संवैधानिक समीकरण: Difference between revisions
No edit summary |
|||
Line 2: | Line 2: | ||
{{for|[[भौतिक मात्रा]] की और भी बहुत सी परिभाषाएँ|समीकरण की परिभाषा (भौतिकी)|समीकरण को परिभाषित करना (भौतिक रसायन)}} | {{for|[[भौतिक मात्रा]] की और भी बहुत सी परिभाषाएँ|समीकरण की परिभाषा (भौतिकी)|समीकरण को परिभाषित करना (भौतिक रसायन)}} | ||
भौतिकी और अभियांत्रिकी में, | भौतिकी और अभियांत्रिकी में, '''संवैधानिक समीकरण''' या '''संघटक संबंध''' दो भौतिक मात्राओं (विशेष रूप से गतिज मात्रा से संबंधित गतिज मात्रा) के बीच एक संबंध है। यह ए सामग्री या पदार्थ के लिए विशिष्ट है, और उस सामग्री की प्रतिक्रिया को बाहरी उत्तेजनाओं के लिए, सामान्यतः लागू क्षेत्रों या बलों के रूप में अनुमानित करता है। भौतिक समस्याओं को हल करने के लिए उन्हें भौतिक नियमों को शासित करने वाले अन्य समीकरणों के साथ जोड़ा जाता है; उदाहरण के लिए द्रव यांत्रिकी में पाइप में तरल पदार्थ का प्रवाह, ठोस अवस्था भौतिकी में विद्युत क्षेत्र के लिए क्रिस्टल की प्रतिक्रिया, या संरचनात्मक विश्लेषण में, लागू तनावों या तनावों या विकृतियों के बीच संबंध है। | ||
कुछ संघटक समीकरण सामान्य रूप से परिघटना संबंधी होते हैं; दूसरों को पहले सिद्धांतों से लिया गया है। | कुछ संघटक समीकरण सामान्य रूप से परिघटना संबंधी होते हैं; दूसरों को पहले सिद्धांतों से लिया गया है। सामान्य अनुमानित संवैधानिक समीकरण को प्रायः सामग्री की संपत्ति, जैसे विद्युत चालकता या वसंत स्थिरांक के रूप में लिए गए पैरामीटर का उपयोग करके एक साधारण आनुपातिकता के रूप में व्यक्त किया जाता है। हालांकि, प्रायः सामग्री की दिशात्मक निर्भरता को ध्यान में रखना आवश्यक होता है, और स्केलर पैरामीटर को टेंसर के लिए सामान्यीकृत किया जाता है। सामग्रियों की प्रतिक्रिया की दर और उनके गैर-रेखीय व्यवहार को ध्यान में रखते हुए संवैधानिक संबंधों को भी संशोधित किया जाता है।<ref name=Truesdell>{{cite book |title=The Non-linear Field Theories of Mechanics |author=Clifford Truesdell & Walter Noll; Stuart S. Antman, editor |page=4 |url=https://books.google.com/books?id=dp84F_odrBQC&dq=%22Preface+%22+inauthor:Antman&pg=PR13|isbn=3-540-02779-3 |publisher=Springer |year=2004}}</ref> आलेख रैखिक प्रतिक्रिया फंक्शन देखें। | ||
== पदार्थ के यांत्रिक गुण == | == पदार्थ के यांत्रिक गुण == | ||
पहला संवैधानिक समीकरण (संविधान | पहला संवैधानिक समीकरण (संविधान नियम) रॉबर्ट हुक द्वारा विकसित किया गया था और इसे हुक के नियम के रूप में जाना जाता है। यह रैखिक लोचदार सामग्रियों के मामले से संबंधित है। इस खोज के बाद, इस प्रकार के समीकरण, जिसे इस उदाहरण में प्रायः "तनाव-तनाव संबंध" कहा जाता है, लेकिन इसे "संवैधानिक धारणा" या "राज्य का समीकरण" भी कहा जाता है। वाल्टर नोल ने संवैधानिक समीकरणों के उपयोग को उन्नत किया, उनके वर्गीकरण और "सामग्री", "आइसोट्रोपिक", "एओलोट्रोपिक", आदि जैसे शब्दों की अपरिवर्तनीय आवश्यकताओं, बाधाओं और परिभाषाओं को स्पष्ट किया। तनाव दर = f (वेग प्रवणता, तनाव, घनत्व) के "संवैधानिक संबंधों" का वर्ग 1954 में क्लिफोर्ड ट्रूसेडेल के तहत वाल्टर नोल के शोध प्रबंध का विषय था।<ref name=Noll>See Truesdell's account in [http://www.math.cmu.edu/~wn0g/noll/TL.pdf Truesdell] ''The naturalization and apotheosis of Walter Noll''. See also [http://www.math.cmu.edu/~wn0g/noll/GEN.pdf Noll's account] and the classic treatise by both authors: {{cite book | ||
|chapter-url=https://books.google.com/books?id=dp84F_odrBQC&dq=%22Preface+to+the+Third%22+inauthor:Antman&pg=PR13|title=The Non-linear Field Theories of Mechanics |author=Clifford Truesdell & Walter Noll – Stuart S. Antman (editor) |isbn=3-540-02779-3 |publisher=Springer |year=2004 |page=xiii |edition=3rd |chapter-format= Originally published as Volume III/3 of the famous ''Encyclopedia of Physics'' in 1965 |chapter=Preface }}</ref> | |chapter-url=https://books.google.com/books?id=dp84F_odrBQC&dq=%22Preface+to+the+Third%22+inauthor:Antman&pg=PR13|title=The Non-linear Field Theories of Mechanics |author=Clifford Truesdell & Walter Noll – Stuart S. Antman (editor) |isbn=3-540-02779-3 |publisher=Springer |year=2004 |page=xiii |edition=3rd |chapter-format= Originally published as Volume III/3 of the famous ''Encyclopedia of Physics'' in 1965 |chapter=Preface }}</ref> | ||
Line 76: | Line 76: | ||
==== तनाव और तनाव ==== | ==== तनाव और तनाव ==== | ||
रैखिक सामग्रियों के लिए तनाव-विकृति संवैधानिक संबंध को | रैखिक सामग्रियों के लिए तनाव-विकृति संवैधानिक संबंध को सामान्यतः हुक के नियम के रूप में जाना जाता है। अपने सरलतम रूप में, नियम अदिश समीकरण में वसंत स्थिरांक (या लोच स्थिरांक) ''k'' को परिभाषित करता है, तन्यता/संपीड़न बल को विस्तारित (या अनुबंधित) विस्थापन ''x'' के समानुपाती होता है: | ||
:<math>F_i=-k x_i </math> | :<math>F_i=-k x_i </math> | ||
Line 95: | Line 95: | ||
:यदि समय-निर्भर प्रतिरोधक योगदान बड़ा है, और इसकी उपेक्षा नहीं की जा सकती है। रबड़ और प्लास्टिक में यह गुण होता है और निश्चित रूप से हुक के नियम को पूरा नहीं करते हैं। दरअसल, इलास्टिक हिस्टैरिसीस होता है। | :यदि समय-निर्भर प्रतिरोधक योगदान बड़ा है, और इसकी उपेक्षा नहीं की जा सकती है। रबड़ और प्लास्टिक में यह गुण होता है और निश्चित रूप से हुक के नियम को पूरा नहीं करते हैं। दरअसल, इलास्टिक हिस्टैरिसीस होता है। | ||
: '''विषमप्रत्यास्थता''' | : '''विषमप्रत्यास्थता''' | ||
:यदि सामग्री लोचदार के करीब है, लेकिन लागू बल अतिरिक्त समय-निर्भर प्रतिरोधी बलों को प्रेरित करता है (यानी विस्तार/संपीड़न के अतिरिक्त, विस्तार/संपीड़न के परिवर्तन की दर पर निर्भर करता है)। धातु और मिट्टी के पात्र में यह विशेषता होती है, लेकिन यह | :यदि सामग्री लोचदार के करीब है, लेकिन लागू बल अतिरिक्त समय-निर्भर प्रतिरोधी बलों को प्रेरित करता है (यानी विस्तार/संपीड़न के अतिरिक्त, विस्तार/संपीड़न के परिवर्तन की दर पर निर्भर करता है)। धातु और मिट्टी के पात्र में यह विशेषता होती है, लेकिन यह सामान्यतः नगण्य होता है, हालांकि घर्षण के कारण गर्म होने पर इतना नहीं होता है (जैसे कंपन या मशीनों में कतरनी तनाव)। | ||
