बेजान संख्या: Difference between revisions

From Vigyanwiki
m (5 revisions imported from alpha:बेजान_संख्या)
No edit summary
 
Line 93: Line 93:


{{NonDimFluMech}}
{{NonDimFluMech}}
[[Category: ऊष्मप्रवैगिकी की आयामहीन संख्या]] [[Category: द्रव यांत्रिकी की आयामहीन संख्या]] [[Category: कंवेक्शन]]


 
[[Category:All articles with dead external links]]
 
[[Category:Articles with dead external links from July 2022]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 16/05/2023]]
[[Category:Created On 16/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:ऊष्मप्रवैगिकी की आयामहीन संख्या]]
[[Category:कंवेक्शन]]
[[Category:द्रव यांत्रिकी की आयामहीन संख्या]]

Latest revision as of 17:11, 25 May 2023

ऊष्मा गतिकी और द्रव यांत्रिकी के वैज्ञानिक डोमेन में दो अलग-अलग बेजान संख्याओ (Be) का उपयोग किया जाता है। बेजान संख्याओ का नाम एड्रिअन बेजान (वैज्ञानिक) के नाम पर रखा गया है।

ऊष्मा गतिकी

ऊष्मा गतिकी के क्षेत्र में बेजान संख्या ऊष्मा स्थानांतरण और द्रव घर्षण के कारण कुल अपरिवर्तनीयता के लिए ऊष्मा स्थानांतरण अपरिवर्तनीयता का अनुपात है:[1][2]

जहाँ

ऊष्मा स्थानांतरण द्वारा योगदान की गई एंट्रॉपी संख्या है।
द्रव घर्षण द्वारा योगदान की गई एंट्रॉपी संख्या है।

शिउब्बा ने बेजान संख्या (Be) और ब्रिंकमैन संख्या (Br) के बीच संबंध भी स्थापित किया है:

ऊष्मा और द्रव्यमान स्थानांतरण

ऊष्मा स्थानांतरण के संदर्भ में बेजान संख्या लंबाई के एक माध्यम के साथ आयाम रहित दाब ह्रास है:[3]

जहाँ

गतिशील श्यानता है।
तापीय प्रसार है।

बेजान संख्या प्रणोदित संवहन में वही भूमिका निभाती है जो रेले संख्या प्राकृतिक संवहन में भूमिका निभाती है।

सामूहिक स्थानांतरण के संदर्भ में बेजान संख्या लंबाई के एक माध्यम के साथ आयाम रहित दाब ह्रास है:[4]

जहाँ

गतिशील श्यानता है।
द्रव्यमान प्रसार है।

रेनल्ड्स समरूपता (Le = Pr = Sc = 1) की स्थिति में, यह स्पष्ट है कि बेजान संख्या की तीनों परिभाषाएँ समान होती हैं।

इसके अतिरिक्त, अवध और लागे ने बेजान संख्या का एक संशोधित रूप प्राप्त किया था जो मूल रूप से भट्टाचार्जी और ग्रॉसहैंडलर द्वारा संवेग प्रक्रियाओं के लिए प्रस्तावित किया गया था।[5] मूल प्रस्ताव में दिखाई देने वाली गतिशील श्यानता को तरल घनत्व के समतुल्य उत्पाद और द्रव के संवेग प्रसार के साथ संशोधित किया गया था। यह संशोधित रूप न केवल उस भौतिकी के साथ अधिक समरूप है जिसका वह प्रतिनिधित्व करता है बल्कि इसमें यह केवल श्यानता गुणांक पर निर्भर होने का लाभ भी है। इसके अतिरिक्त यह सरल संशोधन अन्य प्रसार प्रक्रियाओं जैसे ऊष्मा या प्रजातियों की स्थानांतरण की प्रक्रिया के लिए केवल प्रसार गुणांक को संशोधित करके बेजान संख्या के बहुत सरल विस्तार की स्वीकृति देता है। जिसके परिणाम स्वरूप दाब ह्रास और प्रसार से संबद्ध किसी भी प्रक्रिया के लिए एक सामान्य बेजान संख्या का प्रतिनिधित्व संभव हो जाता है। यह दिखाया गया है कि यह सामान्य प्रतिनिधित्व रेनॉल्ड्स समानता (अर्थात,Pr = Sc = 1) को संतुष्ट करने वाली किसी भी प्रक्रिया के लिए समान परिणाम उत्पन्न करता है। इस स्थिति में गति, ऊर्जा और बेजान संख्या की प्रजातियों की एकाग्रता का प्रतिनिधित्व समान होता है। इसलिए, बेजान संख्या (Be) को सामान्य रूप से परिभाषित करना अधिक स्वाभाविक और व्यापक हो सकता है।

