कठोर रोटर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Model of rotating physical systems}} | {{Short description|Model of rotating physical systems}} | ||
{{redir| | {{redir|आणविक घुमाव | ||
|एक अणु के भीतर बंधन-घूर्णन | |||
|गठनात्मक समावयवता | |||
}} | |||
[[रोटरडायनामिक्स]] में, कठोर रोटर [[ ROTATION | घूर्णन]] प्रणालियों का एक यांत्रिक मॉडल है। मनमाना कठोर रोटर 3-आयामी कठोर वस्तु है, जैसे शीर्ष। अंतरिक्ष में ऐसी वस्तु को उन्मुख करने के लिए तीन कोणों की आवश्यकता होती है, जिन्हें [[यूलर कोण]] कहा जाता है। एक विशेष कठोर रोटर ''रैखिक रोटर'' है, जिसका वर्णन करने के लिए केवल दो कोणों की आवश्यकता होती है, उदाहरण के लिए डायटोमिक [[अणु]]। अधिक घूर्णी | [[रोटरडायनामिक्स]] में, कठोर रोटर [[ ROTATION | घूर्णन]] प्रणालियों का एक यांत्रिक मॉडल है। मनमाना कठोर रोटर 3-आयामी कठोर वस्तु है, जैसे शीर्ष। अंतरिक्ष में ऐसी वस्तु को उन्मुख करने के लिए तीन कोणों की आवश्यकता होती है, जिन्हें [[यूलर कोण]] कहा जाता है। एक विशेष कठोर रोटर ''रैखिक रोटर'' है, जिसका वर्णन करने के लिए केवल दो कोणों की आवश्यकता होती है, उदाहरण के लिए डायटोमिक [[अणु]]। अधिक घूर्णी आणविक रोटर्स का वर्गीकरण 3-आयामी है, जैसे कि पानी (असममित रोटर), [[अमोनिया]] (सममित रोटर), या [[मीथेन]] (गोलाकार रोटर)। | ||
== रैखिक रोटर == | == रैखिक रोटर == | ||
रैखिक कठोर रोटर मॉडल में द्रव्यमान के केंद्र से निश्चित दूरी पर स्थित दो बिंदु द्रव्यमान होते हैं। दो द्रव्यमानों और द्रव्यमानों के मूल्यों के बीच की निश्चित दूरी कठोर मॉडल की एकमात्र विशेषता है। हालाँकि, कई वास्तविक डायटोमिक्स के लिए यह मॉडल बहुत अधिक प्रतिबंधात्मक है क्योंकि दूरियाँ | रैखिक कठोर रोटर मॉडल में द्रव्यमान के केंद्र से निश्चित दूरी पर स्थित दो बिंदु द्रव्यमान होते हैं। दो द्रव्यमानों और द्रव्यमानों के मूल्यों के बीच की निश्चित दूरी कठोर मॉडल की एकमात्र विशेषता है। हालाँकि, कई वास्तविक डायटोमिक्स के लिए यह मॉडल बहुत अधिक प्रतिबंधात्मक है क्योंकि दूरियाँ सामान्यतः पूरी तरह से तय नहीं होती हैं। दूरी में छोटे बदलावों की भरपाई के लिए कठोर मॉडल में सुधार किए जा सकते हैं। ऐसे मामले में भी कठोर रोटर मॉडल प्रस्थान का उपयोगी बिंदु है (शून्य-क्रम मॉडल)। | ||
=== शास्त्रीय रैखिक कठोर रोटर === | === शास्त्रीय रैखिक कठोर रोटर === | ||
शास्त्रीय रैखिक रोटर में दो बिंदु द्रव्यमान होते हैं <math>m_1</math> और <math>m_2</math> ([[कम द्रव्यमान]] के साथ <math display="inline">\mu = \frac{m_1 m_2}{m_1 + m_2}</math>) दूरी पर <math>R</math> | शास्त्रीय रैखिक रोटर में दो बिंदु द्रव्यमान होते हैं <math>m_1</math> और <math>m_2</math> ([[कम द्रव्यमान]] के साथ <math display="inline">\mu = \frac{m_1 m_2}{m_1 + m_2}</math>) दूरी पर <math>R</math> दूसरे की। रोटर कठोर है अगर <math>R</math> समय से स्वतंत्र है। रैखिक कठोर रोटर की कीनेमेटीक्स सामान्यतः [[गोलाकार निर्देशांक]] के माध्यम से वर्णित किया जाता है, जो आर3 की समन्वय प्रणाली बनाते है। <sup>3</उप>। भौतिकी परिपाटी में निर्देशांक सह-अक्षांश (आंचल) कोण होते हैं <math>\theta \,</math>, अनुदैर्ध्य (दिगंश) कोण <math>\varphi\,</math> और दूरी <math>R</math>. कोण अंतरिक्ष में रोटर के उन्मुखीकरण को निर्दिष्ट करते हैं। गतिज ऊर्जा रैखिक कठोर रोटर <math>T</math> द्वारा दिया जाता है | ||
