निश्चित-बिंदु प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:
}}</ref> इसके विपरीत, [[ब्रोवर फिक्स्ड-पॉइंट प्रमेय]] (1911)रचनात्मक परिणाम है यह कहता है कि एन-डायमेंशनल [[ यूक्लिडियन अंतरिक्ष ]] में संवृत [[यूनिट बॉल]] से किसी भी [[निरंतर कार्य]] का निश्चित बिंदु होना चाहिए,<ref>Eberhard Zeidler, ''Applied Functional Analysis: main principles and their applications'', Springer, 1995.</ref> किन्तु  यह वर्णन नहीं करता है कि निश्चित बिंदु का शोधन किस प्रकार किया जाये।
}}</ref> इसके विपरीत, [[ब्रोवर फिक्स्ड-पॉइंट प्रमेय]] (1911)रचनात्मक परिणाम है यह कहता है कि एन-डायमेंशनल [[ यूक्लिडियन अंतरिक्ष ]] में संवृत [[यूनिट बॉल]] से किसी भी [[निरंतर कार्य]] का निश्चित बिंदु होना चाहिए,<ref>Eberhard Zeidler, ''Applied Functional Analysis: main principles and their applications'', Springer, 1995.</ref> किन्तु  यह वर्णन नहीं करता है कि निश्चित बिंदु का शोधन किस प्रकार किया जाये।


उदाहरण के लिए, [[कोज्या]] फलन [−1,1] में निरंतर है और इसे [−1, 1] में मैप करता है, और इस प्रकार एक निश्चित बिंदु होना चाहिए। कोसाइन फ़ंक्शन के स्केच किए गए ग्राफ़ की जांच करते समय यह स्पष्ट होता है; निश्चित बिंदु तब होता है जहां कोज्या वक्र y = cos(x) रेखा y = x को प्रतिच्छेद करता है। संख्यात्मक रूप से, नियत बिंदु लगभग x = 0.73908513321516 (इस प्रकार x के इस मान के लिए x = cos(x)) है।
उदाहरण के लिए, [[कोज्या]] फलन [−1,1] में निरंतर है एवं  इसे [−1, 1] में मैप करता है, इस प्रकार निश्चित बिंदु होना चाहिए। कोसाइन फ़ंक्शन के स्केच किए गए ग्राफ़ का परिक्षण करते समय यह स्पष्ट होता है; निश्चित बिंदु तब होता है जहां कोज्या वक्र y = cos(x) रेखा y = x को प्रतिच्छेद करता है। संख्यात्मक रूप से, नियत बिंदु लगभग x = 0.73908513321516 (इस प्रकार x के इस मान के लिए x = cos(x)) है।


[[Lefschetz फिक्स्ड-पॉइंट प्रमेय]]<ref>{{cite journal |author=Solomon Lefschetz |title=निश्चित बिंदु सूत्र पर|journal=[[Annals of Mathematics|Ann. of Math.]] |year=1937 |volume=38 |pages=819–822 |doi=10.2307/1968838 |issue=4}}</ref> (और [[नीलसन सिद्धांत]]|नीलसन निश्चित-बिंदु प्रमेय)<ref>{{cite book
[[बीजगणितीय टोपोलॉजी]] से [[Lefschetz फिक्स्ड-पॉइंट प्रमेय|Lefschetz निश्चित-बिंदु प्रमेय]]<ref>{{cite journal |author=Solomon Lefschetz |title=निश्चित बिंदु सूत्र पर|journal=[[Annals of Mathematics|Ann. of Math.]] |year=1937 |volume=38 |pages=819–822 |doi=10.2307/1968838 |issue=4}}</ref> (एवं  [[नीलसन सिद्धांत]]-बिंदु प्रमेय)<ref>{{cite book
  | last1=Fenchel | first1=Werner | author1link=Werner Fenchel
  | last1=Fenchel | first1=Werner | author1link=Werner Fenchel
  | last2=Nielsen | first2=Jakob | author2link=Jakob Nielsen (mathematician)
  | last2=Nielsen | first2=Jakob | author2link=Jakob Nielsen (mathematician)
Line 32: Line 32:
  | location=Berlin
  | location=Berlin
  | year=2003
  | year=2003
}}</ref> [[बीजगणितीय टोपोलॉजी]] से उल्लेखनीय है क्योंकि यह निश्चित बिंदुओं को गिनने का एक तरीका देता है।
}}</ref> उल्लेखनीय है, क्योंकि यह निश्चित बिंदुओं को गणन करने की प्रविधि देता है।


