टी-नॉर्म फ़ज़ी लॉजिक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 43: Line 43:
== तार्किक भाषा ==
== तार्किक भाषा ==


'''प्रस्तावपरक टी-नॉर्म फ़ज़ी तर्क की तार्किक शब्दा'''वली में मानक रूप से निम्नलिखित संयोजक सम्मिलित हैं:
प्रस्‍तावित टी-नॉर्म फ़ज़ी तर्क की तार्किक शब्दावली में मानक रूप से निम्नलिखित संयोजक सम्मिलित हैं:
* निहितार्थ <math>\rightarrow</math> (बाइनरी)टी-नॉर्म-आधारित फ़ज़ी तर्क के अलावा अन्य के संदर्भ में, टी-नॉर्म-आधारित निहितार्थ को कभी-कभी अवशिष्ट निहितार्थ या आर-निहितार्थ कहा जाता है, क्योंकि इसका मानक शब्दार्थ टी-नॉर्म का अवशेष है जो प्रबल संयोजन का एहसास करता है।
* '''निहितार्थ''' <math>\rightarrow</math> (बाइनरी), टी-नॉर्म-आधारित फ़ज़ी तर्क के अतिरिक्त अन्य के संदर्भ में टी-नॉर्म-आधारित निहितार्थ को कभी-कभी अवशिष्ट निहितार्थ या R निहितार्थ कहा जाता है, क्योंकि इसका मानक शब्दार्थ टी-नॉर्म का अवशेष है, जो प्रबल संयोजन का अनुभव करता है।
* प्रबल संयोजन <math>\And</math> (बाइनरी)अवसंरचनात्मक तर्क के संदर्भ में, साइन <math>\otimes</math> और नाम समूह, गहन, गुणक, या समानांतर संयोजन अक्सर प्रबल संयोजन के लिए उपयोग किए जाते हैं।
* '''प्रबल संयोजन''' <math>\And</math> (बाइनरी), अवसंरचनात्मक तर्क के संदर्भ में चिन्ह <math>\otimes</math> और नाम समूह, निर्माण, गुणक या समानांतर संयोजन प्रायः प्रबल संयोजन के लिए उपयोग किए जाते हैं।
*दुर्बल संयोजन <math>\wedge</math> (बाइनरी), जिसे अवशिष्ट संयोजन भी कहा जाता है (जैसा कि यह हमेशा बीजगणितीय शब्दार्थ में मिलने के अवशिष्ट संचालन द्वारा महसूस किया जाता है)। अवसंरचनात्मक तर्क के संदर्भ में, एडिटिव, एक्सटेंशनल या तुलनात्मक संयोजन नाम कभी-कभी अवशिष्ट संयोजन के लिए उपयोग किए जाते हैं। तर्क बीएल और इसके एक्सटेंशन में (हालांकि सामान्य रूप से टी-नॉर्म तर्क में नहीं), निहितार्थ और प्रबल संयोजन के संदर्भ में दुर्बल संयोजन निश्चित है:<math display="block">A\wedge B \equiv A \mathbin{\And} (A \rightarrow B).</math> दो संयुग्मन संयोजकों की उपस्थिति संकुचन-मुक्त अवसंरचनात्मक तर्क की एक सामान्य विशेषता है।
*'''दुर्बल संयोजन''' <math>\wedge</math> (बाइनरी), जिसे अवशिष्ट संयोजन भी कहा जाता है क्योंकि इसको सदैव बीजगणितीय शब्दार्थ में सम्मिलित होने के अवशिष्ट संचालन द्वारा प्राप्त किया जाता है। अवसंरचनात्मक तर्क के संदर्भ में योगात्मक विस्तार या तुलनात्मक संयोजन के नाम कभी-कभी अवशिष्ट संयोजन के लिए उपयोग किए जाते हैं। तर्क बीएल और इसके विस्तार में (हालांकि सामान्य रूप से टी-नॉर्म तर्क में नहीं) निहितार्थ और प्रबल संयोजन के संदर्भ में दुर्बल संयोजन निश्चित होते है:<math display="block">A\wedge B \equiv A \mathbin{\And} (A \rightarrow B).</math> दो संयुग्मन संयोजकों की उपस्थिति संकुचन-मुक्त अवसंरचनात्मक तर्क की एक सामान्य विशेषता है।
* बॉटम <math>\bot</math> <math>0</math> या <math>\overline{0}</math> आम वैकल्पिक संकेत हैं और ज़ीरो प्रोपोज़िशनल कांस्टेंट के लिए एक कॉमन वैकल्पिक नाम है (जैसा कि अवसंरचनात्मक तर्क के कॉन्स्टेंट नीचे और शून्य टी-नॉर्म फ़ज़ी में मेल खाते हैं तर्क)। विनती <math>\bot</math> असत्यता या बेतुकापन का प्रतिनिधित्व करता है और शास्त्रीय सत्य मूल्य असत्य से मेल खाता है।
* '''निम्नतम''' <math>\bot</math> , <math>0</math> या <math>\overline{0}</math> सामान्य वैकल्पिक संकेत हैं और <math>0</math> प्रस्‍तावित नियतांक के लिए सामान्य वैकल्पिक नाम है। जैसे कि अवसंरचनात्मक तर्क के नियतांक नीचे और शून्य टी-नॉर्म फ़ज़ी तर्क के अनुरूप हैं। प्रस्‍तावित <math>\bot</math> असत्यता या निरर्थक का प्रतिनिधित्व करता है और पारम्परिक सत्य मान असत्य के अनुरूप होता है।
* 'निषेध' <math>\neg</math> ([[ एकात्मक ऑपरेशन ]]), जिसे कभी-कभी अवशिष्ट निषेध कहा जाता है यदि अन्य नकारात्मक संयोजकों पर विचार किया जाता है, जैसा कि रिडक्टियो एड एब्सर्डम द्वारा अवशिष्ट निहितार्थ से परिभाषित किया गया है: <math display="block">\neg A \equiv A \rightarrow \bot</math>
* '''प्रतिवाद''' <math>\neg</math> ([[ एकात्मक ऑपरेशन |एकात्मक संक्रियक]]), जिसे कभी-कभी अवशिष्ट प्रतिवाद कहा जाता है यदि अन्य ऋणात्मक संयोजकों पर विचार किया जाता है, जैसे कि लघुकृत और निरर्थक मान द्वारा अवशिष्ट निहितार्थ से परिभाषित किया गया है: <math display="block">\neg A \equiv A \rightarrow \bot</math>
