ट बल है, संबंधित सतह क्षेत्र है और द्रव गतिज दाब है जो परिवर्तन में द्रव घनत्व और प्रवाह गति से जुड़ा हुआ है। संदर्भ सतह का चुनाव निर्दिष्ट रूप से किया जाना चाहिए क्योंकि यह अपेक्षाकृत यादृच्छिक होता है। उदाहरण मे बेलनाकार रूपरेखा के लिए (स्पेन संबंधी दिशा में एक वायुयान-फॉयल का 3डी बहिर्वेशन) यह सदैव स्पेन संबंधी दिशा में उन्मुख होता है। लेकिन वायुगतिकी और वायुयान-फॉयल सिद्धांत में सतह को उत्पन्न करने वाली दूसरी धुरी सामान्यतः जीवा की दिशा होती है:
जिसके परिणामस्वरूप गुणांक होता है:
जबकि मोटे वायुयान-फॉयल और समुद्री गतिकी के लिए, दूसरी धुरी को कभी-कभी चौड़ाई की दिशा में लिया जाता है:
जिसके परिणामस्वरूप एक अलग गुणांक होता है:
इन दो गुणांकों के बीच का अनुपात चौड़ाई अनुपात है:
लिफ्ट गुणांक को लिफ्टिंग-रेखा सिद्धांत सिद्धांत का उपयोग करके अनुमानित किया जा सकता है।[4] और पूर्ण समतल विन्यास के टर्मिनल परीक्षण में संख्यात्मक रूप से गणना या मापा जाता है।
धारा लिफ्ट गुणांक
लिफ्ट गुणांक का उपयोग वायुयान-फॉयल के किसी विशेष आकार (या अनुप्रस्थ काट) की विशेषता के रूप में भी किया जा सकता है। इस अनुप्रयोग में इसे अनुप्रस्थ लिफ्ट गुणांक कहा जाता है। किसी विशेष वायुयान-फॉयल अनुप्रस्थ के लिए अनुप्रस्थ लिफ्ट गुणांक और आक्रमण के कोण के बीच संबंध को प्रदर्शित करना सामान्य है। अनुप्रस्थ लिफ्ट गुणांक और संकर्षण गुणांक के बीच संबंध प्रदर्शित करने के लिए भी यह उपयोगी है।[5]
अनुप्रस्थ लिफ्ट गुणांक अनंत अवधि और गैर-भिन्न अनुप्रस्थ काट के एक पंख पर द्वि-आयामी प्रवाह पर आधारित होता है। इसलिए लिफ्ट स्पेन संबंधी प्रभावों से स्वतंत्र है और के संदर्भ में पंख की प्रति इकाई अवधि को लिफ्ट बल के रूप में परिभाषित किया गया है:
जहां L वह संदर्भ लंबाई है जिसे सदैव निर्दिष्ट किया जाना चाहिए कि वायुगतिकी और वायुयान-फॉयल सिद्धांत में सामान्यतः वायुयान-फॉयल कॉर्ड को चुना जाता है, जबकि समुद्री गतिकी में और स्ट्रट्स (अतरक) के लिए सामान्यतः चौड़ाई को चुना जाता है। ध्यान दें कि यह सीधे संकर्षण गुणांक के अनुरूप है क्योंकि तार की "क्षेत्र प्रति इकाई अवधि" के रूप में व्याख्या की जा सकती है।
आक्रमण के दिए गए कोण के लिए की गणना लगभग वायुयान-फॉयल सिद्धांत का उपयोग करके संख्यात्मक रूप से गणना की जाती है।