: '''अतिप्रत्यास्थ''' | : '''अतिप्रत्यास्थ''' | ||
:लगाया गया बल तनाव ऊर्जा घनत्व फलन के बाद सामग्री में विस्थापन को प्रेरित करता है। | :लगाया गया बल तनाव ऊर्जा घनत्व फलन के बाद सामग्री में विस्थापन को प्रेरित करता है। | ||
Line 101: | Line 101: | ||
==== टकराव ==== | ==== टकराव ==== | ||
किसी अन्य वस्तु B के साथ टक्कर के बाद किसी वस्तु A के V<sub>पृथक्करण</sub> बनाम पृथक्करण की सापेक्ष गति, न्यूटन के प्रायोगिक प्रभाव | किसी अन्य वस्तु B के साथ टक्कर के बाद किसी वस्तु A के V<sub>पृथक्करण</sub> बनाम पृथक्करण की सापेक्ष गति, न्यूटन के प्रायोगिक प्रभाव नियम द्वारा परिभाषित, पुनर्स्थापना के गुणांक द्वारा दृष्टिकोण V<sub>दृष्टिकोणकी</sub> सापेक्ष गति से संबंधित है:<ref>Essential Principles of Physics, P.M. Whelan, M.J. Hodgeson, 2nd Edition, 1978, John Murray, {{ISBN|0 7195 3382 1}}</ref> | ||
:<math> e = \frac{|\mathbf{v}|_\text{separation}}{| \mathbf{v}|_\text{approach}} </math> | :<math> e = \frac{|\mathbf{v}|_\text{separation}}{| \mathbf{v}|_\text{approach}} </math> | ||
जो उन सामग्रियों पर निर्भर करता है जिनसे A और B बने हैं, क्योंकि टक्कर में A और B की सतहों पर परस्पर क्रिया | जो उन सामग्रियों पर निर्भर करता है जिनसे A और B बने हैं, क्योंकि टक्कर में A और B की सतहों पर परस्पर क्रिया सम्मिलित है। सामान्यतः {{nowrap|0 ≤ ''e'' ≤ 1}}0 जिसमें {{nowrap|1=''e'' = 1}} पूरी तरह से लोचदार टक्करों के लिए, और {{nowrap|1=''e'' = 0}} पूरी तरह से बेलोचदार टक्करों के लिए होता है। सुपररेलास्टिक (या विस्फोटक) टकराव के लिए {{nowrap|''e'' ≥ 1}} होना संभव है। | ||
=== तरल पदार्थों की विरूपण === | === तरल पदार्थों की विरूपण === | ||
Line 115: | Line 115: | ||
:<math>\tau = \mu \frac{\partial u}{\partial y},</math> | :<math>\tau = \mu \frac{\partial u}{\partial y},</math> | ||
U (y) के साथ क्रॉस-फ्लो (अनुप्रस्थ) दिशा y में प्रवाह वेग u की भिन्नता। सामान्य तौर पर, | U (y) के साथ क्रॉस-फ्लो (अनुप्रस्थ) दिशा y में प्रवाह वेग u की भिन्नता। सामान्य तौर पर, न्यूटोनियन तरल पदार्थ के लिए, कतरनी तनाव टेन्सर के तत्वों τ<sub>''ij''</sub> और तरल पदार्थ के विरूपण के बीच संबंध निम्न द्वारा दिया जाता है | ||
:<math>\tau_{ij} = 2 \mu \left( e_{ij} - \frac13 \Delta \delta_{ij} \right)</math> {{pad|1em}} साथ {{pad|1em}} <math>e_{ij}=\frac12 \left( \frac {\partial v_i}{\partial x_j} + \frac {\partial v_j}{\partial x_i} \right)</math> {{pad|1em}} तथा {{pad|1em}} <math>\Delta = \sum_k e_{kk} = \text{div}\; \mathbf{v},</math> | :<math>\tau_{ij} = 2 \mu \left( e_{ij} - \frac13 \Delta \delta_{ij} \right)</math> {{pad|1em}} साथ {{pad|1em}} <math>e_{ij}=\frac12 \left( \frac {\partial v_i}{\partial x_j} + \frac {\partial v_j}{\partial x_i} \right)</math> {{pad|1em}} तथा {{pad|1em}} <math>\Delta = \sum_k e_{kk} = \text{div}\; \mathbf{v},</math> | ||
Line 138: | Line 138: | ||
{{see also|परावैद्युतांक|पारगम्यता (विद्युतचुम्बकत्व)|विद्युत चालकता}} | {{see also|परावैद्युतांक|पारगम्यता (विद्युतचुम्बकत्व)|विद्युत चालकता}} | ||
चिरसम्मत और क्वांटम भौतिकी दोनों में, एक प्रणाली की सटीक गतिशीलता युग्मित विभेदक समीकरणों का एक सेट बनाती है, जो सांख्यिकीय यांत्रिकी के स्तर पर भी लगभग हमेशा बहुत जटिल होती है। विद्युतचुम्बकत्व के संदर्भ में, यह टिप्पणी न केवल मुक्त आवेशों और धाराओं की गतिशीलता पर लागू होती है (जो सीधे मैक्सवेल के समीकरणों में प्रवेश करती हैं), बल्कि बाध्य आवेशों और धाराओं की गतिशीलता (जो संवैधानिक संबंधों के माध्यम से मैक्सवेल के समीकरणों में प्रवेश करती हैं) पर भी लागू होती हैं। परिणामस्वरूप, विभिन्न सन्निकटन योजनाओं का | चिरसम्मत और क्वांटम भौतिकी दोनों में, एक प्रणाली की सटीक गतिशीलता युग्मित विभेदक समीकरणों का एक सेट बनाती है, जो सांख्यिकीय यांत्रिकी के स्तर पर भी लगभग हमेशा बहुत जटिल होती है। विद्युतचुम्बकत्व के संदर्भ में, यह टिप्पणी न केवल मुक्त आवेशों और धाराओं की गतिशीलता पर लागू होती है (जो सीधे मैक्सवेल के समीकरणों में प्रवेश करती हैं), बल्कि बाध्य आवेशों और धाराओं की गतिशीलता (जो संवैधानिक संबंधों के माध्यम से मैक्सवेल के समीकरणों में प्रवेश करती हैं) पर भी लागू होती हैं। परिणामस्वरूप, विभिन्न सन्निकटन योजनाओं का सामान्यतः उपयोग किया जाता है। | ||
उदाहरण के लिए, वास्तविक सामग्रियों में, आरोपों के समय और स्थानिक प्रतिक्रिया को निर्धारित करने के लिए जटिल परिवहन समीकरणों को हल किया जाना चाहिए, उदाहरण के लिए, बोल्ट्जमैन समीकरण या फोकर -प्लैंक समीकरण या नवियर -स्टोक्स समीकरण। उदाहरण के लिए, मैग्नेटोहाइड्रोडायनामिक्स, द्रव की गतिशीलता, इलेक्ट्रोहाइड्रोडायनामिक्स, सुपरकंडक्टिविटी, प्लाज्मा मॉडलिंग देखें। इन मामलों से निपटने के लिए एक संपूर्ण भौतिक तंत्र विकसित हुआ है। उदाहरण के लिए देखें, रैखिक प्रतिक्रिया फ़ंक्शन, ग्रीन-क्यूबो संबंध और ग्रीन का कार्य (कई-शरीर सिद्धांत)। | उदाहरण के लिए, वास्तविक सामग्रियों में, आरोपों के समय और स्थानिक प्रतिक्रिया को निर्धारित करने के लिए जटिल परिवहन समीकरणों को हल किया जाना चाहिए, उदाहरण के लिए, बोल्ट्जमैन समीकरण या फोकर -प्लैंक समीकरण या नवियर -स्टोक्स समीकरण। उदाहरण के लिए, मैग्नेटोहाइड्रोडायनामिक्स, द्रव की गतिशीलता, इलेक्ट्रोहाइड्रोडायनामिक्स, सुपरकंडक्टिविटी, प्लाज्मा मॉडलिंग देखें। इन मामलों से निपटने के लिए एक संपूर्ण भौतिक तंत्र विकसित हुआ है। उदाहरण के लिए देखें, रैखिक प्रतिक्रिया फ़ंक्शन, ग्रीन-क्यूबो संबंध और ग्रीन का कार्य (कई-शरीर सिद्धांत)। | ||