<math display="block"> | <math display="block"> | ||
2T = \mu R^2 \left[\dot{\theta}^2 + (\dot\varphi\,\sin\theta)^2\right] = | 2T = \mu R^2 \left[\dot{\theta}^2 + (\dot\varphi\,\sin\theta)^2\right] = | ||
Line 25: | Line 28: | ||
\begin{pmatrix}\dot{\theta} \\ \dot{\varphi}\end{pmatrix}, | \begin{pmatrix}\dot{\theta} \\ \dot{\varphi}\end{pmatrix}, | ||
</math> | </math> | ||
कहाँ <math>h_\theta = R\, </math> और <math>h_\varphi= R\sin\theta\,</math> वक्रीय निर्देशांक हैं | कहाँ <math>h_\theta = R\, </math> और <math>h_\varphi= R\sin\theta\,</math> वक्रीय निर्देशांक हैं लैम गुणांक से संबंध | स्केल (या लैमे) कारक। | ||
क्वांटम यांत्रिक अनुप्रयोगों के लिए स्केल कारक महत्वपूर्ण हैं क्योंकि वे | क्वांटम यांत्रिक अनुप्रयोगों के लिए स्केल कारक महत्वपूर्ण हैं क्योंकि वे घुमावदार निर्देशांक विभेदन में व्यक्त [[लाप्लासियन]] में प्रवेश करते हैं। हाथ में मामले में (निरंतर <math>R</math>) | ||
<math display="block"> | <math display="block"> | ||
\nabla^2 = \frac{1}{h_\theta h_\varphi}\left[ | \nabla^2 = \frac{1}{h_\theta h_\varphi}\left[ | ||
Line 46: | Line 49: | ||
=== क्वांटम यांत्रिक रैखिक कठोर रोटर === | === क्वांटम यांत्रिक रैखिक कठोर रोटर === | ||
[[दो परमाणुओंवाला]] अणु की घूर्णी ऊर्जा की भविष्यवाणी करने के लिए रैखिक कठोर रोटर मॉडल का उपयोग [[क्वांटम यांत्रिकी]] में किया जा सकता है। घूर्णी ऊर्जा प्रणाली के लिए जड़ता के क्षण पर निर्भर करती है, <math>I </math>. जन संदर्भ फ्रेम के केंद्र में, जड़ता का क्षण बराबर होता है: | [[दो परमाणुओंवाला|दो परमाणु ओंवाला]] अणु की घूर्णी ऊर्जा की भविष्यवाणी करने के लिए रैखिक कठोर रोटर मॉडल का उपयोग [[क्वांटम यांत्रिकी]] में किया जा सकता है। घूर्णी ऊर्जा प्रणाली के लिए जड़ता के क्षण पर निर्भर करती है, <math>I </math>. जन संदर्भ फ्रेम के केंद्र में, जड़ता का क्षण बराबर होता है: | ||
<math display="block"> I = \mu R^2</math> | <math display="block"> I = \mu R^2</math> | ||
कहाँ <math>\mu</math> अणु का घटा हुआ द्रव्यमान है और <math>R</math> दो परमाणुओं के बीच की दूरी है। | कहाँ <math>\mu</math> अणु का घटा हुआ द्रव्यमान है और <math>R</math> दो परमाणुओं के बीच की दूरी है। | ||
क्वांटम यांत्रिकी के अनुसार, श्रोडिंगर समीकरण को हल करके | क्वांटम यांत्रिकी के अनुसार, श्रोडिंगर समीकरण को हल करके प्रणाली के ऊर्जा स्तर को निर्धारित किया जा सकता है | ||
<math display="block">\hat H \Psi = E \Psi </math> | <math display="block">\hat H \Psi = E \Psi </math> | ||
कहाँ <math>\Psi</math> तरंग कार्य है और <math>\hat H</math> ऊर्जा ([[हैमिल्टनियन (क्वांटम यांत्रिकी)]]) ऑपरेटर है। क्षेत्र-मुक्त स्थान में कठोर रोटर के लिए, ऊर्जा | कहाँ <math>\Psi</math> तरंग कार्य है और <math>\hat H</math> ऊर्जा ([[हैमिल्टनियन (क्वांटम यांत्रिकी)]]) ऑपरेटर है। क्षेत्र-मुक्त स्थान में कठोर रोटर के लिए, ऊर्जा ऑपरेटर प्रणाली की [[गतिज ऊर्जा]] से मेल खाती है<ref name="Podolsky">{{cite journal| first=B. |last=Podolsky|journal=Phys. Rev.|title = कंज़र्वेटिव सिस्टम के लिए हैमिल्टनियन फ़ंक्शन का क्वांटम-यांत्रिक रूप से सही रूप|volume=32|issue=5|page=812|year=1928|bibcode = 1928PhRv...32..812P|doi = 10.1103/PhysRev.32.812 }}</ref> | ||