बानाच फिक्स्ड-पॉइंट प्रमेय और आगे के लिए कई सामान्यीकरण हैं; इन्हें आंशिक अंतर समीकरण सिद्धांत में लागू किया जाता है। अनंत-आयामी स्थानों में निश्चित-बिंदु प्रमेय देखें।
बानाच फिक्स्ड-पॉइंट प्रमेय एवं  आगे के लिए कई सामान्यीकरण हैं; इन्हें आंशिक अंतर समीकरण सिद्धांत में लागू किया जाता है। अनंत-आयामी स्थानों में निश्चित-बिंदु प्रमेय देखें।


फ्रैक्टल संपीड़न में [[कोलाज प्रमेय]] यह साबित करता है कि, कई छवियों के लिए, एक फ़ंक्शन का एक अपेक्षाकृत छोटा विवरण मौजूद होता है, जब इसे किसी भी प्रारंभिक छवि पर पुनरावृत्त रूप से लागू किया जाता है, तो वांछित छवि पर तेजी से अभिसरण होता है।<ref>{{cite book
फ्रैक्टल संपीड़न में [[कोलाज प्रमेय]] यह साबित करता है कि, कई छवियों के लिए, एक फ़ंक्शन का एक अपेक्षाकृत छोटा विवरण मौजूद होता है, जब इसे किसी भी प्रारंभिक छवि पर पुनरावृत्त रूप से लागू किया जाता है, तो वांछित छवि पर तेजी से अभिसरण होता है।<ref>{{cite book
Line 47: Line 47:




== बीजगणित और असतत गणित में ==
== बीजगणित एवं  असतत गणित में ==


नास्टर-टार्स्की प्रमेय में कहा गया है कि किसी भी [[मोनोटोनिक]] | आदेश-संरक्षण समारोह एक [[पूर्ण जाली]] पर एक निश्चित बिंदु है, और वास्तव में एक सबसे छोटा निश्चित बिंदु है।<ref>{{cite journal | author=Alfred Tarski | url=http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1103044538 | title=एक जाली-सैद्धांतिक फिक्सपॉइंट प्रमेय और इसके अनुप्रयोग| journal = Pacific Journal of Mathematics | volume=5:2 | year=1955 | pages=285&ndash;309}}</ref> बोरबाकी-विट प्रमेय भी देखें।
नास्टर-टार्स्की प्रमेय में कहा गया है कि किसी भी [[मोनोटोनिक]] | आदेश-संरक्षण समारोह एक [[पूर्ण जाली]] पर एक निश्चित बिंदु है, एवं  वास्तव में एक सबसे छोटा निश्चित बिंदु है।<ref>{{cite journal | author=Alfred Tarski | url=http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1103044538 | title=एक जाली-सैद्धांतिक फिक्सपॉइंट प्रमेय और इसके अनुप्रयोग| journal = Pacific Journal of Mathematics | volume=5:2 | year=1955 | pages=285&ndash;309}}</ref> बोरबाकी-विट प्रमेय भी देखें।


प्रमेय में अमूर्त व्याख्या में अनुप्रयोग हैं, जो [[स्थैतिक कार्यक्रम विश्लेषण]] का एक रूप है।
प्रमेय में अमूर्त व्याख्या में अनुप्रयोग हैं, जो [[स्थैतिक कार्यक्रम विश्लेषण]] का एक रूप है।