* समानता <math>\leftrightarrow</math> (बाइनरी), के रूप में परिभाषित किया गया <math display="block">A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)</math> टी-नॉर्म तर्क में, परिभाषा इसके समकक्ष है <math>(A \rightarrow B) \mathbin{\And} (B \rightarrow A).</math>
* '''समानता''' <math>\leftrightarrow</math> (बाइनरी), के रूप में परिभाषित किया गया है:<math display="block">A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)</math> टी-नॉर्म तर्क में परिभाषा <math>(A \rightarrow B) \mathbin{\And} (B \rightarrow A)</math> के बराबर है।
* (दुर्बल) संयोजन <math>\vee</math> (बाइनरी), जिसे लैटिस डिसजंक्शन भी कहा जाता है (क्योंकि यह हमेशा बीजगणितीय शब्दार्थ में शामिल होने के अवशिष्ट संचालन द्वारा महसूस किया जाता है)। टी-नॉर्म तर्क में यह अन्य संयोजकों के संदर्भ में निश्चित है:<math display="block">A \vee B \equiv ((A \rightarrow B) \rightarrow B) \wedge ((B \rightarrow A) \rightarrow A)</math>
* '''दुर्बल संयोजन''' <math>\vee</math> (बाइनरी), जिसे अवशिष्ट संयोजन भी कहा जाता है क्योंकि इसको सदैव बीजगणितीय शब्दार्थ में सम्मिलित होने के अवशिष्ट संचालन द्वारा प्राप्त किया जाता है और टी-नॉर्म तर्क में यह अन्य संयोजकों के संदर्भ में निश्चित होता है:<math display="block">A \vee B \equiv ((A \rightarrow B) \rightarrow B) \wedge ((B \rightarrow A) \rightarrow A)</math>
* '''शीर्ष''' <math>\top</math> (शून्य), जिसे एक भी कहा जाता है और <math>1</math> या <math>\overline{1}</math> द्वारा निरूपित किया जाता है। अवसंरचनात्मक तर्क के स्थिरांक शीर्ष और शून्य के रूप में टी-नॉर्म फ़ज़ी तर्क में मेल खाते हैं)। प्रस्ताव <math>\top</math> शास्त्रीय सत्य मान सत्य से मेल खाता है और टी-नॉर्म तर्क में परिभाषित किया जा सकता है<math display="block">\top \equiv \bot \rightarrow \bot.</math>
* '''शीर्ष''' <math>\top</math> (शून्य), जिसे 1 भी कहा जाता है। प्रायः इसको <math>1</math> या <math>\overline{1}</math> द्वारा निरूपित किया जाता है। अवसंरचनात्मक तर्क के स्थिरांक शीर्ष और शून्य के रूप में टी-नॉर्म फ़ज़ी तर्क एक दूसरे के अनुरूप होते हैं। प्रस्तावित मान <math>\top</math> पारम्परिक सत्य मान सत्य के समान है जिसको टी-नॉर्म तर्क में परिभाषित किया जा सकता है:<math display="block">\top \equiv \bot \rightarrow \bot.</math>
कुछ प्रस्तावात्मक टी-नॉर्म तर्क उपरोक्त भाषा में और प्रस्तावात्मक संयोजक जोड़ते हैं, जो अक्सर निम्नलिखित होते हैं:
कुछ प्रस्तावात्मक टी-नॉर्म तर्क उपरोक्त भाषा में और प्रस्तावात्मक संयोजक :को जोड़ते हैं जो प्रायः निम्नलिखित होते हैं:
* '''डेल्टा संयोजक''' <math>\triangle</math> एक एकल संयोजक है जो किसी प्रस्ताव के शास्त्रीय सत्य पर जोर देता है, क्योंकि <math>\triangle A</math> के सूत्र शास्त्रीय तर्क के रूप में व्यवहार करते हैं। इसे बाज़ डेल्टा भी कहा जाता है, क्योंकि इसका पहली बार मथियास बाज़ द्वारा गोडेल-डमेट तर्क के लिए उपयोग किया गया था।<ref name="Baa96">Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), ''Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics'', Springer, ''Lecture Notes in Logic'' '''6''': 23–33</ref> डेल्टा संयोजी द्वारा एक टी-नॉर्म तर्क <math>L</math> का विस्तार आमतौर पर <math>L_{\triangle}.</math> द्वारा दर्शाया जाता है।
* '''डेल्टा संयोजक''' <math>\triangle</math>, यह एक एकल संयोजक है जो किसी प्रस्ताव के पारम्परिक सत्य पर महत्व देता है, क्योंकि <math>\triangle A</math> के सूत्र पारम्परिक तर्क के रूप में व्यवहार करते हैं। इसे बाज़ डेल्टा भी कहा जाता है, क्योंकि इसका पहली बार मथियास बाज़ द्वारा गोडेल-डमेट तर्क के लिए उपयोग किया गया था।<ref name="Baa96">Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), ''Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics'', Springer, ''Lecture Notes in Logic'' '''6''': 23–33</ref> डेल्टा संयोजन द्वारा टी-नॉर्म तर्क <math>L</math> का विस्तार सामान्यतः <math>L_{\triangle}</math> द्वारा दर्शाया जाता है।