<math display="block">\hat H = - \frac{\hbar^2}{2\mu} \nabla^2</math> | <math display="block">\hat H = - \frac{\hbar^2}{2\mu} \nabla^2</math> | ||
कहाँ <math>\hbar</math> कम हो जाता है प्लैंक स्थिरांक और <math>\nabla^2</math> लाप्लासियन है। लाप्लासियन गोलाकार ध्रुवीय निर्देशांक के संदर्भ में ऊपर दिया गया है। इन निर्देशांकों के संदर्भ में लिखा गया ऊर्जा संचालक है: | '''कहाँ''' <math>\hbar</math> कम हो जाता है प्लैंक स्थिरांक और <math>\nabla^2</math> लाप्लासियन है। लाप्लासियन गोलाकार ध्रुवीय निर्देशांक के संदर्भ में ऊपर दिया गया है। इन निर्देशांकों के संदर्भ में लिखा गया ऊर्जा संचालक है: | ||
<math display="block">\hat H =- \frac{\hbar^2}{2I} \left [ {1 \over \sin \theta} {\partial \over \partial \theta} \left ( \sin \theta {\partial \over \partial \theta} \right) + {1 \over {\sin^2 \theta}} {\partial^2 \over \partial \varphi^2} \right]</math> | <math display="block">\hat H =- \frac{\hbar^2}{2I} \left [ {1 \over \sin \theta} {\partial \over \partial \theta} \left ( \sin \theta {\partial \over \partial \theta} \right) + {1 \over {\sin^2 \theta}} {\partial^2 \over \partial \varphi^2} \right]</math> |
Revision as of 20:04, 24 May 2023
रोटरडायनामिक्स में, कठोर रोटर घूर्णन प्रणालियों का एक यांत्रिक मॉडल है। मनमाना कठोर रोटर 3-आयामी कठोर वस्तु है, जैसे शीर्ष। अंतरिक्ष में ऐसी वस्तु को उन्मुख करने के लिए तीन कोणों की आवश्यकता होती है, जिन्हें यूलर कोण कहा जाता है। एक विशेष कठोर रोटर रैखिक रोटर है, जिसका वर्णन करने के लिए केवल दो कोणों की आवश्यकता होती है, उदाहरण के लिए डायटोमिक अणु। अधिक घूर्णी आणविक रोटर्स का वर्गीकरण 3-आयामी है, जैसे कि पानी (असममित रोटर), अमोनिया (सममित रोटर), या मीथेन (गोलाकार रोटर)।
रैखिक रोटर
रैखिक कठोर रोटर मॉडल में द्रव्यमान के केंद्र से निश्चित दूरी पर स्थित दो बिंदु द्रव्यमान होते हैं। दो द्रव्यमानों और द्रव्यमानों के मूल्यों के बीच की निश्चित दूरी कठोर मॉडल की एकमात्र विशेषता है। हालाँकि, कई वास्तविक डायटोमिक्स के लिए यह मॉडल बहुत अधिक प्रतिबंधात्मक है क्योंकि दूरियाँ सामान्यतः पूरी तरह से तय नहीं होती हैं। दूरी में छोटे बदलावों की भरपाई के लिए कठोर मॉडल में सुधार किए जा सकते हैं। ऐसे मामले में भी कठोर रोटर मॉडल प्रस्थान का उपयोगी बिंदु है (शून्य-क्रम मॉडल)।
शास्त्रीय रैखिक कठोर रोटर
शास्त्रीय रैखिक रोटर में दो बिंदु द्रव्यमान होते हैं और (कम द्रव्यमान के साथ ) दूरी पर दूसरे की। रोटर कठोर है अगर समय से स्वतंत्र है। रैखिक कठोर रोटर की कीनेमेटीक्स सामान्यतः गोलाकार निर्देशांक के माध्यम से वर्णित किया जाता है, जो आर3 की समन्वय प्रणाली बनाते है। 3</उप>। भौतिकी परिपाटी में निर्देशांक सह-अक्षांश (आंचल) कोण होते हैं , अनुदैर्ध्य (दिगंश) कोण और दूरी . कोण अंतरिक्ष में रोटर के उन्मुखीकरण को निर्दिष्ट करते हैं। गतिज ऊर्जा रैखिक कठोर रोटर द्वारा दिया जाता है