[[लैम्ब्डा कैलकुलस]] में एक सामान्य विषय दिए गए लैम्ब्डा एक्सप्रेशन के निश्चित बिंदुओं को खोजना है। प्रत्येक लैम्ब्डा एक्सप्रेशन का एक निश्चित बिंदु होता है, और एक [[फिक्स्ड-पॉइंट कॉम्बिनेटर]] एक ऐसा फ़ंक्शन होता है जो इनपुट के रूप में एक लैम्ब्डा एक्सप्रेशन लेता है और आउटपुट के रूप में उस एक्सप्रेशन का एक निश्चित बिंदु उत्पन्न करता है।<ref>{{cite book|last=Peyton Jones|first=Simon L.|title=कार्यात्मक प्रोग्रामिंग का कार्यान्वयन|year=1987|publisher=Prentice Hall International|url=http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/}}</ref> एक महत्वपूर्ण फिक्स्ड-पॉइंट कॉम्बिनेटर फिक्स्ड-पॉइंट कॉम्बिनेटर #Y कॉम्बिनेटर है जिसका उपयोग [[ रिकर्सन (कंप्यूटर विज्ञान) ]] की परिभाषा देने के लिए किया जाता है।
[[लैम्ब्डा कैलकुलस]] में एक सामान्य विषय दिए गए लैम्ब्डा एक्सप्रेशन के निश्चित बिंदुओं को खोजना है। प्रत्येक लैम्ब्डा एक्सप्रेशन का एक निश्चित बिंदु होता है, एवं  एक [[फिक्स्ड-पॉइंट कॉम्बिनेटर]] एक ऐसा फ़ंक्शन होता है जो इनपुट के रूप में एक लैम्ब्डा एक्सप्रेशन लेता है एवं  आउटपुट के रूप में उस एक्सप्रेशन का एक निश्चित बिंदु उत्पन्न करता है।<ref>{{cite book|last=Peyton Jones|first=Simon L.|title=कार्यात्मक प्रोग्रामिंग का कार्यान्वयन|year=1987|publisher=Prentice Hall International|url=http://research.microsoft.com/en-us/um/people/simonpj/papers/slpj-book-1987/}}</ref> एक महत्वपूर्ण फिक्स्ड-पॉइंट कॉम्बिनेटर फिक्स्ड-पॉइंट कॉम्बिनेटर #Y कॉम्बिनेटर है जिसका उपयोग [[ रिकर्सन (कंप्यूटर विज्ञान) ]] की परिभाषा देने के लिए किया जाता है।


प्रोग्रामिंग भाषाओं के [[सांकेतिक शब्दार्थ]] में, पुनरावर्ती परिभाषाओं के शब्दार्थ को स्थापित करने के लिए नास्टर-टार्स्की प्रमेय का एक विशेष मामला उपयोग किया जाता है। जबकि निश्चित-बिंदु प्रमेय एक ही कार्य (तार्किक दृष्टिकोण से) पर लागू होता है, सिद्धांत का विकास काफी भिन्न होता है।
प्रोग्रामिंग भाषाओं के [[सांकेतिक शब्दार्थ]] में, पुनरावर्ती परिभाषाओं के शब्दार्थ को स्थापित करने के लिए नास्टर-टार्स्की प्रमेय का एक विशेष मामला उपयोग किया जाता है। जबकि निश्चित-बिंदु प्रमेय एक ही कार्य (तार्किक दृष्टिकोण से) पर लागू होता है, सिद्धांत का विकास काफी भिन्न होता है।
Line 59: Line 59:
क्लेन के पुनरावर्तन प्रमेय को लागू करके[[संगणनीयता सिद्धांत]] सिद्धांत में पुनरावर्ती कार्य की एक ही परिभाषा दी जा सकती है।<ref>Cutland, N.J., ''Computability: An introduction to recursive function theory'', Cambridge University Press, 1980. {{isbn|0-521-29465-7}}</ref> ये परिणाम समतुल्य प्रमेय नहीं हैं; नास्टर-टार्स्की प्रमेय, निरूपण शब्दार्थ में उपयोग किए जाने वाले परिणामों की तुलना में बहुत मजबूत परिणाम है।<ref>''The foundations of program verification'', 2nd edition, Jacques Loeckx and Kurt Sieber, John Wiley & Sons, {{isbn|0-471-91282-4}}, Chapter 4; theorem 4.24, page 83, is what is used in denotational semantics, while Knaster&ndash;Tarski theorem is given to prove as exercise 4.3&ndash;5 on page 90.</ref> हालांकि, चर्च-ट्यूरिंग थीसिस के प्रकाश में उनका सहज अर्थ समान है: एक पुनरावर्ती कार्य को एक निश्चित कार्यात्मक, मानचित्रण कार्यों के कार्यों के कम से कम निश्चित बिंदु के रूप में वर्णित किया जा सकता है।
क्लेन के पुनरावर्तन प्रमेय को लागू करके[[संगणनीयता सिद्धांत]] सिद्धांत में पुनरावर्ती कार्य की एक ही परिभाषा दी जा सकती है।<ref>Cutland, N.J., ''Computability: An introduction to recursive function theory'', Cambridge University Press, 1980. {{isbn|0-521-29465-7}}</ref> ये परिणाम समतुल्य प्रमेय नहीं हैं; नास्टर-टार्स्की प्रमेय, निरूपण शब्दार्थ में उपयोग किए जाने वाले परिणामों की तुलना में बहुत मजबूत परिणाम है।<ref>''The foundations of program verification'', 2nd edition, Jacques Loeckx and Kurt Sieber, John Wiley & Sons, {{isbn|0-471-91282-4}}, Chapter 4; theorem 4.24, page 83, is what is used in denotational semantics, while Knaster&ndash;Tarski theorem is given to prove as exercise 4.3&ndash;5 on page 90.</ref> हालांकि, चर्च-ट्यूरिंग थीसिस के प्रकाश में उनका सहज अर्थ समान है: एक पुनरावर्ती कार्य को एक निश्चित कार्यात्मक, मानचित्रण कार्यों के कार्यों के कम से कम निश्चित बिंदु के रूप में वर्णित किया जा सकता है।