Line 146: | Line 146: | ||
इलेक्ट्रिक विस्थापन क्षेत्र '''D''' और '''E''', और चुंबकीय क्षेत्र '''H'''और चुंबकीय सामग्री के बीच संबंधों को निर्दिष्ट करना आवश्यक है। विद्युतचुम्बकत्व में गणना करने से पहले चुंबकीय एच-फील्ड '''H''' और '''B''', मैक्सवेल के मैक्रोस्कोपिक समीकरणों को लागू करने से पहले)। ये समीकरण लागू क्षेत्रों के लिए बाध्य चार्ज और वर्तमान की अचालकप्रतिक्रिया को निर्दिष्ट करते हैं और उन्हें संवैधानिक संबंध कहा जाता है। | इलेक्ट्रिक विस्थापन क्षेत्र '''D''' और '''E''', और चुंबकीय क्षेत्र '''H'''और चुंबकीय सामग्री के बीच संबंधों को निर्दिष्ट करना आवश्यक है। विद्युतचुम्बकत्व में गणना करने से पहले चुंबकीय एच-फील्ड '''H''' और '''B''', मैक्सवेल के मैक्रोस्कोपिक समीकरणों को लागू करने से पहले)। ये समीकरण लागू क्षेत्रों के लिए बाध्य चार्ज और वर्तमान की अचालकप्रतिक्रिया को निर्दिष्ट करते हैं और उन्हें संवैधानिक संबंध कहा जाता है। | ||
सहायक क्षेत्रों के बीच संवैधानिक संबंध का निर्धारण '''D''' और '''H''' और '''E''' और '''B''' क्षेत्र स्वयं सहायक क्षेत्रों की परिभाषा के साथ | सहायक क्षेत्रों के बीच संवैधानिक संबंध का निर्धारण '''D''' और '''H''' और '''E''' और '''B''' क्षेत्र स्वयं सहायक क्षेत्रों की परिभाषा के साथ प्रारम्भ होते हैं: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\mathbf{D}(\mathbf{r}, t) &= \varepsilon_0 \mathbf{E}(\mathbf{r}, t) + \mathbf{P}(\mathbf{r}, t) \\ | \mathbf{D}(\mathbf{r}, t) &= \varepsilon_0 \mathbf{E}(\mathbf{r}, t) + \mathbf{P}(\mathbf{r}, t) \\ | ||
Line 171: | Line 171: | ||
==== सामान्य कारक ==== | ==== सामान्य कारक ==== | ||
वास्तविक दुनिया की सामग्रियों के लिए, संवैधानिक संबंध रैखिक नहीं हैं, लगभग छोड़कर। पहले सिद्धांतों से संवैधानिक संबंधों की गणना में यह निर्धारित करना | वास्तविक दुनिया की सामग्रियों के लिए, संवैधानिक संबंध रैखिक नहीं हैं, लगभग छोड़कर। पहले सिद्धांतों से संवैधानिक संबंधों की गणना में यह निर्धारित करना सम्मिलित है कि किसी दिए गए '''E''' और '''B''' से '''P''' और '''M''' कैसे बनाए जाते हैं।<ref name="bound_free" group="note">नि: शुल्क शुल्क और धाराएं लोरेंत्ज़ बल कानून के माध्यम से क्षेत्रों में प्रतिक्रिया करती हैं और इस प्रतिक्रिया की गणना यांत्रिकी का उपयोग करके एक मौलिक स्तर पर की जाती है।बाध्य शुल्क और धाराओं की प्रतिक्रिया को मैग्नेटाइजेशन और ध्रुवीकरण की धारणाओं के तहत उप -समूहों का उपयोग करने के साथ निपटा जाता है।समस्या के आधार पर, कोई भी मुफ्त शुल्क नहीं चुन सकता है।संघनित पदार्थ भौतिकी)।नियोजित विस्तार से कॉन्टिनम मैकेनिक्स या ग्रीन -क्यूबो संबंध हो सकते हैं, जो जांच के तहत समस्या के लिए आवश्यक स्तर पर निर्भर करता है। | ||
सामान्य तौर पर, संवैधानिक संबंध आमतौर पर अभी भी लिखा जा सकता है: | सामान्य तौर पर, संवैधानिक संबंध आमतौर पर अभी भी लिखा जा सकता है: | ||
Line 191: | Line 191: | ||
इन उदाहरणों की भिन्नता के रूप में, सामान्य तौर पर, सामग्री बाइएनिसोट्रोपिक हैं जहां '''D''' और '''B''' अतिरिक्त युग्मन स्थिरांक ξ और ζ के माध्यम से ई और H दोनों पर निर्भर करते हैं:<ref name="Bianisotropy">{{cite book |author1=TG Mackay |author2=A Lakhtakia |publisher=World Scientific |url=http://www.worldscibooks.com/physics/7515.html |title=Electromagnetic Anisotropy and Bianisotropy: A Field Guide |year=2010 |access-date=2012-05-22 |archive-url=https://web.archive.org/web/20101013004900/http://www.worldscibooks.com/physics/7515.html |archive-date=2010-10-13 |url-status=dead }}</ref> | इन उदाहरणों की भिन्नता के रूप में, सामान्य तौर पर, सामग्री बाइएनिसोट्रोपिक हैं जहां '''D''' और '''B''' अतिरिक्त युग्मन स्थिरांक ξ और ζ के माध्यम से ई और H दोनों पर निर्भर करते हैं:<ref name="Bianisotropy">{{cite book |author1=TG Mackay |author2=A Lakhtakia |publisher=World Scientific |url=http://www.worldscibooks.com/physics/7515.html |title=Electromagnetic Anisotropy and Bianisotropy: A Field Guide |year=2010 |access-date=2012-05-22 |archive-url=https://web.archive.org/web/20101013004900/http://www.worldscibooks.com/physics/7515.html |archive-date=2010-10-13 |url-status=dead }}</ref> | ||
: <math>\mathbf{D}=\varepsilon \mathbf{E} + \xi \mathbf{H} \,,\quad \mathbf{B} = \mu \mathbf{H} + \zeta \mathbf{E}.</math> | : <math>\mathbf{D}=\varepsilon \mathbf{E} + \xi \mathbf{H} \,,\quad \mathbf{B} = \mu \mathbf{H} + \zeta \mathbf{E}.</math> | ||
व्यवहार में, कुछ भौतिक गुणों का विशेष परिस्थितियों में नगण्य प्रभाव पड़ता है, जिससे छोटे प्रभावों की उपेक्षा होती है। उदाहरण के लिए, कम क्षेत्र की ताकत के लिए ऑप्टिकल गैर-रैखिकताओं को उपेक्षित किया जा सकता है; भौतिक फैलाव महत्वहीन है जब आवृत्ति एक संकीर्ण बैंडविड्थ तक सीमित है; तरंग दैर्ध्य के लिए सामग्री अवशोषण की उपेक्षा की जा सकती है जिसके लिए सामग्री पारदर्शी है; और परिमित चालकता वाली धातुओं को | व्यवहार में, कुछ भौतिक गुणों का विशेष परिस्थितियों में नगण्य प्रभाव पड़ता है, जिससे छोटे प्रभावों की उपेक्षा होती है। उदाहरण के लिए, कम क्षेत्र की ताकत के लिए ऑप्टिकल गैर-रैखिकताओं को उपेक्षित किया जा सकता है; भौतिक फैलाव महत्वहीन है जब आवृत्ति एक संकीर्ण बैंडविड्थ तक सीमित है; तरंग दैर्ध्य के लिए सामग्री अवशोषण की उपेक्षा की जा सकती है जिसके लिए सामग्री पारदर्शी है; और परिमित चालकता वाली धातुओं को प्रायः माइक्रोवेव या लंबी तरंग दैर्ध्य पर अनंत चालकता के साथ परिपूर्ण धातुओं के रूप में अनुमानित किया जाता है (क्षेत्र प्रवेश की शून्य त्वचा की गहराई के साथ कठोर अवरोधों का निर्माण)। | ||
कुछ मानव निर्मित सामग्री जैसे मेटामटेरियल्स और फोटोनिक क्रिस्टल को अनुकूलित परमिटिटिविटी और पारगम्यता के लिए डिज़ाइन किया गया है। | कुछ मानव निर्मित सामग्री जैसे मेटामटेरियल्स और फोटोनिक क्रिस्टल को अनुकूलित परमिटिटिविटी और पारगम्यता के लिए डिज़ाइन किया गया है। | ||
