आदर्श (समुच्चय सिद्धांत): Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 7: Line 7:
# अगर <math>A \in I</math> और <math>B \subseteq A,</math> तब <math>B \in I,</math> और
# अगर <math>A \in I</math> और <math>B \subseteq A,</math> तब <math>B \in I,</math> और
# अगर <math>A, B \in I</math> तब <math>A \cup B \in I.</math>
# अगर <math>A, B \in I</math> तब <math>A \cup B \in I.</math>
कुछ लेखक चौथी अनुबंध जोड़ते हुए कहते  हैं कि <math>X</math> स्वयं <math>I</math> में  नहीं है, ऐसे अतिरिक्त गुण वाले आदर्श उचित आदर्श कहलाते हैं ।
कुछ लेखक चतुर्थ अनुबंध जोड़ते हुए कहते  हैं कि <math>X</math> स्वयं <math>I</math> में  नहीं है, ऐसे अतिरिक्त गुण वाले आदर्श उचित आदर्श कहलाते हैं ।


सेट-सैद्धांतिक अर्थों में आदर्श ,आदेश-सैद्धांतिक अर्थों में नितांत आदर्श हैं, जहां प्रासंगिक आदेश सेट समावेशन है। इसके अलावा,अंतर्निहित सेट के पॉवरसेट द्वारा गठित बूलियन रिंग पर रिंग-सैद्धांतिक अर्थों में नितांत आदर्श हैं। आदर्श की दोहरी धारणा एक [[फ़िल्टर (सेट सिद्धांत)]] है।
सेट-सैद्धांतिक अर्थों में आदर्श ,आदेश-सैद्धांतिक अर्थों में नितांत आदर्श हैं, जहां प्रासंगिक आदेश सेट समावेशन है। इसके अलावा,अंतर्निहित सेट के पॉवरसेट द्वारा गठित बूलियन रिंग पर रिंग-सैद्धांतिक अर्थों में नितांत आदर्श हैं। आदर्श की दोहरी धारणा एक [[फ़िल्टर (सेट सिद्धांत)]] है।

Revision as of 15:53, 31 May 2023

सेट सिद्धांत के गणितीय क्षेत्र में, आदर्श सेट (गणित) का आंशिक क्रम संग्रह है जिसे छोटा या नगण्य माना जाता है। आदर्श के तत्व का प्रत्येक उपसमुच्चय आदर्श में भी होना चाहिए (यह इस विचार को संहिताबद्ध करता है कि एक आदर्श लघुता की धारणा है), और आदर्श के किन्हीं दो तत्वों का संघ (सेट सिद्धांत) भी आदर्श में होना चाहिए।

विधिवत् रूप से, X एक सेट दिया है, X पर एक आदर्श I, के पावरसेट का एकअपरिचित गैर-रिक्त उपसमुच्चय है, जैसे कि,

  1. अगर और तब और
  2. अगर तब

कुछ लेखक चतुर्थ अनुबंध जोड़ते हुए कहते हैं कि स्वयं में नहीं है, ऐसे अतिरिक्त गुण वाले आदर्श उचित आदर्श कहलाते हैं ।

सेट-सैद्धांतिक अर्थों में आदर्श ,आदेश-सैद्धांतिक अर्थों में नितांत आदर्श हैं, जहां प्रासंगिक आदेश सेट समावेशन है। इसके अलावा,अंतर्निहित सेट के पॉवरसेट द्वारा गठित बूलियन रिंग पर रिंग-सैद्धांतिक अर्थों में नितांत आदर्श हैं। आदर्श की दोहरी धारणा एक फ़िल्टर (सेट सिद्धांत) है।

शब्दावली

आदर्श का तत्व , -शून्य या -नगण्य बताया गया है, या यदि आदर्श को संदर्भ से समझा जाए, केवल शून्य या नगण्य होगा। अगर , पर आदर्श है तो का एक उपसमुच्चय -सकारात्मक (या सिर्फ सकारात्मक) कहा जाता है, यदि यह का तत्व नहीं है । के सभी -धनात्मक उपसमूहों के संग्रह को द्वारा निरूपित किया जाता है

अगर पर उचित आदर्श है और प्रत्येक के लिए या तो है या तब एक प्रमुख आदर्श है।

आदर्शों के उदाहरण

सामान्य उदाहरण

  • किसी भी सेट और अव्यवस्थित ढंग से से चुने गए उपसमुच्चय के लिए के उपसमुच्चय पर एक आदर्श बनाते हैं। परिमित के लिए, सभी आदर्श इसी रूप के हैं।
  • किसी समुच्चय के परिमित उपसमुच्चय पर एक आदर्श बनाते हैं।
  • किसी भी माप स्थान के लिए, माप शून्य के सेट का सबसेट है।
  • किसी भी माप स्थान के लिए, परिमित माप का सेट है। इसमें परिमित उपसमुच्चय (गणना माप का उपयोग करके) और नीचे छोटे सेट सम्मिलित हैं।
  • सेट पर जन्म विज्ञान एक आदर्श है जो को आवरण करता है।
  • के सबसेट का एक अपरिचित-रिक्त परिवार पर उचित आदर्श है,अगर dual में जिसे निरूपित और परिभाषित किया गया है ,एक उचित फ़िल्टर पर है (अगर, यह बराबर नहीं है, उचित फ़िल्टर है). पावरसेट स्वयं का युग्मित है,वह है । इस प्रकार एक अपरिचित-रिक्त परिवार पर आदर्श है यदि और केवल यदि यह युग्मित पर युग्मित आदर्श है (जो परिभाषा के अनुसार या तो पावर सेट है या फिर एक उचित फ़िल्टर पर है)