* सत्य स्थिरांक मानक वास्तविक-बहुमान शब्दार्थ में 0 और 1 के बीच विशेष सत्य मूल्यों का प्रतिनिधित्व करने वाले अशक्त संयोजक हैं। वास्तविक संख्या <math>r</math> के लिए, संबंधित सत्य स्थिरांक को आमतौर पर <math>\overline{r}.</math> द्वारा दर्शाया जाता है। अधिकतर, सभी परिमेय संख्याओं के लिए सत्य स्थिरांक जोड़े जाते हैं। भाषा में सभी सत्य स्थिरांकों की प्रणाली बहीखाता पद्धति के स्वयंसिद्धों को संतुष्ट करने वाली मानी जाती है:<ref name="Haj98">Hájek (1998)</ref><math display="block">\overline{r \mathbin{\And} s} \leftrightarrow (\overline{r} \mathbin{\And} \overline{s}),</math> <math display="block">\overline{r \rightarrow s} \leftrightarrow (\overline{r} \mathbin{\rightarrow} \overline{s}),</math> आदि सभी प्रस्तावात्मक संयोजकों और भाषा में परिभाषित सभी सत्य स्थिरांकों के लिए।
* '''सत्य स्थिरांक''' मानक वास्तविक बहुमान शब्दार्थ में 0 और 1 के बीच विशेष सत्य मानों का प्रतिनिधित्व करने वाले अवशिष्ट संयोजक हैं। वास्तविक संख्या <math>r</math> के लिए संबंधित सत्य स्थिरांक को सामान्यतः <math>\overline{r}.</math> द्वारा दर्शाया जाता है। अधिकांश सभी परिमेय संख्याओं के लिए सत्य स्थिरांक जोड़े जाते हैं। भाषा में सभी सत्य स्थिरांकों की प्रणाली बहीखाता पद्धति के स्वयंसिद्धों को संतुष्ट करने वाली पद्धति मानी जाती है:<ref name="Haj98">Hájek (1998)</ref><math display="block">\overline{r \mathbin{\And} s} \leftrightarrow (\overline{r} \mathbin{\And} \overline{s}),</math> <math display="block">\overline{r \rightarrow s} \leftrightarrow (\overline{r} \mathbin{\rightarrow} \overline{s}),</math>इसके अतिरिक्त भाषा में परिभाषित किए जा सकने वाले सभी प्रस्तावात्मक संयोजकों और सभी सत्य स्थिरांकों के लिए प्रयुक्त किया जाता है।
* '''समावेशी प्रतिवाद''' <math>\sim</math> (यूनरी) को t-मानदंड तर्कों में एक अतिरिक्त निषेध के रूप में जोड़ा जा सकता है जिसका अवशिष्ट निषेध स्वयं समावेशी नहीं है, अर्थात यदि यह दोहरे निषेध के नियम का पालन नहीं करता है <math>\neg\neg A \leftrightarrow A</math> एक टी-मानक तर्क समावेशी निषेध के साथ विस्तारित <math>L</math> को आम तौर पर <math>L_{\sim}</math> द्वारा निरूपित किया जाता है और इसे अंतर्वलन के साथ <math>L</math> कहा जाता है।
* '''समावेशी प्रतिवाद''' <math>\sim</math> (यूनरी) को टी-नॉर्म तर्कों में एक अतिरिक्त प्रतिवाद के रूप में जोड़ा जा सकता है जिसका अवशिष्ट प्रतिवाद स्वयं समावेशी नहीं होता है। अर्थात यदि यह दोहरे प्रतिवाद के नियम <math>\neg\neg A \leftrightarrow A</math> का अनुसरण नहीं करता है। एक टी-नॉर्म तर्क समावेशी प्रतिवाद के साथ विस्तारित <math>L</math> को सामान्यतः <math>L_{\sim}</math> द्वारा निरूपित किया जाता है और इसे समावेश प्रतिवाद के साथ <math>L</math> कहा जाता है।
* '''प्रबल संयोजन''' <math>\oplus</math> (बाइनरी)- अवसंरचनात्मक तर्क के संदर्भ में इसे ग्रुप, इंटेन्शनल, मल्टीप्लिकेटिव या पैरेलल डिसजंक्शन भी कहा जाता है। भले ही संकुचन-मुक्त अवसंरचनात्मक तर्क में मानक, टी-नॉर्म फ़ज़ी तर्क में आमतौर पर इसका उपयोग केवल समावेशी निषेध की उपस्थिति में किया जाता है, जो इसे प्रबल संयोजन से डी मॉर्गन के कानून द्वारा निश्चित (और इतना स्वयंसिद्ध) बनाता है:<math display="block">A \oplus B \equiv \mathrm{\sim}(\mathrm{\sim}A \mathbin{\And} \mathrm{\sim}B).</math>
* '''प्रबल संयोजन''' <math>\oplus</math> (बाइनरी), अवसंरचनात्मक तर्क के संदर्भ में इसे समूह गुणार्थ, गुणात्मक या समानांतर विच्छेदन भी कहा जाता है। यद्यपि संकुचन-मुक्त अवसंरचनात्मक तर्क में मानक टी-नॉर्म फ़ज़ी तर्क में सामान्यतः इसका उपयोग केवल समावेशी प्रतिवाद की उपस्थिति में किया जाता है, जो इसे प्रबल संयोजन से डी मॉर्गन के नियम द्वारा निश्चित और स्वयंसिद्ध बनाता है:<math display="block">A \oplus B \equiv \mathrm{\sim}(\mathrm{\sim}A \mathbin{\And} \mathrm{\sim}B).</math>
* अतिरिक्त टी-नॉर्म संयोजन और अवशिष्ट प्रभाव। कुछ स्पष्ट रूप से प्रबल टी-नॉर्म तर्क, उदाहरण के लिए तर्क ŁΠ, उनकी भाषा में एक से अधिक प्रबल संयोजन या अवशिष्ट निहितार्थ हैं। मानक वास्तविक-बहुमान शब्दार्थ में, ऐसे सभी प्रबल संयोजनों को अलग-अलग टी-नॉर्म और उनके अवशिष्टों द्वारा अवशिष्ट निहितार्थों द्वारा महसूस किया जाता है।
* '''अतिरिक्त टी-नॉर्म संयोजन और अवशिष्ट प्रभाव''', कुछ स्पष्ट रूप से प्रबल टी-नॉर्म तर्क, उदाहरण के लिए तर्क (ŁΠ), उनकी भाषा में एक से अधिक प्रबल संयोजन या अवशिष्ट निहितार्थ हैं। मानक वास्तविक बहुमान शब्दार्थ में ऐसे सभी प्रबल संयोजनों को अलग-अलग टी-नॉर्म और उनके अवशिष्ट निहितार्थों द्वारा प्राप्त किया जाता है।