Line 197: | Line 197: | ||
==== संवैधानिक संबंधों की गणना ==== | ==== संवैधानिक संबंधों की गणना ==== | ||
{{See also|कम्प्यूटेशनल विद्युतचुंबकीय}} | {{See also|कम्प्यूटेशनल विद्युतचुंबकीय}} | ||
सामग्री के संवैधानिक समीकरणों की सैद्धांतिक गणना सैद्धांतिक संघनित-भौतिकी और सामग्री विज्ञान में एक सामान्य, महत्वपूर्ण और कभी-कभी कठिन कार्य है। सामान्य तौर पर, संवैधानिक समीकरण सैद्धांतिक रूप से यह गणना करके निर्धारित किए जाते हैं कि एक अणु लोरेंट्ज़ बल के माध्यम से स्थानीय क्षेत्रों में कैसे प्रतिक्रिया करता है। अन्य बलों को क्रिस्टल या बॉन्ड बलों में जाली कंपन जैसे मॉडलिंग करने की आवश्यकता हो सकती है। सभी बलों सहित अणु में परिवर्तन की ओर जाता है जो स्थानीय क्षेत्रों के एक समारोह के रूप में पी और एम की गणना करने के लिए उपयोग किया जाता है। | |||
स्थानीय क्षेत्र पास की सामग्री के ध्रुवीकरण और चुंबकत्व द्वारा उत्पादित क्षेत्रों के कारण लागू क्षेत्रों से भिन्न होते हैं; | स्थानीय क्षेत्र पास की सामग्री के ध्रुवीकरण और चुंबकत्व द्वारा उत्पादित क्षेत्रों के कारण लागू क्षेत्रों से भिन्न होते हैं; प्रभाव जिसे मॉडलिंग करने की भी आवश्यकता है। इसके अलावा, वास्तविक सामग्री निरंतर यांत्रिकी नहीं हैं; वास्तविक सामग्रियों के स्थानीय क्षेत्र परमाणु पैमाने पर बेतहाशा भिन्न होते हैं। एक निरंतरता सन्निकटन बनाने के लिए क्षेत्र को उपयुक्त मात्रा में औसत करने की आवश्यकता है। | ||
इन सातत्य अनुमानों को | इन सातत्य अनुमानों को प्रायः कुछ प्रकार के क्वांटम यांत्रिकी विश्लेषण की आवश्यकता होती है जैसे कि क्वांटम फील्ड थ्योरी जैसा कि संघनित पदार्थ भौतिकी पर लागू होता है। देखें, उदाहरण के लिए, घनत्व कार्यात्मक सिद्धांत, ग्रीन-क्यूबो संबंध और ग्रीन का कार्य (कई-शरीर सिद्धांत) | ग्रीन का कार्य। | ||
'' समरूपता विधियों '' का एक अलग सेट (समूह (भूविज्ञान) और टुकड़े टुकड़े) जैसी सामग्रियों के इलाज में | '' समरूपता विधियों '' का एक अलग सेट (समूह (भूविज्ञान) और टुकड़े टुकड़े) जैसी सामग्रियों के इलाज में परंपरा से विकसित होना एक सजातीय 'प्रभावी मध्यम सन्निकटन' '' 'प्रभावी माध्यम' द्वारा एक अमानवीय सामग्री के सन्निकटन पर आधारित है।<ref name=Aspnes>[[David E. Aspnes|Aspnes, D.E.]], "Local-field effects and effective-medium theory: A microscopic perspective", ''Am. J. Phys.'' '''50''', pp. 704–709 (1982).</ref><ref name=Kang> | ||
{{cite book | {{cite book | ||
|author1=Habib Ammari |author2=Hyeonbae Kang |title=Inverse problems, multi-scale analysis and effective medium theory : workshop in Seoul, Inverse problems, multi-scale analysis, and homogenization, June 22–24, 2005, Seoul National University, Seoul, Korea | |author1=Habib Ammari |author2=Hyeonbae Kang |title=Inverse problems, multi-scale analysis and effective medium theory : workshop in Seoul, Inverse problems, multi-scale analysis, and homogenization, June 22–24, 2005, Seoul National University, Seoul, Korea | ||
Line 253: | Line 253: | ||
}}</ref>'' | }}</ref>'' | ||
कई वास्तविक सामग्रियों के निरंतरता-अनुमोदन गुणों का सैद्धांतिक मॉडलिंग | कई वास्तविक सामग्रियों के निरंतरता-अनुमोदन गुणों का सैद्धांतिक मॉडलिंग प्रायः प्रयोगात्मक माप पर भी निर्भर करती है।<ref name="Palik"> | ||
{{cite book | {{cite book | ||
|author1=Edward D. Palik |author2=Ghosh G |title=Handbook of Optical Constants of Solids | |author1=Edward D. Palik |author2=Ghosh G |title=Handbook of Optical Constants of Solids | ||
Line 262: | Line 262: | ||
|page=1114 | |page=1114 | ||
|year=1998 | |year=1998 | ||
}}</ref> उदाहरण के लिए, कम आवृत्तियों पर | }}</ref> उदाहरण के लिए, कम आवृत्तियों पर इन्सुलेटर को समानांतर-प्लेट संधारित्र में बनाकर मापा जा सकता है, और ε ऑप्टिकल-लाइट आवृत्तियों पर प्रायः एलिप्सोमेट्री द्वारा मापा जाता है। | ||
=== थर्मोइलेक्ट्रिक और पदार्थ के विद्युत चुम्बकीय गुण === | === थर्मोइलेक्ट्रिक और पदार्थ के विद्युत चुम्बकीय गुण === | ||
इन संवैधानिक समीकरणों का उपयोग | इन संवैधानिक समीकरणों का उपयोग प्रायः क्रिस्टलोग्राफी में किया जाता है, जो ठोस-अवस्था भौतिकी का एक क्षेत्र है।<ref>{{cite web|url=http://www.mx.iucr.org/iucr-top/comm/cteach/pamphlets/18/node2.html|title=2. Physical Properties as Tensors|website=www.mx.iucr.org|access-date=19 April 2018|archive-url=https://web.archive.org/web/20180419072909/http://www.mx.iucr.org/iucr-top/comm/cteach/pamphlets/18/node2.html|archive-date=19 April 2018|url-status=dead}}</ref> | ||
:{| class="wikitable" | :{| class="wikitable" | ||
|+ | |+ | ||
Line 316: | Line 316: | ||
=== अपवर्तक सूचकांक === | === अपवर्तक सूचकांक === | ||
माध्यम n (आयाम रहित) का (पूर्ण) अपवर्तक सूचकांक ज्यामितीय और भौतिक प्रकाशिकी की एक स्वाभाविक रूप से महत्वपूर्ण संपत्ति है जिसे वैक्यूम ''c''<sub>0</sub> में ल्यूमिनल गति के अनुपात के रूप में परिभाषित किया गया है जो माध्यम c में है: | |||
:<math> n = \frac{c_0}{c} = \sqrt{\frac{\varepsilon \mu}{\varepsilon_0 \mu_0}} = \sqrt{\varepsilon_r \mu_r} </math> | :<math> n = \frac{c_0}{c} = \sqrt{\frac{\varepsilon \mu}{\varepsilon_0 \mu_0}} = \sqrt{\varepsilon_r \mu_r} </math> | ||
Line 455: | Line 455: | ||
=== निश्चित नियम === | === निश्चित नियम === | ||
ऐसे कई | ऐसे कई नियम हैं जो पदार्थ या उसके गुणों के परिवहन का वर्णन लगभग एक समान तरीके से करते हैं। प्रत्येक मामले में, शब्दों में, वे पढ़ते हैं: | ||