क्वांटम यांत्रिक अनुप्रयोगों के लिए स्केल कारक महत्वपूर्ण हैं क्योंकि वे घुमावदार निर्देशांक विभेदन में व्यक्त लाप्लासियन में प्रवेश करते हैं। हाथ में मामले में (निरंतर )
क्वांटम यांत्रिक रैखिक कठोर रोटर
दो परमाणु ओंवाला अणु की घूर्णी ऊर्जा की भविष्यवाणी करने के लिए रैखिक कठोर रोटर मॉडल का उपयोग क्वांटम यांत्रिकी में किया जा सकता है। घूर्णी ऊर्जा प्रणाली के लिए जड़ता के क्षण पर निर्भर करती है, . जन संदर्भ फ्रेम के केंद्र में, जड़ता का क्षण बराबर होता है:
क्वांटम यांत्रिकी के अनुसार, श्रोडिंगर समीकरण को हल करके प्रणाली के ऊर्जा स्तर को निर्धारित किया जा सकता है
है -गुना अध: पतन: निश्चित के साथ कार्य करता है और समान ऊर्जा हो।
घूर्णी स्थिरांक का परिचय , हम लिखते हैं,
एक विशिष्ट घूर्णी अवशोषण स्पेक्ट्रम में चोटियों की एक श्रृंखला होती है जो कोणीय गति क्वांटम संख्या के विभिन्न मूल्यों के साथ स्तरों के बीच संक्रमण के अनुरूप होती है () ऐसा है कि , चयन नियमों के कारण (नीचे देखें)। नतीजतन, घूर्णी स्पेक्ट्रोस्कोपी एक पूर्णांक गुणक के अनुरूप अंतर वाली ऊर्जाओं में दिखाई देती है .
चयन नियम
एक अणु का घूर्णी संक्रमण तब होता है जब अणु एक फोटॉन [मात्राबद्ध विद्युत चुम्बकीय (ईएम) क्षेत्र का एक कण] को अवशोषित करता है। फोटॉन की ऊर्जा (अर्थात्, एम क्षेत्र की तरंग दैर्ध्य) के आधार पर इस संक्रमण को कंपन और/या के साइडबैंड के रूप में देखा जा सकता है। इलेक्ट्रॉनिक संक्रमण। शुद्ध घूर्णी संक्रमण, जिसमें वाइब्रोनिक (= वाइब्रेशनल प्लस इलेक्ट्रॉनिक) वेव फंक्शन नहीं बदलता है, इलेक्ट्रोमैग्नेटिक स्पेक्ट्रम के माइक्रोवेव क्षेत्र में होता है।
आमतौर पर, घूर्णी संक्रमण केवल तभी देखे जा सकते हैं जब कोणीय गति क्वांटम संख्या में परिवर्तन होता है . यह चयन नियम श्रोडिंगर समीकरण | समय-निर्भर श्रोडिंगर समीकरण के प्रथम-क्रम गड़बड़ी सिद्धांत सन्निकटन से उत्पन्न होता है। इस उपचार के अनुसार, घूर्णी संक्रमण केवल तभी देखे जा सकते हैं जब डिपोल#क्वांटम यांत्रिक द्विध्रुवीय ऑपरेटर के एक या अधिक घटकों में एक गैर-लुप्त होने वाला संक्रमण क्षण होता है। अगर आने वाली विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र घटक की दिशा है, संक्रमण का क्षण है,
गैर-कठोर रैखिक रोटर
कठोर रोटर आमतौर पर डायटोमिक अणुओं की घूर्णन ऊर्जा का वर्णन करने के लिए प्रयोग किया जाता है लेकिन यह ऐसे अणुओं का पूरी तरह सटीक वर्णन नहीं है। ऐसा इसलिए है क्योंकि आणविक बंधन (और इसलिए अंतर-परमाणु दूरी ) पूरी तरह से स्थिर नहीं हैं; परमाणुओं के बीच का बंधन फैलता है क्योंकि अणु तेजी से घूमता है (घूर्णी क्वांटम संख्या के उच्च मूल्य ). इस प्रभाव को केन्द्रापसारक विरूपण स्थिरांक के रूप में जाना जाने वाला एक सुधार कारक पेश करके देखा जा सकता है (विभिन्न मात्राओं के शीर्ष पर बार इंगित करते हैं कि ये मात्राएँ सेमी में व्यक्त की गई हैं-1):
- बांड की मौलिक कंपन आवृत्ति है (सेमी में-1). यह आवृत्ति कम द्रव्यमान और अणु के बल स्थिरांक (बंध शक्ति) के अनुसार संबंधित है
गैर-कठोर रोटर डायटोमिक अणुओं के लिए स्वीकार्य रूप से सटीक मॉडल है लेकिन अभी भी कुछ हद तक अपूर्ण है। ऐसा इसलिए है, क्योंकि मॉडल रोटेशन के कारण बंधन के खिंचाव के लिए जिम्मेदार है, लेकिन यह बंधन में कंपन ऊर्जा (क्षमता में धार्मिकता) के कारण किसी भी बंधन के खिंचाव की उपेक्षा करता है।
