अवस्था के समीकरण (ब्रह्मांड विज्ञान): Difference between revisions

From Vigyanwiki
(Text)
(Text)
Line 31: Line 31:


=== गैर-सापेक्षतावादी कण ===
=== गैर-सापेक्षतावादी कण ===
आपेक्षिकता के साधारण गैर-सिद्धांत 'पदार्थ' (जैसे ठंडी धूल) के लिए अवस्था का समीकरण है <math>w = 0</math>, जिसका अर्थ है कि इसकी ऊर्जा घनत्व कम हो जाती है <math>\rho \propto a^{-3} = V^{-1}</math>, कहाँ <math>V</math> एक मात्रा है। एक विस्तारित ब्रह्मांड में, गैर-सापेक्षतावादी पदार्थ की कुल ऊर्जा स्थिर रहती है, इसके घनत्व में कमी के साथ मात्रा बढ़ जाती है।
साधारण गैर-सापेक्षवादी 'पदार्थ' (जैसे ठंडी धूल) के लिए अवस्था का समीकरण <math>w = 0</math> है, जिसका अर्थ है कि इसका ऊर्जा घनत्व <math>\rho \propto a^{-3} = V^{-1}</math> के रूप में घटता है, जहां <math>V</math> आयतन है। एक विस्तारित ब्रह्मांड में, गैर-सापेक्षतावादी पदार्थ की कुल ऊर्जा स्थिर रहती है, इसके घनत्व में कमी के साथ मात्रा बढ़ जाती है।


===अल्ट्रा-रिलेटिविस्टिक पार्टिकल्स===
===अल्ट्रा-रिलेटिविस्टिक पार्टिकल्स===
अति-सापेक्षतावादी 'विकिरण' ([[ न्युट्रीनो ]] सहित, और बहुत प्रारंभिक ब्रह्मांड में अन्य कण जो बाद में गैर-सापेक्षवादी बन गए) के लिए अवस्था का समीकरण है <math>w = 1/3</math> जिसका अर्थ है कि इसकी ऊर्जा घनत्व कम हो जाती है <math>\rho \propto a^{-4}</math>. एक विस्तारित ब्रह्मांड में, विकिरण की ऊर्जा घनत्व मात्रा विस्तार की तुलना में अधिक तेज़ी से घट जाती है, क्योंकि इसकी तरंग दैर्ध्य लाल-स्थानांतरित होती है।
अति-सापेक्षतावादी 'विकिरण' ([[ न्युट्रीनो |न्युट्रीनो]] सहित, और बहुत प्रारंभिक ब्रह्मांड में अन्य कण जो बाद में गैर-सापेक्षवादी बन गए) के लिए अवस्था का समीकरण <math>w = 1/3</math> है जिसका अर्थ है कि इसका ऊर्जा घनत्व <math>\rho \propto a^{-4}</math> के रूप में घटता है। एक विस्तारित ब्रह्मांड में, विकिरण की ऊर्जा घनत्व मात्रा विस्तार की तुलना में अधिक तेज़ी से घट जाती है, क्योंकि इसकी तरंग दैर्ध्य लाल-स्थानांतरित होती है।


===ब्रह्मांडीय स्फीति का त्वरण===
===ब्रह्मांडीय स्फीति का त्वरण===
ब्रह्मांडीय मुद्रास्फीति और ब्रह्मांड के [[त्वरित ब्रह्मांड]] को [[ काली ऊर्जा ]] की स्थिति के समीकरण द्वारा चित्रित किया जा सकता है। सबसे सरल मामले में, ब्रह्माण्ड संबंधी स्थिरांक की स्थिति का समीकरण है <math>w = -1</math>. इस मामले में, पैमाने कारक के लिए उपरोक्त अभिव्यक्ति मान्य नहीं है और <math>a\propto e^{Ht}</math>, जहां स्थिर {{math|''H''}} [[हबल पैरामीटर]] है। अधिक सामान्यतः, अवस्था के किसी भी समीकरण के लिए ब्रह्मांड का विस्तार तेज हो रहा है <math>w < -1/3</math>. ब्रह्मांड का त्वरित विस्तार वास्तव में देखा गया था।<ref>Hogan, Jenny. "Welcome to the Dark Side." Nature 448.7151 (2007): 240-245. http://www.nature.com/nature/journal/v448/n7151/full/448240a.html</ref> प्रेक्षणों के अनुसार, ब्रह्माण्डीय स्थिरांक की स्थिति के समीकरण का मान -1 के निकट है।
ब्रह्मांडीय स्फीति और ब्रह्मांड के [[त्वरित ब्रह्मांड|त्वरित विस्तार]] को [[ काली ऊर्जा |डार्क एनर्जी]] की स्थिति के समीकरण द्वारा चित्रित किया जा सकता है। सबसे सरल स्थिति में, ब्रह्माण्ड संबंधी स्थिरांक की स्थिति का समीकरण <math>w = -1</math> है। इस स्थिति में, स्केल फ़ैक्टर के लिए उपरोक्त अभिव्यक्ति मान्य नहीं है और <math>a\propto e^{Ht}</math>, जहां स्थिर {{math|''H''}} [[हबल पैरामीटर]] है। अधिक सामान्यतः, अवस्था के किसी भी समीकरण <math>w < -1/3</math> के लिए ब्रह्मांड का विस्तार तेज हो रहा है। ब्रह्मांड का त्वरित विस्तार सचमुच में देखा गया था।<ref>Hogan, Jenny. "Welcome to the Dark Side." Nature 448.7151 (2007): 240-245. http://www.nature.com/nature/journal/v448/n7151/full/448240a.html</ref> प्रेक्षणों के अनुसार, ब्रह्माण्डीय स्थिरांक की स्थिति के समीकरण का मान -1 के निकट है।