:: '''''प्रवाह (घनत्व)''' एक '''ढाल''' के समानुपाती होता है , आनुपातिकता का स्थिरांक सामग्री की विशेषता है।'' सामग्री की दिशात्मक निर्भरता को ध्यान में रखते हुए सामान्य तौर पर स्थिरांक को दूसरे रैंक के टेंसर द्वारा प्रतिस्थापित किया जाना चाहिए। | :: '''''प्रवाह (घनत्व)''' एक '''ढाल''' के समानुपाती होता है , आनुपातिकता का स्थिरांक सामग्री की विशेषता है।'' सामग्री की दिशात्मक निर्भरता को ध्यान में रखते हुए सामान्य तौर पर स्थिरांक को दूसरे रैंक के टेंसर द्वारा प्रतिस्थापित किया जाना चाहिए। | ||
Line 498: | Line 498: | ||
|<math> q_i= - \lambda_{ij}\frac{\partial T}{\partial x_j} </math> | |<math> q_i= - \lambda_{ij}\frac{\partial T}{\partial x_j} </math> | ||
|- | |- | ||
|'''ब्लैक-बॉडी रेडिएशन का स्टीफन-बोल्ट्जमैन | |'''ब्लैक-बॉडी रेडिएशन का स्टीफन-बोल्ट्जमैन नियम''' , उत्सर्जन ''ε को परिभाषित करता है'' | ||
| | | | ||
* ''I'' , दीप्तिमान तीव्रता (W⋅m <sup>−2</sup> ) | * ''I'' , दीप्तिमान तीव्रता (W⋅m <sup>−2</sup> ) |
Revision as of 12:53, 22 May 2023
भौतिकी और अभियांत्रिकी में, संवैधानिक समीकरण या संघटक संबंध दो भौतिक मात्राओं (विशेष रूप से गतिज मात्रा से संबंधित गतिज मात्रा) के बीच एक संबंध है। यह ए सामग्री या पदार्थ के लिए विशिष्ट है, और उस सामग्री की प्रतिक्रिया को बाहरी उत्तेजनाओं के लिए, सामान्यतः लागू क्षेत्रों या बलों के रूप में अनुमानित करता है। भौतिक समस्याओं को हल करने के लिए उन्हें भौतिक नियमों को शासित करने वाले अन्य समीकरणों के साथ जोड़ा जाता है; उदाहरण के लिए द्रव यांत्रिकी में पाइप में तरल पदार्थ का प्रवाह, ठोस अवस्था भौतिकी में विद्युत क्षेत्र के लिए क्रिस्टल की प्रतिक्रिया, या संरचनात्मक विश्लेषण में, लागू तनावों या तनावों या विकृतियों के बीच संबंध है।
कुछ संघटक समीकरण सामान्य रूप से परिघटना संबंधी होते हैं; दूसरों को पहले सिद्धांतों से लिया गया है। सामान्य अनुमानित संवैधानिक समीकरण को प्रायः सामग्री की संपत्ति, जैसे विद्युत चालकता या वसंत स्थिरांक के रूप में लिए गए पैरामीटर का उपयोग करके एक साधारण आनुपातिकता के रूप में व्यक्त किया जाता है। हालांकि, प्रायः सामग्री की दिशात्मक निर्भरता को ध्यान में रखना आवश्यक होता है, और स्केलर पैरामीटर को टेंसर के लिए सामान्यीकृत किया जाता है। सामग्रियों की प्रतिक्रिया की दर और उनके गैर-रेखीय व्यवहार को ध्यान में रखते हुए संवैधानिक संबंधों को भी संशोधित किया जाता है।[1] आलेख रैखिक प्रतिक्रिया फंक्शन देखें।
पदार्थ के यांत्रिक गुण
पहला संवैधानिक समीकरण (संविधान नियम) रॉबर्ट हुक द्वारा विकसित किया गया था और इसे हुक के नियम के रूप में जाना जाता है। यह रैखिक लोचदार सामग्रियों के मामले से संबंधित है। इस खोज के बाद, इस प्रकार के समीकरण, जिसे इस उदाहरण में प्रायः "तनाव-तनाव संबंध" कहा जाता है, लेकिन इसे "संवैधानिक धारणा" या "राज्य का समीकरण" भी कहा जाता है। वाल्टर नोल ने संवैधानिक समीकरणों के उपयोग को उन्नत किया, उनके वर्गीकरण और "सामग्री", "आइसोट्रोपिक", "एओलोट्रोपिक", आदि जैसे शब्दों की अपरिवर्तनीय आवश्यकताओं, बाधाओं और परिभाषाओं को स्पष्ट किया। तनाव दर = f (वेग प्रवणता, तनाव, घनत्व) के "संवैधानिक संबंधों" का वर्ग 1954 में क्लिफोर्ड ट्रूसेडेल के तहत वाल्टर नोल के शोध प्रबंध का विषय था।[2]
आधुनिक संघनित पदार्थ भौतिकी में, संघटक समीकरण एक प्रमुख भूमिका निभाता है। रेखीय संवैधानिक समीकरण और गैर रेखीय सहसंबंध कार्य देखें।[3]
परिभाषाएँ
मात्रा (सामान्य नाम) | (सामान्य) प्रतीक / एस | परिभाषित समीकरण | एसआई यूनिट | आयाम |
---|---|---|---|---|
सामान्य तनाव,
दबाव |
P, σ | F क्षेत्र A पर लगाए गए बल का लंबवत घटक है | Pa = N⋅m−2 | [M][L]−1[T]−2 |
सामान्य विकृति | ε | D, परिमाप (लंबाई, क्षेत्रफल, आयतन)
ΔD, सामग्री के आयाम में परिवर्तन |
1 | आयामरहित |
सामान्य लोचदार मापांक | Emod | Pa = N⋅m−2 | [M][L]−1[T]−2 | |
यंग मापांक | E, Y | Pa = N⋅m−2 | [M][L]−1[T] −2 | |
अपरूपण - मापांक | G | Pa = N⋅m−2 | [M][L]−1[T]−2 | |
विस्तार मापांक | K, B | Pa = N⋅m−2 | [M][L]−1[T]−2 | |
संपीड्यता | C | Pa−1 = m2⋅N−1 | [M]−1[L][T]2 |
ठोस पदार्थों का विरूपण
घर्षण
घर्षण एक जटिल घटना है, मैक्रोस्कोपिक रूप से, दो सामग्रियों के इंटरफ़ेस के बीच घर्षण बल F को घर्षण μf के आयाम रहित गुणांक के माध्यम से दो इंटरफेस के बीच संपर्क के बिंदु पर प्रतिक्रिया बल R के आनुपातिक रूप से तैयार किया जा सकता है, जो सामग्री की जोड़ी पर निर्भर करता है:
यह स्थैतिक घर्षण (दो स्थिर वस्तुओं को अपने आप फिसलने से रोकने वाला घर्षण) पर लागू किया जा सकता है, गतिज घर्षण (दो वस्तुओं के बीच घर्षण/एक दूसरे के पिछले फिसलने के बीच घर्षण), या लुढ़कना (घर्षण बल जो फिसलने से रोकता है लेकिन एक गोल वस्तु पर बलाघूर्ण उत्पन्न करता है)।
तनाव और तनाव
रैखिक सामग्रियों के लिए तनाव-विकृति संवैधानिक संबंध को सामान्यतः हुक के नियम के रूप में जाना जाता है। अपने सरलतम रूप में, नियम अदिश समीकरण में वसंत स्थिरांक (या लोच स्थिरांक) k को परिभाषित करता है, तन्यता/संपीड़न बल को विस्तारित (या अनुबंधित) विस्थापन x के समानुपाती होता है:
जिसका अर्थ है कि सामग्री रैखिक रूप से प्रतिक्रिया करती है। समान रूप से, प्रतिबल σ, यंग मापांक E और विकृति ε (आयाम रहित) के संदर्भ में:
सामान्य तौर पर, जो बल ठोस पदार्थों को विकृत करते हैं वे सामग्री की सतह के लिए सामान्य (सामान्य बल), या स्पर्शरेखा (अपरूपण बल) हो सकते हैं, इसे गणितीय रूप से तनाव टेंसर का उपयोग करके वर्णित किया जा सकता है:
जहाँ C इलास्टिसिटी टेन्सर है और S कंप्लायंस टेंसर है।
ठोस अवस्था की विकृति
लोचदार सामग्री में विकृति के कई वर्ग निम्नलिखित हैं:[4]
- प्लास्टिक विरूपण
- लागू बल सामग्री में गैर-वसूली योग्य विकृतियों को प्रेरित करता है जब तनाव (या लोचदार तनाव) एक महत्वपूर्ण परिमाण तक पहुंचता है, जिसे उपज बिंदु कहा जाता है।
- लोच (भौतिकी)
- सामग्री विरूपण के बाद अपने प्रारंभिक आकार को ठीक कर लेती है।
- श्यानताप्रत्यस्थ
- यदि समय-निर्भर प्रतिरोधक योगदान बड़ा है, और इसकी उपेक्षा नहीं की जा सकती है। रबड़ और प्लास्टिक में यह गुण होता है और निश्चित रूप से हुक के नियम को पूरा नहीं करते हैं। दरअसल, इलास्टिक हिस्टैरिसीस होता है।
- विषमप्रत्यास्थता