प्रस्तावपरक टी-नॉर्म तर्कशास्त्र के सुनिर्मित सूत्रों को प्रस्तावात्मक चरों (सामान्यत: गणनीय रूप से अनेक) से उपरोक्त तार्किक संयोजकों द्वारा परिभाषित किया जाता है, जैसा कि सामान्यत: प्रस्तावात्मक तर्कों में होता है। कोष्ठकों को बचाने के लिए, वरीयता के निम्नलिखित क्रम का उपयोग करना आम है:
प्रस्तावित टी-नॉर्म तर्कशास्त्र के निर्मित सूत्रों को प्रस्तावात्मक चरों (सामान्यत: गणनीय रूप से अनेक) से उपरोक्त तार्किक संयोजकों द्वारा परिभाषित किया जाता है, जैसे कि सामान्यत: प्रस्तावात्मक तर्कों में होता है। पदानुक्रम को बचाने के लिए वरीयता के निम्नलिखित क्रम का उपयोग करना सामान्य होता है:
* यूनरी संयोजक (सबसे बारीकी से बांधें)
* एकल संयोजक (निकटता से संबद्ध)
* निहितार्थ और तुल्यता के अलावा अन्य बाइनरी संयोजक
* निहितार्थ और तुल्यता के अतिरिक्त अन्य बाइनरी संयोजक
* निहितार्थ और तुल्यता (सबसे शिथिल बाँधें)
* निहितार्थ और तुल्यता (अस्पष्टता से संबद्ध)