काल्पनिक [[प्रेत ऊर्जा]] में अवस्था का समीकरण होगा <math>w < -1</math>, और [[बिग रिप]] का कारण बनेगा। मौजूदा डेटा का उपयोग करके, प्रेत के बीच अंतर करना अभी भी असंभव है <math>w < -1 </math> और गैर-प्रेत <math>w \ge -1 </math>.
काल्पनिक [[प्रेत ऊर्जा|भ्रामक ऊर्जा]] में अवस्था का समीकरण <math>w < -1</math> होगा, और [[बिग रिप]] का कारण बनेगा। मौजूदा डेटा का उपयोग करते हुए, भ्रामक <math>w < -1 </math> और गैर-भ्रामक <math>w \ge -1 </math> के बीच अंतर करना अभी भी असंभव है।


=== तरल पदार्थ ===
=== तरल पदार्थ ===

Revision as of 09:19, 1 June 2023

ब्रह्माण्ड विज्ञान में, एक आदर्श तरल पदार्थ की अवस्था के समीकरण को एक आयामहीन संख्या द्वारा दर्शाया जाता है, इसके दबाव के ऊर्जा घनत्व के अनुपात के बराबर होती है::

यह अवस्था के थर्मोडायनामिक समीकरण और आदर्श गैस नियम से निकटता से संबंधित है।

समीकरण

अवस्था का पूर्ण गैस समीकरण इस प्रकार लिखा जा सकता है

कहाँ द्रव्यमान घनत्व है, विशेष गैस स्थिरांक है, तापमान है और अणुओं की एक विशिष्ट तापीय गति है। इस प्रकार

जहां प्रकाश की गति है, और "ठंडी" गैस के लिए है।

एफ एल आर डब्ल्यू समीकरण और अवस्था का समीकरण

फ्रीडमैन-लेमेट्रे-रॉबर्टसन-वॉकर (एफ एल आर डब्ल्यू) समीकरणों में अवस्था के समीकरण का उपयोग एक आदर्श द्रव से भरे एक आइसोट्रोपिक ब्रह्मांड के विकास का वर्णन करने के लिए किया जा सकता है। अगर स्केल कारक है तो

यदि समतल ब्रह्मांड में द्रव पदार्थ का प्रमुख रूप है, तो
कहाँ उचित समय है।

सामान्यतः फ्रीडमैन समीकरण है

कहाँ ब्रह्माण्ड संबंधी स्थिरांक है और न्यूटन का स्थिरांक है, और स्केल कारक का दूसरा उचित समय व्युत्पन्न है।

यदि हम परिभाषित करते हैं (जिसे "प्रभावी" कहा जा सकता है) ऊर्जा घनत्व और दबाव के रूप में

और
त्वरण समीकरण के रूप में लिखा जा सकता है


गैर-सापेक्षतावादी कण

साधारण गैर-सापेक्षवादी 'पदार्थ' (जैसे ठंडी धूल) के लिए अवस्था का समीकरण है, जिसका अर्थ है कि इसका ऊर्जा घनत्व के रूप में घटता है, जहां आयतन है। एक विस्तारित ब्रह्मांड में, गैर-सापेक्षतावादी पदार्थ की कुल ऊर्जा स्थिर रहती है, इसके घनत्व में कमी के साथ मात्रा बढ़ जाती है।