मनमाने ढंग से आकार का कठोर रोटर
एक मनमाने ढंग से आकार का कठोर रोटर मनमाना आकार का एक कठोर पिंड होता है, जिसके द्रव्यमान का केंद्र क्षेत्र-मुक्त स्थान R में स्थिर (या एकसमान सीधीरेखीय गति में) होता है।3, ताकि इसकी ऊर्जा में केवल घूर्णी गतिज ऊर्जा हो (और संभवतः निरंतर अनुवाद ऊर्जा जिसे अनदेखा किया जा सके)। एक कठोर पिंड को (आंशिक रूप से) इसके जड़त्व क्षण के तीन आइजेनमानों द्वारा अभिलक्षित किया जा सकता है, जो वास्तविक गैर-ऋणात्मक मान हैं जिन्हें जड़त्व के प्रमुख क्षणों के रूप में जाना जाता है। माइक्रोवेव स्पेक्ट्रोस्कोपी में - घूर्णी संक्रमण के आधार पर स्पेक्ट्रोस्कोपी - आमतौर पर अणुओं को वर्गीकृत किया जाता है (कठोर रोटर के रूप में देखा जाता है):
- गोलाकार रोटर
- सममित रोटार
- चपटा सममित रोटार
- लम्बी सममित रोटार
- असममित रोटार
यह वर्गीकरण घूर्णी स्पेक्ट्रोस्कोपी # जड़त्व के प्रमुख क्षणों के आणविक रोटार के वर्गीकरण पर निर्भर करता है।
कठोर रोटर के निर्देशांक
भौतिकी और इंजीनियरिंग की विभिन्न शाखाएँ कठोर रोटर के कीनेमेटीक्स के विवरण के लिए अलग-अलग निर्देशांक का उपयोग करती हैं। आणविक भौतिकी में यूलर कोण लगभग अनन्य रूप से उपयोग किए जाते हैं। क्वांटम यांत्रिकी अनुप्रयोगों में यूलर कोणों का उपयोग करना लाभप्रद होता है, जो गोलाकार समन्वय प्रणाली के भौतिक सम्मेलन का एक सरल विस्तार है।
पहला कदम रोटर (एक बॉडी-फिक्स्ड फ्रेम) के लिए दाएं हाथ के ऑर्थोनॉर्मल फ्रेम (ऑर्थोगोनल एक्सिस की 3-आयामी प्रणाली) का लगाव है। इस फ्रेम को मनमाने ढंग से शरीर से जोड़ा जा सकता है, लेकिन अक्सर एक प्रमुख अक्ष फ्रेम का उपयोग करता है - जड़ता टेंसर के सामान्यीकृत ईजेनवेक्टर, जिसे हमेशा ऑर्थोनॉर्मल चुना जा सकता है, क्योंकि टेंसर सममित मैट्रिक्स है। जब रोटर में समरूपता-अक्ष होता है, तो यह आमतौर पर प्रमुख अक्षों में से एक के साथ मेल खाता है। यह चुनना सुविधाजनक है बॉडी-फिक्स्ड z-अक्ष के रूप में उच्चतम-क्रम समरूपता अक्ष।
एक स्पेस-फिक्स्ड फ्रेम (प्रयोगशाला कुल्हाड़ियों) के साथ बॉडी-फिक्स्ड फ्रेम को संरेखित करके शुरू होता है, ताकि बॉडी-फिक्स्ड x, y, और z एक्सिस स्पेस के साथ मेल खाते हों- नियत X, Y, और Z अक्ष। दूसरे, शरीर और उसके फ्रेम को एक सकारात्मक कोण पर सक्रिय रूप से घुमाया जाता है z-अक्ष के चारों ओर (दाएँ हाथ के नियम#घूर्णन|दाएँ हाथ के नियम द्वारा), जो गति करता है - तक -एक्सिस। तीसरा, एक सकारात्मक कोण पर शरीर और उसके फ्रेम को घुमाता है चारों ओर -एक्सिस। बॉडी-फिक्स्ड फ्रेम के z- अक्ष में इन दो घुमावों के बाद अनुदैर्ध्य कोण होता है (आमतौर पर नामित ) और अक्षांश कोण (आमतौर पर नामित ), दोनों स्पेस-फिक्स्ड फ्रेम के संबंध में। यदि रोटर अपने जेड-अक्ष के चारों ओर बेलनाकार सममित था, जैसे रैखिक कठोर रोटर, अंतरिक्ष में इसका अभिविन्यास स्पष्ट रूप से इस बिंदु पर निर्दिष्ट किया जाएगा।
यदि शरीर में सिलेंडर (अक्षीय) समरूपता का अभाव है, तो इसके z- अक्ष के चारों ओर एक अंतिम घुमाव (जिसमें ध्रुवीय निर्देशांक होते हैं और ) इसके अभिविन्यास को पूरी तरह से निर्दिष्ट करना आवश्यक है। परंपरागत रूप से अंतिम घूर्णन कोण कहा जाता है .