[6] या परिमित-लंबाई परीक्षण भाग पर टर्मिनल परीक्षणों से निर्धारित होती है, जिसमें तीन-आयामी प्रभावों को सुधारने के लिए डिज़ाइन किया गया अंत-प्लेट होता है। आक्रमण के कोण CL के प्लॉट सभी वायुयान-फॉयल के लिए सामान्यतः समान आकार के प्रदर्शित होते हैं, लेकिन विशेष संख्याएं अलग-अलग प्रदर्शित होती हैं। वे लिफ्ट प्रवणता के रूप में जाने वाले ढाल के साथ आक्रमण के बढ़ते कोण के साथ लिफ्ट गुणांक में लगभग रैखिक वृद्धि दर्शाते हैं। किसी भी आकार के पतले वायुयान-फॉयल के लिए लिफ्ट प्रवणता π2/90 ≃ 0.11 प्रति डिग्री होती है। जिसको उच्च कोणों पर अधिकतम बिंदु तक अभिगम्य किया जाता है। जिसके बाद लिफ्ट गुणांक कम हो जाता है। जिस कोण पर अधिकतम लिफ्ट गुणांक होता है। वह वायुयान-फॉयल का विवृत कोण होता है जो एक विशिष्ट वायुयान-फॉयल पर लगभग 10 से 15 डिग्री होता है।
रेनॉल्ड्स संख्या के बढ़ते मानो के साथ किसी दिए गए कोण के लिए विवृत कोण भी बढ़ता है। उच्च गति पर वास्तव में विवृत कोण की स्थिति में देरी के लिए प्रवाह बाह्य रूपरेखा से संबद्ध रहता है।[7][8] इस कारण से कभी-कभी कृत्रिम वास्तविक जीवन की स्थिति की तुलना में अपेक्षाकृत कम रेनॉल्ड्स संख्या में किए गए टर्मिनल परीक्षण कभी-कभी वास्तविक प्रतिक्रिया दे सकते हैं जो कृत्रिम विवृत कोण को कम करके गणना करते हैं।
सममित वायुयान-फॉयल में CL अक्ष की स्थिति में आक्रमण सममित के CL कोण के प्लॉट होते हैं, लेकिन धनात्मक वक्रता के साथ किसी भी वायुयान-फॉयल के लिए अर्थात विषम, उत्तल, शून्य से कम आक्रमण के कोणों के साथ छोटा लेकिन धनात्मक लिफ्ट गुणांक होता है। अर्थात वह कोण जिस पर cl = 0 ऋणात्मक होता है। आक्रमण के शून्य कोण पर ऐसे वायुयान-फॉयल पर ऊपरी सतह पर दाब निचली सतह की तुलना में अपेक्षाकृत कम होता है।
यह भी देखें
- लिफ्ट संकर्षण अनुपात
- संकर्षण गुणांक
- फॉयल (द्रव यांत्रिकी)
- अक्षनतिक (पिचिंग) आघूर्ण
- परिसंचरण नियंत्रण विभाग
- शून्य उत्थापन अक्ष
टिप्पणियाँ
- ↑ Clancy, L. J. (1975). वायुगतिकी. New York: John Wiley & Sons. Sections 4.15 & 5.4.
- ↑ 2.0 2.1 Abbott, Ira H., and Doenhoff, Albert E. von: Theory of Wing Sections. Section 1.2
- ↑ Clancy, L. J.: Aerodynamics. Section 4.15
- ↑ Clancy, L. J.: Aerodynamics. Section 8.11
- ↑ Abbott, Ira H., and Von Doenhoff, Albert E.: Theory of Wing Sections. Appendix IV
- ↑ Clancy, L. J.: Aerodynamics. Section 8.2
- ↑ Katz, J. (2004). रेस कार एरोडायनामिक्स. Cambridge, MA: Bentley Publishers. p. 93. ISBN 0-8376-0142-8.
- ↑ Katz, J; Plotkin, A (2001). Low-Speed Aerodynamics: From Wing Theory to Panel Methods. Cambridge University Press. p. 525.
संदर्भ
- L. J. Clancy (1975): Aerodynamics. Pitman Publishing Limited, London, ISBN 0-273-01120-0
- Abbott, Ira H., and Doenhoff, Albert E. von (1959): Theory of Wing Sections, Dover Publications New York, # 486-60586-8