- यदि सामग्री लोचदार के करीब है, लेकिन लागू बल अतिरिक्त समय-निर्भर प्रतिरोधी बलों को प्रेरित करता है (यानी विस्तार/संपीड़न के अतिरिक्त, विस्तार/संपीड़न के परिवर्तन की दर पर निर्भर करता है)। धातु और मिट्टी के पात्र में यह विशेषता होती है, लेकिन यह सामान्यतः नगण्य होता है, हालांकि घर्षण के कारण गर्म होने पर इतना नहीं होता है (जैसे कंपन या मशीनों में कतरनी तनाव)।
- अतिप्रत्यास्थ
- लगाया गया बल तनाव ऊर्जा घनत्व फलन के बाद सामग्री में विस्थापन को प्रेरित करता है।
टकराव
किसी अन्य वस्तु B के साथ टक्कर के बाद किसी वस्तु A के Vपृथक्करण बनाम पृथक्करण की सापेक्ष गति, न्यूटन के प्रायोगिक प्रभाव नियम द्वारा परिभाषित, पुनर्स्थापना के गुणांक द्वारा दृष्टिकोण Vदृष्टिकोणकी सापेक्ष गति से संबंधित है:[5]
जो उन सामग्रियों पर निर्भर करता है जिनसे A और B बने हैं, क्योंकि टक्कर में A और B की सतहों पर परस्पर क्रिया सम्मिलित है। सामान्यतः 0 ≤ e ≤ 10 जिसमें e = 1 पूरी तरह से लोचदार टक्करों के लिए, और e = 0 पूरी तरह से बेलोचदार टक्करों के लिए होता है। सुपररेलास्टिक (या विस्फोटक) टकराव के लिए e ≥ 1 होना संभव है।
तरल पदार्थों की विरूपण
ड्रैग समीकरण घनत्व ρ के तरल पदार्थ के माध्यम से वेग v (तरल के सापेक्ष) के साथ चलने वाले क्रॉस-सेक्शन एरिया A के ऑब्जेक्ट पर ड्रैग फोर्स D देता है।
जहां ड्रैग गुणांक (आयाम रहित) cd वस्तु की ज्यामिति पर निर्भर करता है और द्रव और वस्तु के बीच इंटरफेस पर ड्रैग फोर्स करता है।
श्यानता μ के न्यूटोनियन द्रव के लिए, कतरनी तनाव τ रैखिक रूप से तनाव दर (अनुप्रस्थ प्रवाह वेग ढाल) ∂u/∂y (इकाइयों s−1) से संबंधित है। एकसमान अपरूपण प्रवाह में:
U (y) के साथ क्रॉस-फ्लो (अनुप्रस्थ) दिशा y में प्रवाह वेग u की भिन्नता। सामान्य तौर पर, न्यूटोनियन तरल पदार्थ के लिए, कतरनी तनाव टेन्सर के तत्वों τij और तरल पदार्थ के विरूपण के बीच संबंध निम्न द्वारा दिया जाता है
- साथ तथा
जहां vi संबंधित xi समन्वय दिशाओं में प्रवाह वेग सदिश के घटक हैं, eij विकृति दर टेंसर के घटक हैं, Δ आयतनात्मक विकृति दर (या तनुकरण दर) है और δij क्रोनकर डेल्टा है।[6]
आदर्श गैस सिद्धांत इस अर्थ में एक संवैधानिक संबंध है कि दबाव p और आयतन V तापमान T से संबंधित हैं, गैस के मोल्स n की संख्या के माध्यम से:
जहाँ R गैस स्थिरांक है (J⋅K−1⋅mol−1)
विद्युत चुंबकत्व
विद्युत चुंबकत्व और संबंधित क्षेत्रों में संवैधानिक समीकरण
चिरसम्मत और क्वांटम भौतिकी दोनों में, एक प्रणाली की सटीक गतिशीलता युग्मित विभेदक समीकरणों का एक सेट बनाती है, जो सांख्यिकीय यांत्रिकी के स्तर पर भी लगभग हमेशा बहुत जटिल होती है। विद्युतचुम्बकत्व के संदर्भ में, यह टिप्पणी न केवल मुक्त आवेशों और धाराओं की गतिशीलता पर लागू होती है (जो सीधे मैक्सवेल के समीकरणों में प्रवेश करती हैं), बल्कि बाध्य आवेशों और धाराओं की गतिशीलता (जो संवैधानिक संबंधों के माध्यम से मैक्सवेल के समीकरणों में प्रवेश करती हैं) पर भी लागू होती हैं। परिणामस्वरूप, विभिन्न सन्निकटन योजनाओं का सामान्यतः उपयोग किया जाता है।
उदाहरण के लिए, वास्तविक सामग्रियों में, आरोपों के समय और स्थानिक प्रतिक्रिया को निर्धारित करने के लिए जटिल परिवहन समीकरणों को हल किया जाना चाहिए, उदाहरण के लिए, बोल्ट्जमैन समीकरण या फोकर -प्लैंक समीकरण या नवियर -स्टोक्स समीकरण। उदाहरण के लिए, मैग्नेटोहाइड्रोडायनामिक्स, द्रव की गतिशीलता, इलेक्ट्रोहाइड्रोडायनामिक्स, सुपरकंडक्टिविटी, प्लाज्मा मॉडलिंग देखें। इन मामलों से निपटने के लिए एक संपूर्ण भौतिक तंत्र विकसित हुआ है। उदाहरण के लिए देखें, रैखिक प्रतिक्रिया फ़ंक्शन, ग्रीन-क्यूबो संबंध और ग्रीन का कार्य (कई-शरीर सिद्धांत)।
ये जटिल सिद्धांत विभिन्न सामग्रियों की विद्युत प्रतिक्रिया का वर्णन करने वाले संवैधानिक संबंधों के लिए विस्तृत सूत्र प्रदान करते हैं, जैसे कि पारगम्यता, पारगम्यता (विद्युतचुम्बकत्व), विद्युत चालकता और इसके आगे।
इलेक्ट्रिक विस्थापन क्षेत्र D और E, और चुंबकीय क्षेत्र Hऔर चुंबकीय सामग्री के बीच संबंधों को निर्दिष्ट करना आवश्यक है। विद्युतचुम्बकत्व में गणना करने से पहले चुंबकीय एच-फील्ड H और B, मैक्सवेल के मैक्रोस्कोपिक समीकरणों को लागू करने से पहले)। ये समीकरण लागू क्षेत्रों के लिए बाध्य चार्ज और वर्तमान की अचालकप्रतिक्रिया को निर्दिष्ट करते हैं और उन्हें संवैधानिक संबंध कहा जाता है।
सहायक क्षेत्रों के बीच संवैधानिक संबंध का निर्धारण D और H और E और B क्षेत्र स्वयं सहायक क्षेत्रों की परिभाषा के साथ प्रारम्भ होते हैं:
जहां P ध्रुवीकरण घनत्व क्षेत्र है और M मैग्नेटाइजेशन क्षेत्र है जो क्रमशः सूक्ष्म बाध्य शुल्क और बाध्य करंट के संदर्भ में परिभाषित किया गया है। Mऔर P की गणना करने के तरीके को प्राप्त करने से पहले निम्नलिखित विशेष मामलों की जांच करना उपयोगी है।
चुंबकीय के बिना या अचालक सामग्री
चुंबकीय या अचालकसामग्री की अनुपस्थिति में, संवैधानिक संबंध सरल हैं:
जहां ε0 और μ0 दो सार्वभौमिक स्थिरांक हैं, जिन्हें क्रमशः खाली स्थान के वैक्यूम और चुंबकीय स्थिरांक का विद्युत स्थिरांक कहा जाता है।
आइसोट्रोपिक रैखिक सामग्री
एक (आइसोट्रोपिक)[7]) रैखिक सामग्री, जहां P E के लिए आनुपातिक है, और M B के लिए आनुपातिक है, संवैधानिक संबंध भी सीधे हैं। ध्रुवीकरण P और मैग्नेटाइजेशन M के संदर्भ में वे हैं:
जहां χe और χm किसी दिए गए सामग्री की विद्युत संवेदनशीलता और चुंबकीय संवेदनशीलता की संवेदनशीलता क्रमशः है। D और के संदर्भ में संवैधानिक संबंध हैं:
जहां ε और μ स्थिरांक हैं (जो सामग्री पर निर्भर करते हैं), क्रमशः पारगम्यता और पारगम्यता (विद्युत चुम्बकीयता), जिसे सामग्री का कहा जाता है।ये द्वारा संवेदनशीलता से संबंधित हैं:
सामान्य कारक
वास्तविक दुनिया की सामग्रियों के लिए, संवैधानिक संबंध रैखिक नहीं हैं, लगभग छोड़कर। पहले सिद्धांतों से संवैधानिक संबंधों की गणना में यह निर्धारित करना सम्मिलित है कि किसी दिए गए E और B से P और M कैसे बनाए जाते हैं।[note 1][8]