यहाँ वर्णित यूलर कोण#सम्मेलनों को इस रूप में जाना जाता है सम्मेलन; यह दिखाया जा सकता है (यूलर कोण # परिभाषा के समान) कि यह इसके बराबर है सम्मेलन जिसमें घुमावों का क्रम उलटा होता है।
लगातार तीन घुमावों का कुल मैट्रिक्स उत्पाद है
टाइम टी और प्रारंभिक निर्देशांक के कार्य के रूप में यूलर कोणों का ज्ञान कठोर रोटर के कीनेमेटीक्स निर्धारित करें।
शास्त्रीय गतिज ऊर्जा
The following text forms a generalization of the well-known special case of the rotational energy of an object that rotates around one axis. यहाँ से यह मान लिया जाएगा कि बॉडी-फिक्स्ड फ्रेम एक प्रमुख अक्ष फ्रेम है; यह जड़त्व टेंसर के तात्क्षणिक आघूर्ण को विकर्णित कर देता है (स्पेस-फिक्स्ड फ्रेम के संबंध में व्यक्त), यानी,
कठोर रोटर की शास्त्रीय गतिज ऊर्जा T को विभिन्न तरीकों से व्यक्त किया जा सकता है:
- कोणीय वेग के कार्य के रूप में
- Lagrangian रूप में
- कोणीय गति के कार्य के रूप में
- हैमिल्टनियन रूप में।
चूंकि इनमें से प्रत्येक रूप का अपना उपयोग है और पाठ्यपुस्तकों में पाया जा सकता है, इसलिए हम उन सभी को प्रस्तुत करेंगे।
कोणीय वेग रूप
कोणीय वेग टी के एक समारोह के रूप में पढ़ता है,
लैग्रेंज रूप
की अभिव्यक्ति का बैकप्रतिस्थापन टी में देता है Lagrangian यांत्रिकी में गतिज ऊर्जा (यूलर कोणों के समय व्युत्पन्न के एक समारोह के रूप में)। मैट्रिक्स-वेक्टर नोटेशन में,
कोणीय संवेग रूप
शास्त्रीय यांत्रिकी में अक्सर गतिज ऊर्जा को कोणीय संवेग#कोणीय संवेग के फलन के रूप में लिखा जाता है कठोर रोटर की। बॉडी-फिक्स्ड फ्रेम के संबंध में इसमें घटक होते हैं , और कोणीय वेग से संबंधित दिखाया जा सकता है,
कोणीय गति के संदर्भ में गतिज ऊर्जा व्यक्त की जाती है
हैमिल्टन फॉर्म
गतिज ऊर्जा के हैमिल्टनियन यांत्रिकी को सामान्यीकृत संवेग के रूप में लिखा गया है
ऊपर दिए गए शास्त्रीय हैमिल्टनियन को निम्नलिखित अभिव्यक्ति में फिर से लिखा जा सकता है, जो कि कठोर रोटार के शास्त्रीय सांख्यिकीय यांत्रिकी में उत्पन्न होने वाले चरण में आवश्यक है,
क्वांटम यांत्रिक कठोर रोटर
जैसा कि सामान्य परिमाणीकरण ऑपरेटरों द्वारा सामान्यीकृत संवेग के प्रतिस्थापन द्वारा किया जाता है जो इसके कैनोनिक रूप से संयुग्मित निर्देशांक चर (स्थिति) के संबंध में पहला डेरिवेटिव देते हैं। इस प्रकार,
शास्त्रीय कोणीय संवेग के अनुरूप संचालकों को प्राप्त करने के लिए परिमाणीकरण नियम पर्याप्त है। दो प्रकार के होते हैं: स्थान-स्थिर और शरीर-स्थिर कोणीय गति ऑपरेटरों। दोनों वेक्टर ऑपरेटर हैं, यानी, दोनों में तीन घटक हैं जो क्रमशः स्पेस-फिक्स्ड और बॉडी-फिक्स्ड फ्रेम के रोटेशन पर आपस में वेक्टर घटकों के रूप में बदलते हैं। कठोर रोटर कोणीय गति ऑपरेटरों का स्पष्ट रूप विग्नर डी-मैट्रिक्स दिया गया है (लेकिन सावधान रहें, उन्हें इसके साथ गुणा किया जाना चाहिए ). बॉडी-फिक्स्ड एंगुलर मोमेंटम ऑपरेटर्स को इस प्रकार लिखा जाता है . वे विग्नर डी-मैट्रिक्स # विग्नर डी-मैट्रिक्स के गुणों को संतुष्ट करते हैं।