टी-नॉर्म तर्क के प्रथम-क्रम के संस्करण उपरोक्त प्रस्तावपरक संयोजकों और निम्नलिखित परिमाणकों के साथ प्रथम-क्रम तर्क की सामान्य तार्किक भाषा को नियोजित करते हैं:
टी-नॉर्म तर्क के प्रथम-क्रम के संस्करण उपरोक्त प्रस्तावित संयोजकों और निम्नलिखित परिमाणकों के साथ प्रथम-क्रम तर्क की सामान्य तार्किक भाषा को नियोजित करते हैं:
* सामान्य परिमाणक <math>\forall</math>
* <math>\forall</math> - सामान्य परिमाणक
* अस्तित्वगत परिमाणक <math>\exists</math>
* <math>\exists</math> - अस्तित्वगत परिमाणक
एक प्रस्तावित टी-नॉर्म तर्क <math>L</math> का प्रथम-क्रम संस्करण आमतौर पर <math>L\forall.</math> द्वारा दर्शाया जाता है।
एक प्रस्तावित टी-नॉर्म तर्क <math>L</math> का प्रथम-क्रम संस्करण सामान्यतः <math>L\forall</math> द्वारा दर्शाया जाता है।
== शब्दार्थ ==
== शब्दार्थ ==



Revision as of 12:46, 30 May 2023

टी-नॉर्म फजी तर्क गैर-पारम्परिक तर्क का समूह है जिसे अनौपचारिक रूप से एक शब्दार्थ द्वारा सीमांकित किया जाता है। जिसको वास्तविक संख्या इकाई अंतराल [0, 1] के सत्य मानों और फलनों की प्रणाली के लिए टी-नॉर्म तर्क कहा जाता है जो तार्किक संयोजन की अनुमेय व्याख्याओं के लिए प्रयुक्त होता है। वे मुख्य रूप से अनुप्रयुक्त फ़ज़ी तर्क और फजी समुच्चय सिद्धान्त में अनुमानित तर्क के सैद्धांतिक आधार के रूप में उपयोग किए जाते हैं।

टी-नॉर्म फ़ज़ी तर्क, फ़ज़ी तर्क और बहुमान तर्क के व्यापक वर्ग के रूप मे होते हैं। एक अनुक्रम निहितार्थ उत्पन्न करने के लिए टी-नॉर्म तर्क को सामान्यतः बाएं की ओर होने की आवश्यकता होती है। बाएं की ओर टी-नॉर्म के तर्क आगे अवसंरचनात्मक तर्क की श्रेणी में आते हैं। जिनमें से उन्हें पूर्व-रैखिकता के नियम की वैधता (AB) ∨ (BA) के साथ चिह्नित किया जाता है।प्रस्तावित और प्रथम-क्रम या उच्च-क्रम टी-नॉर्म फ़ज़ी तर्क के साथ ही मॉडल और अन्य संक्रियक द्वारा उनके दोनों विस्तार का अध्ययन किया जाता है। तर्क जो टी-नॉर्म अर्थ विज्ञान को वास्तविक इकाई अंतराल (उदाहरण के लिए, सूक्ष्म रूप से बहुमान लुकासेविच तर्क) के एक उपसमुच्चय तक सीमित करते हैं सामान्यतः वे कक्ष में भी सम्मिलित होते हैं।