जैसे कि:

जहाँ

द्रव घनत्व है।
विचाराधीन प्रक्रिया का संगत तापीय प्रसार है।

इसके अतिरिक्त, अवध ने हेगन संख्या और बेजान संख्या को पुनः प्रस्तुत किया था। यद्यपि उनका भौतिक अर्थ समान नहीं है क्योंकि पूर्व आयाम रहित दाब प्रवणता का प्रतिनिधित्व करता है।[6] जबकि बाद वाला आयाम दाब दाब ह्रास का प्रतिनिधित्व करता है। इसमे यह प्रदर्शित किया गया है कि हेगन संख्या उन स्थितियों में बेजान संख्या के साथ अनुरूप है जहां अभिलक्षणिक लंबाई (I) प्रवाह की लंबाई (L) के बराबर है।

द्रव यांत्रिकी

द्रव यांत्रिकी के क्षेत्र में बेजान संख्या ऊष्मा स्थानांतरण की समस्याओं में परिभाषित एक संख्या समान है, जिसका बाह्य प्रवाह और आंतरिक प्रवाह दोनों में द्रव पथ लंबाई के साथ आयाम रहित दाब ह्रास है:[7]

जहाँ

गतिशील श्यानता है।
संवेग गति प्रसार (या काइनेमैटिक श्यानता) है।

अवध द्वारा हेगन-प्वाजय प्रवाह में बेजान संख्या की एक और अभिव्यक्ति को प्रस्तुत किया गया है:

जहाँ

रेनॉल्ड्स संख्या है।
प्रवाह की लंबाई है।
पाइप व्यास है।

उपरोक्त अभिव्यक्ति से पता चलता है कि हेगन-प्वाजय प्रवाह में बेजान संख्या वास्तव में एक आयाम रहित समूह है, जिसे पहले पहचाना नहीं गया था।

बेजान संख्या के भट्टाचार्जी और ग्रॉसहैंडलर सूत्रीकरण का एक क्षैतिज तल पर द्रव प्रवाह की स्थिति में द्रव गतिकी पर बड़ा महत्व है क्योंकि यह खीचने की क्षमता निम्नलिखित अभिव्यक्ति द्वारा द्रव गतिशील संकर्षण D से संबंधित है।[8]


जो संकर्षण गुणांक को बेजान संख्या के कार्य और गीले क्षेत्र और सामने के क्षेत्र के बीच के अनुपात के रूप में व्यक्त करने की स्वीकृति देता है:[8]

जहां द्रव पथ की लंबाई से संबंधित रेनॉल्ड्स संख्या है। इस अभिव्यक्ति को एक पवन सुरंग (टर्मिनल) में प्रयोगात्मक रूप से सत्यापित किया गया है।[9] यह समीकरण ऊष्मा गतिकी के दूसरे नियम के संदर्भ में संकर्षण गुणांक का प्रतिनिधित्व करता है:[10]

जहाँ एन्ट्रापी संख्या दर है, ऊर्जा अपव्यय दर है और ρ घनत्व है।

उपरोक्त सूत्रीकरण बेजान संख्या को ऊष्मा गतिकी के दूसरे नियम के संदर्भ में व्यक्त करने की स्वीकृति देता है:[11][12]