एक निश्चित बिंदु खोजने के लिए एक फ़ंक्शन को पुनरावृत्त करने की उपरोक्त तकनीक का उपयोग सेट सिद्धांत में भी किया जा सकता है; [[सामान्य कार्यों के लिए निश्चित-बिंदु लेम्मा]] बताता है कि क्रमिक संख्या से क्रमांक तक किसी भी निरंतर सख्ती से बढ़ते कार्य में एक (और वास्तव में कई) निश्चित बिंदु होते हैं।
एक निश्चित बिंदु खोजने के लिए एक फ़ंक्शन को पुनरावृत्त करने की उपरोक्त तकनीक का उपयोग सेट सिद्धांत में भी किया जा सकता है; [[सामान्य कार्यों के लिए निश्चित-बिंदु लेम्मा]] बताता है कि क्रमिक संख्या से क्रमांक तक किसी भी निरंतर सख्ती से बढ़ते कार्य में एक (एवं  वास्तव में कई) निश्चित बिंदु होते हैं।


[[poset]] पर प्रत्येक [[ बंद करने वाला ऑपरेटर | संवृत करने वाला ऑपरेटर]] के कई निश्चित बिंदु होते हैं; क्लोजर ऑपरेटर के संबंध में ये संवृत तत्व हैं, और ये मुख्य कारण हैं कि क्लोजर ऑपरेटर को पहले स्थान पर परिभाषित किया गया था।
[[poset]] पर प्रत्येक [[ बंद करने वाला ऑपरेटर | संवृत करने वाला ऑपरेटर]] के कई निश्चित बिंदु होते हैं; क्लोजर ऑपरेटर के संबंध में ये संवृत तत्व हैं, एवं  ये मुख्य कारण हैं कि क्लोजर ऑपरेटर को पहले स्थान पर परिभाषित किया गया था।