अल्ट्रा-रिलेटिविस्टिक पार्टिकल्स

अति-सापेक्षतावादी 'विकिरण' (न्युट्रीनो सहित, और बहुत प्रारंभिक ब्रह्मांड में अन्य कण जो बाद में गैर-सापेक्षवादी बन गए) के लिए अवस्था का समीकरण है जिसका अर्थ है कि इसका ऊर्जा घनत्व के रूप में घटता है। एक विस्तारित ब्रह्मांड में, विकिरण की ऊर्जा घनत्व मात्रा विस्तार की तुलना में अधिक तेज़ी से घट जाती है, क्योंकि इसकी तरंग दैर्ध्य लाल-स्थानांतरित होती है।

ब्रह्मांडीय स्फीति का त्वरण

ब्रह्मांडीय स्फीति और ब्रह्मांड के त्वरित विस्तार को डार्क एनर्जी की स्थिति के समीकरण द्वारा चित्रित किया जा सकता है। सबसे सरल स्थिति में, ब्रह्माण्ड संबंधी स्थिरांक की स्थिति का समीकरण है। इस स्थिति में, स्केल फ़ैक्टर के लिए उपरोक्त अभिव्यक्ति मान्य नहीं है और , जहां स्थिर H हबल पैरामीटर है। अधिक सामान्यतः, अवस्था के किसी भी समीकरण के लिए ब्रह्मांड का विस्तार तेज हो रहा है। ब्रह्मांड का त्वरित विस्तार सचमुच में देखा गया था।[1] प्रेक्षणों के अनुसार, ब्रह्माण्डीय स्थिरांक की स्थिति के समीकरण का मान -1 के निकट है।

काल्पनिक भ्रामक ऊर्जा में अवस्था का समीकरण होगा, और बिग रिप का कारण बनेगा। मौजूदा डेटा का उपयोग करते हुए, भ्रामक और गैर-भ्रामक के बीच अंतर करना अभी भी असंभव है।

तरल पदार्थ

एक विस्तारित ब्रह्मांड में, अवस्था के बड़े समीकरणों वाले तरल पदार्थ अवस्था के छोटे समीकरणों की तुलना में अधिक तेज़ी से गायब हो जाते हैं। यह महा विस्फोट की सपाटता की समस्या और मोनोपोल समस्या की समस्या का मूल है: वक्रता है और मोनोपोल हैं , इसलिए यदि वे शुरुआती बिग बैंग के समय आसपास थे, तो उन्हें आज भी दिखाई देना चाहिए। इन समस्याओं को लौकिक मुद्रास्फीति द्वारा हल किया जाता है . डार्क एनर्जी की स्थिति के समीकरण को मापना अवलोकन ब्रह्मांड विज्ञान के सबसे बड़े प्रयासों में से एक है। सटीक माप करके , यह आशा की जाती है कि ब्रह्माण्ड संबंधी स्थिरांक को सर्वोत्कृष्टता (भौतिकी) से अलग किया जा सकता है जिसमें है .

स्केलर मॉडलिंग

एक अदिश क्षेत्र अवस्था के समीकरण के साथ एक प्रकार के पूर्ण द्रव के रूप में देखा जा सकता है

कहाँ का काल-व्युत्पन्न है और संभावित ऊर्जा है। मुफ़्त () अदिश क्षेत्र है , और लुप्त गतिज ऊर्जा वाला एक ब्रह्माण्ड संबंधी स्थिरांक के बराबर है: . बीच में अवस्था का कोई समीकरण, लेकिन पार नहीं करना बाधा फैंटम डिवाइड लाइन (पीडीएल) के रूप में जाना जाता है,[2] प्राप्त करने योग्य है, जो ब्रह्माण्ड विज्ञान में कई घटनाओं के लिए अदिश क्षेत्रों को उपयोगी मॉडल बनाता है।

टिप्पणियाँ

  1. Hogan, Jenny. "Welcome to the Dark Side." Nature 448.7151 (2007): 240-245. http://www.nature.com/nature/journal/v448/n7151/full/448240a.html
  2. Vikman, Alexander (2005). "Can dark energy evolve to the Phantom?". Phys. Rev. D. 71 (2): 023515. arXiv:astro-ph/0407107. Bibcode:2005PhRvD..71b3515V. doi:10.1103/PhysRevD.71.023515. S2CID 119013108.

[Category:Equations of sta