टेंसर व्युत्पन्न (सातत्य यांत्रिकी): Difference between revisions

From Vigyanwiki
No edit summary
Line 555: Line 555:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 16/05/2023]]
[[Category:Created On 16/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 10:18, 26 May 2023

दूसरे क्रम के टेंसरों के संबंध में अदिश (गणित), यूक्लिडियन सदिश और दूसरे क्रम के टेंसर के दिशात्मक व्युत्पन्न का सातत्य यांत्रिकी में अधिक उपयोग होता हैं। इन व्युत्पन्न का उपयोग अरेखीय लोच और प्लास्टिसिटी (भौतिकी) के सिद्धांतों में किया जाता है, विशेष रूप से संख्यात्मक अनुकरण के लिए एल्गोरिदम के डिजाइन में उपयोग किया जाता है।[1]

इस प्रकार दिशात्मक व्युत्पन्न इन व्युत्पन्नों को खोजने की व्यवस्थित विधि प्रदान करते है।[2]

सदिश और दूसरे क्रम के टेंसर के संबंध में व्युत्पन्न

विभिन्न स्थितियों के लिए दिशात्मक व्युत्पन्न की परिभाषाएँ नीचे दी गई हैं। अतः यह माना जाता है कि कार्य पर्याप्त रूप से सुचारू होते हैं कि व्युत्पन्न लिया जा सकता है।

सदिशों के अदिश मान वाले कार्यों के व्युत्पन्न

मान लीजिए कि f('v') सदिश 'v' का वास्तविक मान फलन है। फिर 'v' (या 'v' पर) के संबंध में f('v') का व्युत्पन्न 'सदिश' अपने बिंदु उत्पाद के माध्यम से किसी भी सदिश u के साथ परिभाषित किया गया है।

सभी सदिश 'u' के लिए उपरोक्त बिंदु उत्पाद अदिश उत्पन्न करता है और यदि u इकाई सदिश होती है तब u दिशा में v पर 'f' का दिशात्मक व्युत्पन्न देता है।

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब

सदिशों के सदिश मूल्यवान कार्यों के व्युत्पन्न

चूँकि f(v) सदिश v का सदिश मान फलन होता है। फिर v (या v पर) के संबंध में f(v) का व्युत्पन्न दूसरा क्रम टेन्सर है जो इसके बिंदु उत्पाद के माध्यम से किसी भी सदिश u के साथ परिभाषित किया गया है।

सभी सदिश u के लिए उपरोक्त बिंदु उत्पाद सदिश उत्पन्न करता है और यदि u इकाई सदिश होता है, तब दिशात्मक u में, v पर f का व्युत्पन्न देता है।

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब

दूसरे क्रम के टेंसरों के अदिश मान वाले कार्यों के व्युत्पन्न

इस प्रकार दूसरे क्रम के टेंसर का वास्तविक मूल्यवान कार्य होने देना है, फिर की व्युत्पत्ति होती है इसके संबंध में (या ) की दिशा में दूसरे क्रम के टेंसर के रूप में परिभाषित किया गया है।

सभी दूसरे क्रम के टेंसरों के लिए ,

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब

दूसरे क्रम के टेंसर के टेन्सर मूल्यवान कार्यों के व्युत्पन्न

इस प्रकार दूसरे क्रम के टेंसर का दूसरे क्रम के टेन्सर मान फंक्शन होने देता है, फिर की व्युत्पत्ति होती है इसके संबंध में (या ) की दिशा में चौथे क्रम के टेन्सर के रूप में परिभाषित किया गया है।

सभी दूसरे क्रम के टेंसरों के लिए ,

गुण:

  1. यदि तब
  2. यदि तब
  3. यदि तब
  4. यदि तब

टेंसर क्षेत्र की प्रवणता

प्रवणता, , टेंसर क्षेत्र का अनैतिक स्थिर सदिश सी की दिशा में इस प्रकार परिभाषित किया गया है।


अतः n क्रम के टेंसर क्षेत्र की प्रवणता क्रम n+1 का टेंसर क्षेत्र होता है।

कार्तीय निर्देशांक

यदि कार्तीय समन्वय प्रणाली में आधार सदिश होता हैं, जो बिंदुओं के निर्देशांक के साथ निरूपित होता है (), फिर टेंसर क्षेत्र की प्रवणता द्वारा दिया गया है।

Proof

The vectors x and c can be written as and . Let y := x + αc. In that case the gradient is given by

चूंकि कार्तीय समन्वय प्रणाली में आधार सदिश भिन्न नहीं होते हैं, हमारे समीप अदिश क्षेत्र की प्रवणता के लिए निम्नलिखित संबंध होते हैं, , सदिश क्षेत्र v और दूसरे क्रम का टेंसर क्षेत्र होता है।

वक्रीय निर्देशांक

यदि वक्रीय निर्देशांक प्रणाली में सदिशों के आधार वाले सदिशों के सहप्रसरण और विपरीतप्रसरण होते हैं, जिन्हें बिंदुओं के निर्देशांक द्वारा निरूपित किया जाता है (), फिर टेंसर क्षेत्र का प्रवणता द्वारा दिया गया है। (देखें [3] प्रमाण के लिए)

इस परिभाषा से हमारे समीप अदिश क्षेत्र के प्रवणता के लिए निम्नलिखित संबंध होते हैं , सदिश क्षेत्र v और दूसरे क्रम का टेंसर क्षेत्र होता है।
जहां क्रिस्टोफेल प्रतीक है, इसका प्रयोग करके इसे परिभाषित किया गया है।

बेलनाकार ध्रुवीय निर्देशांक

बेलनाकार निर्देशांक में, प्रवणता द्वारा दिया जाता है।