प्राकृतिक संख्या पर आदर्श

  • प्राकृतिक संख्याओं के सभी परिमित समुच्चयों के आदर्श को फिन द्वारा निरूपित किया जाता है।
  • प्राकृतिक संख्या पर योग्य आदर्श जिसे द्वारा निरूपित किया जाता है, प्राकृतिक संख्याओं के सभी समुच्चय A का संग्रह है जैसे कि योग परिमित है।
  • छोटा सेट (कॉम्बिनेटरिक्स) देखें।
  • असम्बद्ध रूप से शून्य-घनत्व का आदर्श प्राकृतिक संख्याओं पर सेट होता है, जिसे निरूपित किया जाता है, प्राकृतिक संख्याओं के सभी समुच्चय का संग्रह है जैसे कि n से कम प्राकृतिक संख्या का अंश जो से संबंधित है, शून्य की ओर जाता है क्योंकि n अनंत की ओर जाता है।। (अर्थात, असम्बद्ध घनत्व शून्य है।)

वास्तविक संख्या पर आदर्श

  • माप आदर्श वास्तविक संख्याओं के सभी सेट का संग्रह है जैसे कि का लेबेस्ग माप(Lebesgue measure) शून्य है।
  • अल्प आदर्श वास्तविक संख्याओं के सभी अल्प सेटों का संग्रह है।

अन्य सेटों पर आदर्श

  • अगर अगणनीय सह-अस्तित्व की एक क्रमिक संख्या है, जो स्थिर समुच्चय नहीं हैं अस्थिर आदर्श पर के सभी उपसमूहों का संग्रह है । डब्ल्यू ह्यूग वुडिन द्वारा इस आदर्श का व्यापक अध्ययन किया गया है।

आदर्शों पर संचालन

अंतर्निहित सेट X और Y पर आदर्श I और J क्रमशः दिए गए हैं, कार्टेशियन उत्पाद पर एक उत्पाद बनाता है इस प्रकार किसी भी उपसमुच्चय के लिए

अर्थात्,उत्पाद आदर्श में एक सेट नगण्य है यदि x-निर्देशांक का केवल एक नगण्य संग्रह y-दिशा में A के गैर-नगण्य टुकड़े के अनुरूप है। (शायद स्पष्ट: उत्पाद आदर्श में एक सेट सकारात्मक है यदि सकारात्मक रूप से कई x-निर्देशांक सकारात्मक स्लाइस के अनुरूप हैं।)

आदर्श I एक सेट पर X एक तुल्यता संबंध को प्रेरित करता है जिसको पावरसेट X, मानते हुए A और B समकक्ष होना (के लिए के उपसमुच्चय X) यदि और केवल यदि के सममित अंतर A और B का एक तत्व I है का भागफल सेट इस तुल्यता संबंध से एक बूलियन बीजगणित (संरचना) है, जिसे निरूपित किया गया है (पी का पी पढ़ें X ख़िलाफ़ I ).

सभी आदर्श के लिए एक संबंधित फ़िल्टर (सेट सिद्धांत) होता है, जिसे इसका dual filter कहा जाता है । अगर X पर एक आदर्श I है , I का dual filter सभी सेट का संग्रह है, जहाँ A का तत्व I है. (यहाँ , X में A के सापेक्ष पूरक को दर्शाता है, अर्थात्, X के सभी तत्वों का संग्रह जो A में नहीं हैं).

आदर्शों के बीच संबंध

अगर और पर क्रमश: और आदर्श हैं, और Rudin–Keisler isomorphic हैं ,यदि वे अपने अंतर्निहित सेटों के तत्वों के नाम बदलने के अलावा (नगण्य सेटों को अनदेखा कर) समान आदर्श हैं। विधिवत् रूप से,आवश्यकता यह है कि और सेट हों, और घटक और क्रमशः एक आक्षेप हों, ऐसा किसी भी उपसमुच्चय के लिए यदि और केवल यदि की

छवि अंतर्गत है ।

अगर और रुडिन-कीस्लर आइसोमॉर्फिक हैं, फिर और बूलियन बीजगणित के रूप में आइसोमोर्फिक हैं। आदर्शों के रुडिन-कीस्लर समरूपता द्वारा प्रेरित भागफल बूलियन बीजगणित की तुच्छ समरूपता कहलाती है ।

यह भी देखें

संदर्भ

  • Farah, Ilijas (November 2000). Analytic quotients: Theory of liftings for quotients over analytic ideals on the integers. Memoirs of the AMS. American Mathematical Society. ISBN 9780821821176.