शास्त्रीय हैमिल्टनियन से गतिज ऊर्जा संचालिका प्राप्त करने के लिए परिमाणीकरण नियम पर्याप्त नहीं है। शास्त्रीय रूप से साथ आवागमन करता है और और इन कार्यों के व्युत्क्रम, शास्त्रीय हैमिल्टनियन में इन त्रिकोणमितीय कार्यों की स्थिति मनमाना है। बाद परिमाणीकरण में परिवर्तन अब पकड़ में नहीं आता है और हैमिल्टनियन (ऊर्जा ऑपरेटर) में ऑपरेटरों और कार्यों का क्रम चिंता का विषय बन जाता है। पोडॉल्स्की[1]1928 में प्रस्तावित किया गया कि लाप्लास-बेल्ट्रामी संचालिका#लाप्लास-बेल्ट्रामी संचालिका|लाप्लास-बेल्ट्रामी संचालिका (समय ) क्वांटम मैकेनिकल काइनेटिक एनर्जी ऑपरेटर के लिए उपयुक्त रूप है। इस संचालिका का सामान्य रूप है (संकलन परिपाटी: दोहराए गए सूचकांकों पर योग—इस मामले में तीन यूलर कोणों पर ):
आजकल इस प्रकार आगे बढ़ना आम बात है। यह दिखाया जा सकता है बॉडी-फिक्स्ड एंगुलर मोमेंटम ऑपरेटर्स में व्यक्त किया जा सकता है (इस प्रमाण में त्रिकोणमितीय कार्यों के साथ डिफरेंशियल ऑपरेटर्स को सावधानी से कम्यूट करना चाहिए)। परिणाम का वही रूप है जो शरीर-स्थिर निर्देशांक में व्यक्त शास्त्रीय सूत्र के रूप में है,
सममित शीर्ष (= सममित रोटर) की विशेषता है . यह एक प्रोलेट (सिगार के आकार का) शीर्ष है यदि . बाद वाले मामले में हम हैमिल्टनियन को इस रूप में लिखते हैं
इस तरह
असममित शीर्ष समस्या () विश्लेषणात्मक रूप से घुलनशील नहीं है, लेकिन इसे संख्यात्मक रूप से हल किया जा सकता है।[4]
आणविक घुमावों का प्रत्यक्ष प्रायोगिक अवलोकन
लंबे समय तक, प्रयोगात्मक रूप से आणविक घुमावों को प्रत्यक्ष रूप से नहीं देखा जा सकता था। परमाणु संकल्प के साथ केवल मापन तकनीकों ने एकल अणु के घूर्णन का पता लगाना संभव बना दिया।[5][6] कम तापमान पर, अणुओं (या उसके भाग) के घूर्णन को स्थिर किया जा सकता स्कैनिंग टनलिंग माइक्रोस्कोप को स्कैन करके इसे प्रत्यक्ष रूप से देखा जा सकता है यानी घूर्णी एन्ट्रापी द्वारा उच्च तापमान पर स्थिरीकरण की व्याख्या की जा सकती है।[6]एकल अणु स्तर पर घूर्णी उत्तेजना का प्रत्यक्ष अवलोकन हाल ही में स्कैनिंग टनलिंग माइक्रोस्कोप के साथ इनलेस्टिक इलेक्ट्रॉन टनलिंग स्पेक्ट्रोस्कोपी का उपयोग करके प्राप्त किया गया था। आणविक हाइड्रोजन और उसके समस्थानिकों की घूर्णी उत्तेजना का पता लगाया गया।[7][8]
यह भी देखें
- बैलेंसिंग मशीन
- जाइरोस्कोप
- अवरक्त स्पेक्ट्रोस्कोपी
- सख्त शरीर
- घूर्णी स्पेक्ट्रोस्कोपी
- स्पेक्ट्रोस्कोपी
- कंपन स्पेक्ट्रोस्कोपी
- क्वांटम रोटर मॉडल
संदर्भ
- ↑ 1.0 1.1 Podolsky, B. (1928). "कंज़र्वेटिव सिस्टम के लिए हैमिल्टनियन फ़ंक्शन का क्वांटम-यांत्रिक रूप से सही रूप". Phys. Rev. 32 (5): 812. Bibcode:1928PhRv...32..812P. doi:10.1103/PhysRev.32.812.
