शक्तिहीन व्युत्पन्न: Difference between revisions
m (Abhishek moved page कमजोर व्युत्पन्न to शक्तिहीन व्युत्पन्न without leaving a redirect) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 56: | Line 56: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 20/05/2023]] | [[Category:Created On 20/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 18:58, 25 May 2023
![]() | This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (May 2014) (Learn how and when to remove this template message) |
गणित में, एक शक्तिहीन व्युत्पन्न एक फलन (गणित) (शक्तिशाली व्युत्पन्न) के व्युत्पन्न की अवधारणा का सामान्यीकरण है, ऐसे कार्यों के लिए जो अलग-अलग फलन नहीं हैं, लेकिन केवल समाकलनीय फलन, अर्थात, एलपी दिक् में निहित हैं।
खंडशः समाकलन भागों द्वारा एकीकरण की विधि यह मानती है कि अलग-अलग फलन के लिए और हमारे पास निम्न है
एक फलन u' u का शक्तिहीन व्युत्पन्न होने के नाते अनिवार्य रूप से इस आवश्यकता से परिभाषित किया गया है कि यह समीकरण सीमा बिंदुओं पर विलुप्त होने वाले सभी असीम रूप से अलग-अलग कार्यों के लिए होना चाहिए।
परिभाषा
मान लीजिये एलपी दिक् में एक फलन हैं हम कहते हैं। में का शक्तिहीन व्युत्पन्न है, यदि
सभी असीम रूप से अलग-अलग कार्यों के लिए के साथ में है।
आयामों का सामान्यीकरण, यदि और समष्टि में कुछ खुले सम्मुच्चय के लिए स्थानीय रूप से अभिन्न कार्य हैं, और यदि एक बहु-सूचकांक है, हम कहते हैं कि -शक्तिहीन व्युत्पन्न है, यदि
सभी के लिए, अर्थात्, सभी असीम रूप से अलग-अलग कार्यों के लिए में सघन समर्थन के साथ हैं। यहाँ परिभाषित किया जाता है
उदाहरण
- निरपेक्ष मूल्य फलन , जो पर अवकलनीय नहीं है एक शक्तिहीन व्युत्पन्न है, साइन फलन के रूप में जाना जाता है, और इसे निम्न द्वारा दिया जाता है यह u के लिए एकमात्र शक्तिहीन व्युत्पन्न नहीं है: कोई भी w जो लगभग हर जगह v के बराबर है, वह भी u के लिए एक शक्तिहीन व्युत्पन्न है। (विशेष रूप से, उपरोक्त v(0) की परिभाषा अतिश्योक्तिपूर्ण है और इसे किसी वांछित वास्तविक संख्या r से बदला जा सकता है।) सामान्यतः, यह कोई समस्या नहीं है, क्योंकि Lp के सिद्धांत में दिक् और सोबोलेव दिक्, फलन जो लगभग हर जगह समान हैं, उनकी पहचान की जाती है।
- परिमेय संख्याओं का संकेतक कार्य कहीं भी अलग-अलग नहीं है, फिर भी एक शक्तिहीन व्युत्पन्न है। चूँकि परिमेय संख्याओं का लेबेस्ग माप शून्य है, इस प्रकार का शक्तिहीन व्युत्पन्न है। ध्यान दें कि यह हमारे अंतर्ज्ञान से सहमत है क्योंकि जब एलपी दिक् के सदस्य के रूप में माना जाता है, शून्य कार्य के साथ पहचाना जाता है।
- लगभग हर जगह अलग-अलग होने पर भी कैंटर फलन सी में शक्तिहीन व्युत्पन्न नहीं है। ऐसा इसलिए है क्योंकि सी के किसी भी शक्तिहीन व्युत्पन्न को लगभग हर जगह सी के शास्त्रीय व्युत्पन्न के बराबर होना चाहिए, जो लगभग हर जगह शून्य है। लेकिन शून्य फलन सी का शक्तिहीन व्युत्पन्न नहीं है, जैसा कि उचित परीक्षण फलन के साथ तुलना करके देखा जा सकता है। अधिक सैद्धांतिक रूप से, c का कोई शक्तिहीन व्युत्पन्न नहीं है क्योंकि इसका वितरण व्युत्पन्न, अर्थात् कैंटर वितरण, एक विलक्षण माप है और इसलिए इसे किसी फलन द्वारा प्रदर्शित नहीं किया जा सकता है।
गुण
यदि दो फलन एक ही फलन के शक्तिहीन व्युत्पन्न हैं, तो लेबेस्गु माप शून्य के साथ सम्मुच्चय को छोड़कर वे बराबर हैं, अर्थात, वे लगभग हर जगह बराबर हैं। यदि हम कार्यों के तुल्यता वर्गों पर विचार करते हैं जैसे कि दो कार्य समकक्ष हैं यदि वे लगभग हर जगह समान हैं, तो शक्तिहीन व्युत्पन्न अद्वितीय है।
इसके अतिरिक्त, यदि आप पारंपरिक अर्थों में अलग-अलग हैं तो इसका शक्तिहीन व्युत्पन्न इसके पारंपरिक (शक्तिशाली) व्युत्पन्न के समान (ऊपर दिए गए अर्थ में) है। इस प्रकार शक्तिहीन व्युत्पन्न शक्तिशाली का एक सामान्यीकरण है। इसके अतिरिक्त, कार्यों के योगों और उत्पादों के व्युत्पन्न के लिए शास्त्रीय नियम भी शक्तिहीन व्युत्पन्न के लिए लागू होते हैं।
विस्तारण
यह अवधारणा सोबोलिव रिक्त स्थान में शक्तिहीन समाधान की परिभाषा को उत्पन्न करती है, जो अंतर समीकरणों की समस्याओं और कार्यात्मक विश्लेषण में उपयोगी होती है।
यह भी देखें
- सबव्युत्पन्न
- वेइल की लेम्मा (लाप्लास समीकरण)
संदर्भ
- Gilbarg, D.; Trudinger, N. (2001). Elliptic partial differential equations of second order. Berlin: Springer. p. 149. ISBN 3-540-41160-7.
- Evans, Lawrence C. (1998). Partial differential equations. Providence, R.I.: American Mathematical Society. p. 242. ISBN 0-8218-0772-2.
- Knabner, Peter; Angermann, Lutz (2003). Numerical methods for elliptic and parabolic partial differential equations. New York: Springer. p. 53. ISBN 0-387-95449-X.