पूर्णांक अनुक्रम: Difference between revisions

From Vigyanwiki
No edit summary
Line 83: Line 83:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 07:41, 27 May 2023

गोटेबोर्ग में एक इमारत पर फाइबोनैचि संख्या की शुरुआत

गणित में, पूर्णांक अनुक्रम, पूर्णांकों का अनुक्रम (अर्थात, एक क्रमित सूची) होता है।

पूर्णांक अनुक्रम को स्पष्ट रूप से इसके 'n' वें पद के लिए एक सूत्र देने के द्वारा निर्दिष्ट किया जा सकता है, या इसके शब्दों के बीच एक संबंध देने के द्वारा निहित है। उदाहरण के लिए, अनुक्रम 0, 1, 1, 2, 3, 5, 8, 13, ... (फाइबोनैचि संख्या) 0 और 1 के साथ प्रारम्भ करके बनाया जाता है और फिर अगले एक को प्राप्त करने के लिए किसी भी दो लगातार शब्दों को जोड़ दिया जाता है: एक निहित विवरण। अनुक्रम 0, 3, 8, 15, ... सूत्र n2 − 1 के अनुसार बनाया गया है: एक स्पष्ट परिभाषा है।

वैकल्पिक रूप से, एक पूर्णांक अनुक्रम को एक संपत्ति द्वारा परिभाषित किया जा सकता है जो अनुक्रम के इकाई के पास होता है और अन्य पूर्णांकों के पास नहीं होता है। उदाहरण के लिए, हम यह निर्धारित कर सकते हैं कि दिए गई पूर्णांक एक पूर्ण संख्या है, भले ही हमारे पास nth पूर्ण संख्या के लिए कोई सूत्र नहीं है।

उदाहरण

पूर्णांक अनुक्रम जिनका अपना नाम है उनमें सम्मिलित हैं:

संगणनीय और निश्चित अनुक्रम

पूर्णांक अनुक्रम एक पुनरावर्तन सिद्धांत अनुक्रम है यदि कोई एल्गोरिथ्म उपलब्ध है, जो n दिया गया है, an सभी n > 0 के लिए गणना करता है। गणनीय पूर्णांक अनुक्रमों का सेट गणनीय है। सभी पूर्णांक अनुक्रमों का सेट बेशुमार है (प्रमुखता बेथ एक के बराबर है), और इसलिए सभी पूर्णांक अनुक्रम गणना योग्य नहीं हैं।

यद्यपि कुछ पूर्णांक अनुक्रमों की परिभाषाएं हैं, यह परिभाषित करने का कोई व्यवस्थित तरीका नहीं है कि एक पूर्णांक अनुक्रम के लिए ब्रह्मांड में या किसी भी पूर्ण (मॉडल स्वतंत्र) अर्थ में निश्चित होने का क्या अर्थ है।

मान लीजिए समुच्चय M, जेडएफसी समुच्चय सिद्धांत का एक सकर्मक मॉडल है। M की परिवर्तनशीलता का अर्थ है कि M के अंदर पूर्णांक और पूर्णांक अनुक्रम वास्तव में पूर्णांक और पूर्णांक के अनुक्रम हैं। एक पूर्णांक अनुक्रम 'M के सापेक्ष एक परिभाषित सेट अनुक्रम' है, यदि सेट सिद्धांत की भाषा में कुछ सूत्र P (x) उपलब्ध है, जिसमें एक मुक्त चर और कोई पैरामीटर नहीं है, जो उस पूर्णांक अनुक्रम के लिए M में सत्य है और M में असत्य है। अन्य सभी पूर्णांक अनुक्रमों के लिए। ऐसे प्रत्येक M में, निश्चित पूर्णांक अनुक्रम होते हैं जो गणना योग्य नहीं होते हैं, जैसे कि ऐसे अनुक्रम जो गणना योग्य सेट के ट्यूरिंग कूदो को एन्कोड करते हैं।

जेडएफसी के कुछ सकर्मक मॉडल M के लिए, M में पूर्णांकों का प्रत्येक क्रम M के सापेक्ष निश्चित है; दूसरों के लिए, केवल कुछ पूर्णांक क्रम हैं (हैम्किन्स एट अल। 2013)। M में परिभाषित करने का कोई व्यवस्थित तरीका नहीं है कि M के सापेक्ष परिभाषित अनुक्रमों का सेट और वह सेट कुछ ऐसे M में उपलब्ध भी नहीं हो सकता है। इसी तरह, सूत्रों के सेट से नक्शा जो M में पूर्णांक अनुक्रमों को पूर्णांक अनुक्रमों को परिभाषित करता है परिभाषित M में परिभाषित नहीं है और M में उपलब्ध नहीं हो सकता है। हालांकि, किसी भी मॉडल में इस तरह के एक निश्चित मानचित्र के अधिकारी हैं, मॉडल में कुछ पूर्णांक अनुक्रम मॉडल के सापेक्ष निश्चित नहीं होंगे (हैम्किन्स एट अल। 2013)।

यदि M में सभी पूर्णांक अनुक्रम सम्मिलित हैं, तो M में निश्चित पूर्णांक अनुक्रमों का सेट M में उपलब्ध होगा और M में गणना योग्य और गणना योग्य होगा।

पूरा अनुक्र

धनात्मक पूर्णांक के अनुक्रम को एक पूर्ण अनुक्रम कहा जाता है यदि प्रत्येक धनात्मक पूर्णांक को अनुक्रम में मानों के योग के रूप में व्यक्त किया जा सकता है, प्रत्येक मान का अधिकतम एक बार प्रयोग किया जाता है

यह भी देखें

संदर्भ

  • Hamkins, Joel David; Linetsky, David; Reitz, Jonas (2013), "Pointwise Definable Models of Set Theory", Journal of Symbolic Logic, 78 (1): 139–156, arXiv:1105.4597, doi:10.2178/jsl.7801090, S2CID 43689192.

बाहरी संबंध