- ↑ Goldstein, Herbert; Poole, Charles P.; Safko, John L. (2002). शास्त्रीय यांत्रिकी (3rd ed.). San Francisco: Addison Wesley. Chapter 4.9. ISBN 0-201-65702-3. OCLC 47056311.
- ↑ 3.0 3.1 R. de L. Kronig and I. I. Rabi (1927). "लहरदार यांत्रिकी में सममित शीर्ष". Phys. Rev. 29 (2): 262–269. Bibcode:1927PhRv...29..262K. doi:10.1103/PhysRev.29.262. S2CID 4000903.
- ↑ Bunker, Philip R.; Jensen, Per (1998). आणविक समरूपता और स्पेक्ट्रोस्कोपी (2nd ed.). Ottawa: NRC Research Press. p. 240. ISBN 9780660196282. OCLC 68402289.
- ↑ J. K. Gimzewski; C. Joachim; R. R. Schlittler; V. Langlais; H. Tang; I. Johannsen (1998), "Rotation of a Single Molecule Within a Supramolecular Bearing", Science (in German), vol. 281, no. 5376, pp. 531–533, Bibcode:1998Sci...281..531G, doi:10.1126/science.281.5376.531, PMID 9677189
{{citation}}
: CS1 maint: unrecognized language (link) - ↑ 6.0 6.1 Thomas Waldmann; Jens Klein; Harry E. Hoster; R. Jürgen Behm (2012), "Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature STM Study", ChemPhysChem (in Deutsch), vol. 14, no. 1, pp. 162–169, doi:10.1002/cphc.201200531, PMID 23047526, S2CID 36848079
- ↑ Li, Shaowei; Yu, Arthur; Toledo, Freddy; Han, Zhumin; Wang, Hui; He, H. Y.; Wu, Ruqian; Ho, W. (2013-10-02). "ट्यून करने योग्य आयाम के एक नैनोकैविटी के भीतर फंसे हाइड्रोजन अणु के घूर्णी और कंपन संबंधी उत्तेजना". Physical Review Letters (in English). 111 (14): 146102. doi:10.1103/PhysRevLett.111.146102. ISSN 0031-9007.
- ↑ Natterer, Fabian Donat; Patthey, François; Brune, Harald (2013-10-24). "स्कैनिंग टनलिंग माइक्रोस्कोप के साथ न्यूक्लियर स्पिन स्टेट्स का भेद". Physical Review Letters (in English). 111 (17): 175303. doi:10.1103/PhysRevLett.111.175303. ISSN 0031-9007.
सामान्य संदर्भ
- D. M. Dennison (1931). "बहुपरमाणुक अणुओं का इन्फ्रारेड स्पेक्ट्रा भाग I". Rev. Mod. Phys. 3 (2): 280–345. Bibcode:1931RvMP....3..280D. doi:10.1103/RevModPhys.3.280. (विशेषकर खंड 2: बहुपरमाणुक अणुओं का घूर्णन)।
- Van Vleck, J. H. (1951). "अणु में कोणीय संवेग वैक्टर का युग्मन". Rev. Mod. Phys. 23 (3): 213–227. Bibcode:1951RvMP...23..213V. doi:10.1103/RevModPhys.23.213.
- McQuarrie, Donald A (1983). क्वांटम रसायन. Mill Valley, Calif.: University Science Books. ISBN 0-935702-13-X.
- Goldstein, H.; Poole, C. P.; Safko, J. L. (2001). शास्त्रीय यांत्रिकी (Third ed.). San Francisco: Addison Wesley Publishing Company. ISBN 0-201-65702-3. (अध्याय 4 और 5)
- Arnold, V. I. (1989). शास्त्रीय यांत्रिकी के गणितीय तरीके. Springer-Verlag. ISBN 0-387-96890-3. (अध्याय 6)।
- Kroto, H. W. (1992). आणविक रोटेशन स्पेक्ट्रा. New York: Dover.
- Gordy, W.; Cook, R. L. (1984). माइक्रोवेव आणविक स्पेक्ट्रा (Third ed.). New York: Wiley. ISBN 0-471-08681-9.
- Papoušek, D.; Aliev, M. T. (1982). आणविक कंपन-घूर्णी स्पेक्ट्रा. Amsterdam: Elsevier. ISBN 0-444-99737-7.
श्रेणी:आण्विक भौतिकी श्रेणी:कठोर निकाय श्रेणी:कठोर निकाय यांत्रिकी श्रेणी:रोटेशन श्रेणी:क्वांटम मॉडल