तत्वों की एक विषम संख्या के साथ [[परिमित सेट]] पर प्रत्येक समावेशन (गणित) का एक निश्चित बिंदु होता है; अधिक आम तौर पर, तत्वों के परिमित सेट पर प्रत्येक समावेशन के लिए, तत्वों की संख्या और निश्चित बिंदुओं की संख्या में समान समानता (गणित) होती है। [[डॉन ज़गियर]] ने इन अवलोकनों का उपयोग दो वर्गों के योगों पर फ़र्मेट के प्रमेय का एक-वाक्य प्रमाण देने के लिए किया, पूर्णांकों के त्रिगुणों के एक ही सेट पर दो अंतर्वलन का वर्णन करके, जिनमें से एक को आसानी से केवल एक निश्चित बिंदु और दूसरे को दिखाया जा सकता है। जिनमें से दो वर्गों के योग के रूप में दिए गए प्राइम (1 मॉड 4 के अनुरूप) के प्रत्येक प्रतिनिधित्व के लिए एक निश्चित बिंदु है। चूँकि पहले इनवोल्यूशन में विषम संख्या में निश्चित बिंदु होते हैं, इसलिए दूसरा भी होता है, और इसलिए वहाँ हमेशा वांछित रूप का प्रतिनिधित्व होता है।<ref>{{citation
तत्वों की एक विषम संख्या के साथ [[परिमित सेट]] पर प्रत्येक समावेशन (गणित) का एक निश्चित बिंदु होता है; अधिक आम तौर पर, तत्वों के परिमित सेट पर प्रत्येक समावेशन के लिए, तत्वों की संख्या एवं  निश्चित बिंदुओं की संख्या में समान समानता (गणित) होती है। [[डॉन ज़गियर]] ने इन अवलोकनों का उपयोग दो वर्गों के योगों पर फ़र्मेट के प्रमेय का एक-वाक्य प्रमाण देने के लिए किया, पूर्णांकों के त्रिगुणों के एक ही सेट पर दो अंतर्वलन का वर्णन करके, जिनमें से एक को आसानी से केवल एक निश्चित बिंदु एवं  दूसरे को दिखाया जा सकता है। जिनमें से दो वर्गों के योग के रूप में दिए गए प्राइम (1 मॉड 4 के अनुरूप) के प्रत्येक प्रतिनिधित्व के लिए एक निश्चित बिंदु है। चूँकि पहले इनवोल्यूशन में विषम संख्या में निश्चित बिंदु होते हैं, इसलिए दूसरा भी होता है, एवं  इसलिए वहाँ हमेशा वांछित रूप का प्रतिनिधित्व होता है।<ref>{{citation
  | last = Zagier | first = D. | authorlink = Don Zagier
  | last = Zagier | first = D. | authorlink = Don Zagier
  | doi = 10.2307/2323918
  | doi = 10.2307/2323918

Revision as of 11:18, 23 May 2023

गणित में, निश्चित-बिंदु प्रमेय परिणाम है जो कहता है, कि (गणित) F पर कुछ नियमो के अनुसार फ़ंक्शन में कम से कम निश्चित बिंदु (गणित) होगा, जिसे सामान्य शब्दों में कहा जा सकता है।[1]


गणितीय विश्लेषण में

बानाच फिक्स्ड-पॉइंट प्रमेय (1922) सामान्य मानदंड देता है जो आश्वासन देता है कि, यदि यह संतुष्ट है, तो पुनरावृत्ति की प्रक्रिया निश्चित बिंदु उत्पन्न करती है।[2] इसके विपरीत, ब्रोवर फिक्स्ड-पॉइंट प्रमेय (1911)रचनात्मक परिणाम है यह कहता है कि एन-डायमेंशनल यूक्लिडियन अंतरिक्ष में संवृत यूनिट बॉल से किसी भी निरंतर कार्य का निश्चित बिंदु होना चाहिए,[3] किन्तु यह वर्णन नहीं करता है कि निश्चित बिंदु का शोधन किस प्रकार किया जाये।

उदाहरण के लिए, कोज्या फलन [−1,1] में निरंतर है एवं इसे [−1, 1] में मैप करता है, इस प्रकार निश्चित बिंदु होना चाहिए। कोसाइन फ़ंक्शन के स्केच किए गए ग्राफ़ का परिक्षण करते समय यह स्पष्ट होता है; निश्चित बिंदु तब होता है जहां कोज्या वक्र y = cos(x) रेखा y = x को प्रतिच्छेद करता है। संख्यात्मक रूप से, नियत बिंदु लगभग x = 0.73908513321516 (इस प्रकार x के इस मान के लिए x = cos(x)) है।