यह अभिव्यक्ति ऊष्मा गतिकी के दूसरे नियम के संदर्भ में द्रव गतिशील समस्याओं के प्रतिनिधित्व की दिशा का मौलिक रूप है।[13]

यह भी देखें

  • एड्रियन बेजान (वैज्ञानिक)
  • एंट्रॉपी
  • ऊर्जा
  • ऊष्मा गतिकी
  • संरचनात्मक सिद्धांत

संदर्भ

  1. Paoletti, S.; Rispoli, F.; Sciubba, E. (1989). "कॉम्पैक्ट हीट एक्सचेंजर मार्ग में एक्सर्जेटिक नुकसान की गणना". ASME AES. 10 (2): 21–29.
  2. Sciubba, E. (1996). A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers. Revue générale de thermique, 35(416), 517-525. [1][dead link]
  3. Petrescu, S. (1994). "'मजबूर संवहन द्वारा ठंडा समानांतर प्लेटों की इष्टतम रिक्ति' पर टिप्पणियाँ". Int. J. Heat Mass Transfer. 37 (8): 1283. doi:10.1016/0017-9310(94)90213-5.
  4. Awad, M.M. (2012). "बेजान संख्या की एक नई परिभाषा". Thermal Science. 16 (4): 1251–1253. doi:10.2298/TSCI12041251A.
  5. Awad, M.M.; Lage, J. L. (2013). "बेजान संख्या को एक सामान्य रूप में विस्तारित करना". Thermal Science. 17 (2): 631. doi:10.2298/TSCI130211032A.
  6. Awad, M.M. (2013). "हेगन संख्या बनाम बेजान संख्या". Thermal Science. 17 (4): 1245–1250. doi:10.2298/TSCI1304245A.
  7. Bhattacharjee, S.; Grosshandler, W. L. (1988). "माइक्रोग्रैविटी वातावरण के तहत उच्च तापमान वाली दीवार के पास वॉल जेट का निर्माण". ASME 1988 National Heat Transfer Conference. 96: 711–716. Bibcode:1988nht.....1..711B.
  8. 8.0 8.1 Liversage, P., and Trancossi, M. (2018). Analysis of triangular sharkskin profiles according to the second law, Modelling, Measurement and Control B. 87(3), 188-196. http://www.iieta.org/sites/default/files/Journals/MMC/MMC_B/87.03_11.pdf
  9. Trancossi, M. and Sharma, S., 2018. Numerical and Experimental Second Law Analysis of a Low Thickness High Chamber Wing Profile (No. 2018-01-1955). SAE Technical Paper. https://www.sae.org/publications/technical-papers/content/2018-01-1955/
  10. Herwig, H., and Schmandt, B., 2014. How to determine losses in a flow field: A paradigm shift towards the second law analysis.” Entropy 16.6 (2014): 2959-2989. DOI:10.3390/e16062959 https://www.mdpi.com/1099-4300/16/6/2959
  11. Trancossi, M., and Pascoa J.. "Modeling fluid dynamics and aerodynamics by second law and Bejan number (part 1-theory)." INCAS Bulletin 11, no. 3 (2019): 169-180. http://bulletin.incas.ro/files/trancossi__pascoa__vol_11_iss_3__a_1.pdf
  12. Trancossi, M., & Pascoa, J. (2019). Diffusive Bejan number and second law of thermodynamics toward a new dimensionless formulation of fluid dynamics laws. Thermal Science, (00), 340-340. http://www.doiserbia.nb.rs/ft.aspx?id=0354-98361900340T
  13. Trancossi, M., Pascoa, J., & Cannistraro, G. (2020). Comments on “New insight into the definitions of the Bejan number”. International Communications in Heat and Mass Transfer, 104997. https://doi.org/10.1016/j.icheatmasstransfer.2020.104997