टी-नॉर्म फ़ज़ी तर्क के महत्वपूर्ण उदाहरण सभी बाएँ ओर टी-नॉर्म के एकपदी टी-मानक तर्क (एमटीएल) के सभी नियमित टी-नॉर्म के मूल तर्क (बीएल) उत्पाद टी-नॉर्म के उत्पाद फ़ज़ी तर्क या न्यूनतम नीलपोटेंट टी-नॉर्म का कुछ स्वतंत्र रूप से प्रेरित तर्क उदाहरण के लिए लुकासिविक्ज़ तर्क (जो लुकासिविक्ज़ टी-नॉर्म का तर्क है) या गोडेल-डमेट तर्क (जो न्यूनतम टी-नॉर्म का तर्क है) टी-नॉर्म फ़ज़ी तर्क में भी सम्मिलित होते हैं।

प्रेरणा

फ़ज़ी तर्क के समूह के सदस्यों के रूप में टी-नॉर्म फ़ज़ी तर्क मुख्य रूप से 1 (सत्य) और 0 (असत्य) के बीच मध्यस्थ सत्य मानों को स्वीकृत करके प्रस्तावों की सत्यता की घात का प्रतिनिधित्व करते हुए पारम्परिक दो-बहुमान तर्क को सामान्य बनाने का लक्ष्य रखता है। इकाई अंतराल [0, 1] से घातों को वास्तविक संख्या माना जाता है। प्रस्तावात्मक टी-नॉर्म फ़ज़ी तर्क में प्रस्तावात्मक संयोजकों को सत्य-कार्यात्मक होने के लिए निर्धारित किया जाता है, अर्थात कुछ फलन प्रस्तावों से एक प्रस्तावक संयोजक द्वारा गठित जटिल प्रस्ताव का सत्य मान फलन है जिन्हे संयोजक का सत्य फलन कहा जाता है। घटक प्रस्तावों के सत्य मान, सत्य फलन और सत्य डिग्री के समुच्चय पर कार्य करते हैं। मानक शब्दार्थ में, [0, 1] अंतराल पर इस प्रकार एक (n-ary) प्रस्तावक संयोजक c का सत्य फलन Fc: [0, 1]n → [0, 1] एक फलन है। सत्य फलन पारम्परिक तर्क से ज्ञात प्रस्तावात्मक संयोजक की सत्य तालिका को सामान्य करता है ताकि सत्य मान की बड़ी प्रणाली पर कार्य किया जा सके और ये प्रायः टी-नॉर्म फज़ी तर्क संयोजन के सत्य फलन पर कुछ प्राकृतिक प्रतिबंध लगाते हैं। सत्य फलन का संयोजन निम्नलिखित शर्तों को पूरा करने के लिए माना जाता है:

  • क्रमविनिमेयता, अर्थात [0, 1] में सभी x और y के लिए इस धारणा को व्यक्त करता है कि फ़ज़ी प्रस्तावों का क्रम संयोजन के रूप में अस्तित्व रहित है, यद्यपि मध्यवर्ती सत्य डिग्री स्वीकृत की जाती हैं।
  • साहचर्य, अर्थात [0, 1] में सभी x, y और z के लिए इस धारणा को व्यक्त करता है कि संयोजन करने का क्रम अस्तित्व रहित है, यद्यपि मध्यवर्ती सत्य डिग्री स्वीकृत की जाती हैं।
  • एकरसता (मोनोटॉनी) अर्थात, यदि तब सभी x, y और z मे [0, 1] के लिए इस धारणा को व्यक्त करता है कि संयोजन करने का क्रम अस्तित्व रहित है, यद्यपि मध्यवर्ती सत्य डिग्री स्वीकृत की जाती हैं।
  • 1 की तटस्थता, जो [0, 1] में सभी x के लिए है। यह धारणा सत्य डिग्री 1 को पूर्ण सत्य मानने के अनुरूप है। जिसके संयोजन से दूसरे संयोजन के सत्य मान में कमी नहीं होती है। पिछली स्थितियों के साथ-साथ यह स्थिति सुनिश्चित करती है कि [0, 1] में सभी x के लिए भी है जो सत्य डिग्री 0 को पूर्ण असत्य मानने के अनुरूप है। जिसके साथ संयोजन सदैव पूर्णतः असत्य होता है।
  • फलन की क्रमबद्धता , पिछली स्थिति मे किसी भी तर्क में क्रमबद्धता के लिए इस आवश्यकता को कम करती हैं। अनौपचारिक रूप से यह धारणा व्यक्त करती है कि संयोजनों की सत्य डिग्री के सूक्ष्म परिवर्तनों का परिणाम उनके संयोजन की सत्य डिग्री के सूक्ष्म परिवर्तन में नहीं होना चाहिए। यह स्थिति, अन्य तथ्य के अतिरिक्त संयोजन से प्राप्त (अवशिष्ट) निहितार्थ का एक अच्छा व्यवहार सुनिश्चित करती है। हालांकि, अच्छे व्यवहार को सुनिश्चित करने के लिए फलन की बाईं क्रमबद्धता (किसी भी तर्क में) लगभग होती है।[1] सामान्यतः टी-नॉर्म फ़ज़ी तर्क, इसलिए केवल बाईं क्रमबद्धता आवश्यक है, जो इस धारणा को व्यक्त करता है कि एक संयोजन की सत्य डिग्री की सूक्ष्म कमी को संयोजन की सत्य डिग्री के सूक्ष्म परिवर्तन के रूप से अपेक्षाकृत कम करना आवश्यक नहीं होता है।

ये धारणाएं संयुग्मन के सत्य फलन के लिए बाएं क्रमबद्धता टी-नॉर्म बनाती हैं, जो फ़ज़ी तर्क (टी-मानक आधारित) के समूह के नाम की व्याख्या करता है। समूह के विशेष तर्क संयुग्मन के व्यवहार के विषय में और धारणाएं बना सकते हैं। उदाहरण के लिए गोडेल-डमेट तर्क को इसकी निष्क्रियता की आवश्यकता होती है या अन्य संयोजक (उदाहरण के लिए प्रत्यावर्तन मोनोइडल टी-नॉर्म तर्क) को ऋणात्मकता की अनिवार्यता की आवश्यकता होती है।

सभी वाम-निरंतरता टी-नॉर्म में एक अद्वितीय अवशेष है, जो कि एक बाइनरी फलन है, जैसे कि [0, 1] में सभी x, y और z के लिए यदि और केवल यदि बाएं-क्रमबद्धता टी-नॉर्म के अवशेषों को स्पष्ट रूप से परिभाषित किया जा सकता है:

यह सुनिश्चित करता है कि अवशिष्ट बिंदु सबसे बड़ा फलन है जैसे कि सभी x और y के लिए,

उत्तरार्द्ध की अनुमानित नियम के एक फ़ज़ी संस्करण के रूप में व्याख्या किया जा सकती है। बाएं-क्रमबद्धता टी-नॉर्म के अवशेषों को सबसे दुर्बल फलन के रूप में वर्णित किया जा सकता है जो फ़ज़ी मोडस पोनेंस को वैध बनाता है। और इसे फ़ज़ी तर्क में निहितार्थ के लिए एक उपयुक्त सत्य फलन बनाता है। टी-नॉर्म संयोजन और इसके अवशिष्ट निहितार्थ के बीच इस संबंध के लिए टी-नॉर्म की बाएं-क्रमबद्धता आवश्यक और पर्याप्त शर्त है।

आगे के प्रस्तावक संयोजकों के सत्य फलनों को टी-नॉर्म और इसके अवशेषों के माध्यम से परिभाषित किया जा सकता है। उदाहरण के लिए अवशिष्ट प्रतिवाद या द्वि-अवशिष्ट तुल्यता प्रस्तावपरक संयोजकों के सत्य फलनों की अतिरिक्त परिभाषाओं द्वारा भी प्रस्तुत किया जा सकता है। जो सबसे सामान्य वाले न्यूनतम अन्य संयोजक की भूमिका निभाते हैं या अधिकतम संयोजन की भूमिका निभाते है या डेल्टा संक्रियक [0, 1] में , और को परिभाषित किया गया है। इस प्रकार एक बाएं-क्रमबद्धता टी-नॉर्म मे इसका अवशेष और अतिरिक्त प्रस्तावात्मक संयोजकों के सत्य फलन [0, 1] में प्रबल तर्कवाक्य सूत्रों के सत्य मानों को निर्धारित करते हैं।