बीजगणितीय टोपोलॉजी से Lefschetz निश्चित-बिंदु प्रमेय[4] (एवं नीलसन सिद्धांत-बिंदु प्रमेय)[5] उल्लेखनीय है, क्योंकि यह निश्चित बिंदुओं को गणन करने की प्रविधि देता है।

बानाच फिक्स्ड-पॉइंट प्रमेय एवं आगे के लिए कई सामान्यीकरण हैं; इन्हें आंशिक अंतर समीकरण सिद्धांत में लागू किया जाता है। अनंत-आयामी स्थानों में निश्चित-बिंदु प्रमेय देखें।

फ्रैक्टल संपीड़न में कोलाज प्रमेय यह साबित करता है कि, कई छवियों के लिए, एक फ़ंक्शन का एक अपेक्षाकृत छोटा विवरण मौजूद होता है, जब इसे किसी भी प्रारंभिक छवि पर पुनरावृत्त रूप से लागू किया जाता है, तो वांछित छवि पर तेजी से अभिसरण होता है।[6]


बीजगणित एवं असतत गणित में

नास्टर-टार्स्की प्रमेय में कहा गया है कि किसी भी मोनोटोनिक | आदेश-संरक्षण समारोह एक पूर्ण जाली पर एक निश्चित बिंदु है, एवं वास्तव में एक सबसे छोटा निश्चित बिंदु है।[7] बोरबाकी-विट प्रमेय भी देखें।

प्रमेय में अमूर्त व्याख्या में अनुप्रयोग हैं, जो स्थैतिक कार्यक्रम विश्लेषण का एक रूप है।

लैम्ब्डा कैलकुलस में एक सामान्य विषय दिए गए लैम्ब्डा एक्सप्रेशन के निश्चित बिंदुओं को खोजना है। प्रत्येक लैम्ब्डा एक्सप्रेशन का एक निश्चित बिंदु होता है, एवं एक फिक्स्ड-पॉइंट कॉम्बिनेटर एक ऐसा फ़ंक्शन होता है जो इनपुट के रूप में एक लैम्ब्डा एक्सप्रेशन लेता है एवं आउटपुट के रूप में उस एक्सप्रेशन का एक निश्चित बिंदु उत्पन्न करता है।[8] एक महत्वपूर्ण फिक्स्ड-पॉइंट कॉम्बिनेटर फिक्स्ड-पॉइंट कॉम्बिनेटर #Y कॉम्बिनेटर है जिसका उपयोग रिकर्सन (कंप्यूटर विज्ञान) की परिभाषा देने के लिए किया जाता है।

प्रोग्रामिंग भाषाओं के सांकेतिक शब्दार्थ में, पुनरावर्ती परिभाषाओं के शब्दार्थ को स्थापित करने के लिए नास्टर-टार्स्की प्रमेय का एक विशेष मामला उपयोग किया जाता है। जबकि निश्चित-बिंदु प्रमेय एक ही कार्य (तार्किक दृष्टिकोण से) पर लागू होता है, सिद्धांत का विकास काफी भिन्न होता है।

क्लेन के पुनरावर्तन प्रमेय को लागू करकेसंगणनीयता सिद्धांत सिद्धांत में पुनरावर्ती कार्य की एक ही परिभाषा दी जा सकती है।[9] ये परिणाम समतुल्य प्रमेय नहीं हैं; नास्टर-टार्स्की प्रमेय, निरूपण शब्दार्थ में उपयोग किए जाने वाले परिणामों की तुलना में बहुत मजबूत परिणाम है।[10] हालांकि, चर्च-ट्यूरिंग थीसिस के प्रकाश में उनका सहज अर्थ समान है: एक पुनरावर्ती कार्य को एक निश्चित कार्यात्मक, मानचित्रण कार्यों के कार्यों के कम से कम निश्चित बिंदु के रूप में वर्णित किया जा सकता है।