व्यवहार में, कुछ भौतिक गुणों का विशेष परिस्थितियों में नगण्य प्रभाव पड़ता है, जिससे छोटे प्रभावों की उपेक्षा होती है। उदाहरण के लिए, कम क्षेत्र की ताकत के लिए ऑप्टिकल गैर-रैखिकताओं को उपेक्षित किया जा सकता है; भौतिक फैलाव महत्वहीन है जब आवृत्ति एक संकीर्ण बैंडविड्थ तक सीमित है; तरंग दैर्ध्य के लिए सामग्री अवशोषण की उपेक्षा की जा सकती है जिसके लिए सामग्री पारदर्शी है; और परिमित चालकता वाली धातुओं को प्रायः माइक्रोवेव या लंबी तरंग दैर्ध्य पर अनंत चालकता के साथ परिपूर्ण धातुओं के रूप में अनुमानित किया जाता है (क्षेत्र प्रवेश की शून्य त्वचा की गहराई के साथ कठोर अवरोधों का निर्माण)।
कुछ मानव निर्मित सामग्री जैसे मेटामटेरियल्स और फोटोनिक क्रिस्टल को अनुकूलित परमिटिटिविटी और पारगम्यता के लिए डिज़ाइन किया गया है।
संवैधानिक संबंधों की गणना
सामग्री के संवैधानिक समीकरणों की सैद्धांतिक गणना सैद्धांतिक संघनित-भौतिकी और सामग्री विज्ञान में एक सामान्य, महत्वपूर्ण और कभी-कभी कठिन कार्य है। सामान्य तौर पर, संवैधानिक समीकरण सैद्धांतिक रूप से यह गणना करके निर्धारित किए जाते हैं कि एक अणु लोरेंट्ज़ बल के माध्यम से स्थानीय क्षेत्रों में कैसे प्रतिक्रिया करता है। अन्य बलों को क्रिस्टल या बॉन्ड बलों में जाली कंपन जैसे मॉडलिंग करने की आवश्यकता हो सकती है। सभी बलों सहित अणु में परिवर्तन की ओर जाता है जो स्थानीय क्षेत्रों के एक समारोह के रूप में पी और एम की गणना करने के लिए उपयोग किया जाता है।
स्थानीय क्षेत्र पास की सामग्री के ध्रुवीकरण और चुंबकत्व द्वारा उत्पादित क्षेत्रों के कारण लागू क्षेत्रों से भिन्न होते हैं; प्रभाव जिसे मॉडलिंग करने की भी आवश्यकता है। इसके अलावा, वास्तविक सामग्री निरंतर यांत्रिकी नहीं हैं; वास्तविक सामग्रियों के स्थानीय क्षेत्र परमाणु पैमाने पर बेतहाशा भिन्न होते हैं। एक निरंतरता सन्निकटन बनाने के लिए क्षेत्र को उपयुक्त मात्रा में औसत करने की आवश्यकता है।
इन सातत्य अनुमानों को प्रायः कुछ प्रकार के क्वांटम यांत्रिकी विश्लेषण की आवश्यकता होती है जैसे कि क्वांटम फील्ड थ्योरी जैसा कि संघनित पदार्थ भौतिकी पर लागू होता है। देखें, उदाहरण के लिए, घनत्व कार्यात्मक सिद्धांत, ग्रीन-क्यूबो संबंध और ग्रीन का कार्य (कई-शरीर सिद्धांत) | ग्रीन का कार्य।
समरूपता विधियों का एक अलग सेट (समूह (भूविज्ञान) और टुकड़े टुकड़े) जैसी सामग्रियों के इलाज में परंपरा से विकसित होना एक सजातीय 'प्रभावी मध्यम सन्निकटन' 'प्रभावी माध्यम' द्वारा एक अमानवीय सामग्री के सन्निकटन पर आधारित है।[11][12] (तरंग दैर्ध्य के साथ संदीपन के लिए मान्य है, जो कि अमानवीयता के पैमाने से बहुत बड़ा है)। [13][14][15][16]
कई वास्तविक सामग्रियों के निरंतरता-अनुमोदन गुणों का सैद्धांतिक मॉडलिंग प्रायः प्रयोगात्मक माप पर भी निर्भर करती है।[17] उदाहरण के लिए, कम आवृत्तियों पर इन्सुलेटर को समानांतर-प्लेट संधारित्र में बनाकर मापा जा सकता है, और ε ऑप्टिकल-लाइट आवृत्तियों पर प्रायः एलिप्सोमेट्री द्वारा मापा जाता है।
थर्मोइलेक्ट्रिक और पदार्थ के विद्युत चुम्बकीय गुण
इन संवैधानिक समीकरणों का उपयोग प्रायः क्रिस्टलोग्राफी में किया जाता है, जो ठोस-अवस्था भौतिकी का एक क्षेत्र है।[18]
ठोस के विद्युत चुंबकीय गुण गुण/प्रभाव प्रणाली संदीपन/प्रतिक्रिया पैरामीटर प्रणाली का संवैधानिक टेंसर समीकरण हॉल प्रभाव E, विद्युत क्षेत्र शक्ति (N⋅C−1) J, विद्युत प्रवाह घनत्व (A⋅m−2)
H, चुंबकीय क्षेत्र तीव्रता (A⋅m−1)
ρ, विद्युत प्रतिरोधकता (Ω⋅m) प्रत्यक्ष पीजोइलेक्ट्रिक प्रभाव - σ, तनाव (Pa)
- P, (अचालक) ध्रुवीकरण (C⋅m−2)
d, प्रत्यक्ष पीजोइलेक्ट्रिक गुणांक (C⋅N−1) विपरीत पीजोइलेक्ट्रिक प्रभाव - ε, तनाव (आयाम रहित)
- E, विद्युत क्षेत्र की शक्ति (N⋅C−1)
d, प्रत्यक्ष पीजोइलेक्ट्रिक गुणांक (C⋅N−1) पीजोमैग्नेटिक प्रभाव - σ, तनाव (Pa)
- M, चुंबकीयकरण (A⋅m−1)
q, पीजोइलेक्ट्रिक गुणांक (A⋅N−1⋅m)
फोटोनिक्स
अपवर्तक सूचकांक
माध्यम n (आयाम रहित) का (पूर्ण) अपवर्तक सूचकांक ज्यामितीय और भौतिक प्रकाशिकी की एक स्वाभाविक रूप से महत्वपूर्ण संपत्ति है जिसे वैक्यूम c0 में ल्यूमिनल गति के अनुपात के रूप में परिभाषित किया गया है जो माध्यम c में है:
जहां ε परमिटिविटी और εr है माध्यम की सापेक्ष पारगम्यता, इसी तरह μ पारगम्यता और μr है माध्यम के सापेक्ष पारगम्यता हैं।वैक्यूम पारगम्यता ε0 है और वैक्यूम पारगम्यता μ0 है। केवल मिडालल, अल (हमेशा।r) जटिल संख्याएं हैं।
पदार्थ में प्रकाश की गति
परिभाषा के परिणामस्वरूप, पदार्थ में प्रकाश की गति है
वैक्यूम के विशेष मामले के लिए; ε = ε0 तथा μ = μ0,
पीजोप्टिक प्रभाव
पीज़ोप्टिक प्रभाव ठोस σ में तनाव को ढांकता हुआ अभेद्यता a से संबंधित करता है, जो कि पीज़ोप्टिक गुणांक Π (इकाइयाँ K−1) कहे जाने वाले चौथे-श्रेणी के टेंसर द्वारा युग्मित हैं:
परिवहन घटना
परिभाषाएँ
मात्रा (सामान्य नाम) | (सामान्य) प्रतीक / एस | परिभाषित समीकरण | एस आई यूनिट | आयाम |
---|---|---|---|---|
सामान्य ताप क्षमता | C, पदार्थ की गर्मी क्षमता | J⋅K−1 | [M][L]2[T]−2[Θ]−1 | |
रैखिक थर्मल विस्तार |
|
|
K−1 | [Θ]−1 |
वॉल्यूमेट्रिक थर्मल विस्तार | β, γ
|
K−1 | [Θ]−1 | |
ऊष्मीय चालकता | κ , K, λ ,
|
W⋅m−1⋅K−1 | [M][L][T]−3[Θ]−1 | |
तापीय चालकता | U | W⋅m−2⋅K−1 | [M][T]−3[Θ]−1 | |
थर्मल रेज़िज़टेंस | RΔx, गर्मी हस्तांतरण का विस्थापन (m) | m2⋅K⋅W−1 | [M]−1[L][T]3[Θ] |
मात्रा (सामान्य नाम) | (सामान्य) प्रतीक / एस | परिभाषित समीकरण | एसआई यूनिट | आयाम |
---|---|---|---|---|
विद्युतीय प्रतिरोध | R | Ω, V⋅A−1 = J⋅s⋅C−2 | [M][L]2[T]−3[I]−2 | |
प्रतिरोधकता | ρ | Ω⋅m | [M]2[L]2[T]−3[I]−2 | |
प्रतिरोधकता तापमान गुणांक , रैखिक तापमान निर्भरता | α | K−1 | [Θ]−1 | |
विद्युत चालन | G | S = Ω−1 | [M]−1[L]−2[T]3[I]2 | |
इलेक्ट्रिकल कंडक्टीविटी | σ | Ω−1⋅m−1 | [M]−2[L]−2[T]3[I]2 | |
चुंबकीय अनिच्छा | R, Rm, | A⋅Wb−1 = H−1 | [M]−1[L]−2[T]2 | |
चुंबकीय पारगम्यता | P, Pm, Λ, | Wb⋅A−1 = H | [M][L]2[T]−2 |
निश्चित नियम
ऐसे कई नियम हैं जो पदार्थ या उसके गुणों के परिवहन का वर्णन लगभग एक समान तरीके से करते हैं। प्रत्येक मामले में, शब्दों में, वे पढ़ते हैं:
- प्रवाह (घनत्व) एक ढाल के समानुपाती होता है , आनुपातिकता का स्थिरांक सामग्री की विशेषता है। सामग्री की दिशात्मक निर्भरता को ध्यान में रखते हुए सामान्य तौर पर स्थिरांक को दूसरे रैंक के टेंसर द्वारा प्रतिस्थापित किया जाना चाहिए।
गुण/ प्रभाव | नामपद्धति | समीकरण |
---|---|---|
फ़िक का विसरण का नियम , विसरण गुणांक D को परिभाषित करता है |
|
|
झरझरा मीडिया में द्रव प्रवाह के लिए डार्सी का नियम , पारगम्यता κ को परिभाषित करता है |
|
|
विद्युत चालन का ओम का नियम , विद्युत चालकता को परिभाषित करता है (और इसलिए प्रतिरोधकता और प्रतिरोध) |
|
सरलतम रूप है : अधिक सामान्य रूप हैं: |
तापीय चालकता का फूरियर का नियम , तापीय चालकता λ को परिभाषित करता है |
|
|
ब्लैक-बॉडी रेडिएशन का स्टीफन-बोल्ट्जमैन नियम , उत्सर्जन ε को परिभाषित करता है |
|
एकल रेडिएटर के लिए: तापमान अंतर के लिए:
|
यह भी देखें
- भौतिक निष्पक्षता का सिद्धांत
- रियोलॉजी
टिप्पणियाँ
- ↑ नि: शुल्क शुल्क और धाराएं लोरेंत्ज़ बल कानून के माध्यम से क्षेत्रों में प्रतिक्रिया करती हैं और इस प्रतिक्रिया की गणना यांत्रिकी का उपयोग करके एक मौलिक स्तर पर की जाती है।बाध्य शुल्क और धाराओं की प्रतिक्रिया को मैग्नेटाइजेशन और ध्रुवीकरण की धारणाओं के तहत उप -समूहों का उपयोग करने के साथ निपटा जाता है।समस्या के आधार पर, कोई भी मुफ्त शुल्क नहीं चुन सकता है।संघनित पदार्थ भौतिकी)।नियोजित विस्तार से कॉन्टिनम मैकेनिक्स या ग्रीन -क्यूबो संबंध हो सकते हैं, जो जांच के तहत समस्या के लिए आवश्यक स्तर पर निर्भर करता है।
सामान्य तौर पर, संवैधानिक संबंध आमतौर पर अभी भी लिखा जा सकता है:
| Dependence of P and M on E and B at other locations and times. This could be due to spatial inhomogeneity; for example in a domained structure, heterostructure or a liquid crystal, or most commonly in the situation where there are simply multiple materials occupying different regions of space. Or it could be due to a time varying medium or due to hysteresis. In such cases P and M can be calculated as:<ref name="Halevi">Halevi, Peter (1992). Spatial dispersion in solids and plasmas. Amsterdam: North-Holland. ISBN 978-0-444-87405-4.
- ↑ Clifford Truesdell & Walter Noll; Stuart S. Antman, editor (2004). The Non-linear Field Theories of Mechanics. Springer. p. 4. ISBN 3-540-02779-3.
{{cite book}}
:|author=
has generic name (help)CS1 maint: multiple names: authors list (link) - ↑ See Truesdell's account in Truesdell The naturalization and apotheosis of Walter Noll. See also Noll's account and the classic treatise by both authors: Clifford Truesdell & Walter Noll – Stuart S. Antman (editor) (2004). "Preface" (Originally published as Volume III/3 of the famous Encyclopedia of Physics in 1965). The Non-linear Field Theories of Mechanics (3rd ed.). Springer. p. xiii. ISBN 3-540-02779-3.
{{cite book}}
:|author=
has generic name (help) - ↑ Jørgen Rammer (2007). Quantum Field Theory of Nonequilibrium States. Cambridge University Press. ISBN 978-0-521-87499-1.
- ↑ Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3
- ↑ Essential Principles of Physics, P.M. Whelan, M.J. Hodgeson, 2nd Edition, 1978, John Murray, ISBN 0 7195 3382 1
- ↑ Kay, J.M. (1985). Fluid Mechanics and Transfer Processes. Cambridge University Press. pp. 10 & 122–124. ISBN 9780521316248.
- ↑ The generalization to non-isotropic materials is straight forward; simply replace the constants with tensor quantities.
- ↑ Jackson, John David (1999). Classical Electrodynamics (3rd ed.). New York: Wiley. ISBN 0-471-30932-X.
- ↑ Note that the 'magnetic susceptibility' term used here is in terms of B and is different from the standard definition in terms of H.
- ↑ TG Mackay; A Lakhtakia (2010). Electromagnetic Anisotropy and Bianisotropy: A Field Guide. World Scientific. Archived from the original on 2010-10-13. Retrieved 2012-05-22.
- ↑ Aspnes, D.E., "Local-field effects and effective-medium theory: A microscopic perspective", Am. J. Phys. 50, pp. 704–709 (1982).
- ↑ Habib Ammari; Hyeonbae Kang (2006). Inverse problems, multi-scale analysis and effective medium theory : workshop in Seoul, Inverse problems, multi-scale analysis, and homogenization, June 22–24, 2005, Seoul National University, Seoul, Korea. Providence RI: American Mathematical Society. p. 282. ISBN 0-8218-3968-3.
- ↑ O. C. Zienkiewicz; Robert Leroy Taylor; J. Z. Zhu; Perumal Nithiarasu (2005). The Finite Element Method (Sixth ed.). Oxford UK: Butterworth-Heinemann. p. 550 ff. ISBN 0-7506-6321-9.
- ↑ N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media (Kluwer: Dordrecht, 1989); V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer: Berlin, 1994).
- ↑ Vitaliy Lomakin; Steinberg BZ; Heyman E; Felsen LB (2003). "Multiresolution Homogenization of Field and Network Formulations for Multiscale Laminate Dielectric Slabs" (PDF). IEEE Transactions on Antennas and Propagation. 51 (10): 2761 ff. Bibcode:2003ITAP...51.2761L. doi:10.1109/TAP.2003.816356. Archived from the original (PDF) on 2012-05-14.
- ↑
AC Gilbert (Ronald R Coifman, Editor) (May 2000). Topics in Analysis and Its Applications: Selected Theses. Singapore: World Scientific Publishing Company. p. 155. ISBN 981-02-4094-5.
{{cite book}}
:|author=
has generic name (help) - ↑ Edward D. Palik; Ghosh G (1998). Handbook of Optical Constants of Solids. London UK: Academic Press. p. 1114. ISBN 0-12-544422-2.
- ↑ "2. Physical Properties as Tensors". www.mx.iucr.org. Archived from the original on 19 April 2018. Retrieved 19 April 2018.
[[Category: मैट में विद्युत और चुंबकीय क्षेत्र