एक निश्चित बिंदु खोजने के लिए एक फ़ंक्शन को पुनरावृत्त करने की उपरोक्त तकनीक का उपयोग सेट सिद्धांत में भी किया जा सकता है; सामान्य कार्यों के लिए निश्चित-बिंदु लेम्मा बताता है कि क्रमिक संख्या से क्रमांक तक किसी भी निरंतर सख्ती से बढ़ते कार्य में एक (एवं वास्तव में कई) निश्चित बिंदु होते हैं।

poset पर प्रत्येक संवृत करने वाला ऑपरेटर के कई निश्चित बिंदु होते हैं; क्लोजर ऑपरेटर के संबंध में ये संवृत तत्व हैं, एवं ये मुख्य कारण हैं कि क्लोजर ऑपरेटर को पहले स्थान पर परिभाषित किया गया था।

तत्वों की एक विषम संख्या के साथ परिमित सेट पर प्रत्येक समावेशन (गणित) का एक निश्चित बिंदु होता है; अधिक आम तौर पर, तत्वों के परिमित सेट पर प्रत्येक समावेशन के लिए, तत्वों की संख्या एवं निश्चित बिंदुओं की संख्या में समान समानता (गणित) होती है। डॉन ज़गियर ने इन अवलोकनों का उपयोग दो वर्गों के योगों पर फ़र्मेट के प्रमेय का एक-वाक्य प्रमाण देने के लिए किया, पूर्णांकों के त्रिगुणों के एक ही सेट पर दो अंतर्वलन का वर्णन करके, जिनमें से एक को आसानी से केवल एक निश्चित बिंदु एवं दूसरे को दिखाया जा सकता है। जिनमें से दो वर्गों के योग के रूप में दिए गए प्राइम (1 मॉड 4 के अनुरूप) के प्रत्येक प्रतिनिधित्व के लिए एक निश्चित बिंदु है। चूँकि पहले इनवोल्यूशन में विषम संख्या में निश्चित बिंदु होते हैं, इसलिए दूसरा भी होता है, एवं इसलिए वहाँ हमेशा वांछित रूप का प्रतिनिधित्व होता है।[11]


निश्चित-बिंदु प्रमेयों की सूची

यह भी देखें

फुटनोट्स

  1. Brown, R. F., ed. (1988). Fixed Point Theory and Its Applications. American Mathematical Society. ISBN 0-8218-5080-6.
  2. Giles, John R. (1987). Introduction to the Analysis of Metric Spaces. Cambridge University Press. ISBN 978-0-521-35928-3.
  3. Eberhard Zeidler, Applied Functional Analysis: main principles and their applications, Springer, 1995.
  4. Solomon Lefschetz (1937). "निश्चित बिंदु सूत्र पर". Ann. of Math. 38 (4): 819–822. doi:10.2307/1968838.
  5. Fenchel, Werner; Nielsen, Jakob (2003). Schmidt, Asmus L. (ed.). Discontinuous groups of isometries in the hyperbolic plane. De Gruyter Studies in mathematics. Vol. 29. Berlin: Walter de Gruyter & Co.
  6. Barnsley, Michael. (1988). Fractals Everywhere. Academic Press, Inc. ISBN 0-12-079062-9.
  7. Alfred Tarski (1955). "एक जाली-सैद्धांतिक फिक्सपॉइंट प्रमेय और इसके अनुप्रयोग". Pacific Journal of Mathematics. 5:2: 285–309.
  8. Peyton Jones, Simon L. (1987). कार्यात्मक प्रोग्रामिंग का कार्यान्वयन. Prentice Hall International.
  9. Cutland, N.J., Computability: An introduction to recursive function theory, Cambridge University Press, 1980. ISBN 0-521-29465-7
  10. The foundations of program verification, 2nd edition, Jacques Loeckx and Kurt Sieber, John Wiley & Sons, ISBN 0-471-91282-4, Chapter 4; theorem 4.24, page 83, is what is used in denotational semantics, while Knaster–Tarski theorem is given to prove as exercise 4.3–5 on page 90.
  11. Zagier, D. (1990), "A one-sentence proof that every prime p ≡ 1 (mod 4) is a sum of two squares", American Mathematical Monthly, 97 (2): 144, doi:10.2307/2323918, MR 1041893.


संदर्भ


बाहरी संबंध