वे सूत्र जो सदैव 1 का मूल्यांकन करते हैं, उन्हें दिए गए बाएं-क्रमबद्धता टी-नॉर्म या सत्य सूचक के संबंध में "सत्यतासूचक फलन" कहा जाता है। सभी के समुच्चय को सत्यतासूचक टी-नॉर्म का तर्क कहा जाता है। क्योंकि ये सूत्र फ़ज़ी तर्क (टी-नॉर्म द्वारा निर्धारित) के नियमों का प्रतिनिधित्व करते हैं जो परमाणु सूत्र की सत्य डिग्री की अपेक्षा किए बिना (1 डिग्री तक) धारण करते हैं। बाएं-क्रमबद्धता टी-नॉर्म के एक बड़े वर्ग के संबंध में कुछ सूत्र पुनरावलोकन तर्क हैं। ऐसे सूत्रों के समुच्चय को वर्ग का तर्क कहा जाता है। उदाहरण के लिए ये महत्वपूर्ण टी-नॉर्म तर्क विशिष्ट टी-नॉर्म या टी-नॉर्म की कक्षाओं के तर्क हैं:

  • लुकासिविज़ तर्क का तर्क है।
  • गोडेल-डमेट तर्क न्यूनतम टी-नॉर्म का न्यूनतम तर्क है।
  • फ़ज़ी तर्क उत्पाद का तर्क है।
  • मोनोइडल टी-नॉर्म तर्क एमटीएल सभी बाएं-क्रमबद्धता टी-नॉर्म का (वर्ग का) तर्क है।
  • आधारिक फ़ज़ी तर्क बीएल सभी क्रमबद्धता टी-नॉर्म का (वर्ग का) तर्क है।

इससे यह पता चलता है कि विशेष टी-नॉर्म और टी-नॉर्म के वर्गों के कई तर्क स्वयंसिद्ध हैं जो [0, 1] पर संबंधित टी-मानक शब्दार्थ के संबंध में स्वयंसिद्ध प्रणाली की पूर्णता प्रमेय को तब तर्क की मानक पूर्णता कहा जाता है। मानक [0, 1] पर वास्तविक-बहुमान शब्दार्थ के आतिरिक्त सामान्य बीजगणितीय शब्दार्थ के संबंध में तर्क ध्वनि और पूर्ण हैं जो पूर्वरेखीय क्रमविनिमेय परिबद्ध समाकलित अवशिष्ट नियम के उपयुक्त वर्गों द्वारा निर्मित हैं।

इतिहास

फ़ज़ी तर्क या टी-नॉर्म की धारणाओं के सामने आने से पहले ही समूह को पहचानने से बहुत पहले कुछ विशेष टी-नॉर्म फ़ज़ी तर्क प्रस्तुत किए गए थे और उनका परीक्षण किया गया था:

  • लुकासेविच तर्क (लुकासेविच टी-नॉर्म का तर्क) को मूल रूप से लुकासेविच (1920) द्वारा तीन-बहुमान तर्क के रूप में परिभाषित किया गया था।[2] इसे बाद में n मान (सभी परिमित n के लिए) के साथ-साथ अपरिमित रूप से कई-बहुमान फलन के दोनों प्रस्तावित और प्रथम अनुक्रम के लिए सामान्यीकृत किया गया था।[3]
  • माइकल डमेट तर्क (न्यूनतम टी-नॉर्म का तर्क) को गोडेल के 1932 के अंतर्ज्ञानवादी तर्क के अनंत-बहुमान होने के प्रमाण में निहित किया गया था।[4] बाद में (1959) डमेट द्वारा स्पष्ट रूप से इसका अध्ययन किया गया था जिसने तर्क के लिए एक पूर्णता प्रमेय सिद्ध किया था।[5]

विशेष टी-नॉर्म फ़ज़ी तर्क और उनकी कक्षाओं का एक व्यवस्थित अध्ययन हेजेक (1998) विनिबंध फ़ज़ी तर्क की मेटा गणित के साथ प्रारम्भ हुआ था। जिसने क्रमबद्धता टी-नॉर्म के तर्क की धारणा को प्रस्तुत किया और तीन आधारिक क्रमबद्धता टी-नॉर्म के तर्क (लुकासेविच, गोडेल और उत्पाद) और सभी क्रमबद्धता टी-नॉर्म का मूल फ़ज़ी तर्क बीएल (वे सभी प्रस्तावात्मक और प्रथम-क्रम दोनों) पुस्तक ने हिल्बर्ट-शैली की गणना, बीजगणितीय शब्दार्थ और अन्य तर्क (पूर्णता प्रमेय, निगमन प्रमेय, समिश्रता आदि) से ज्ञात मेटा गणित गुणों के साथ गैर पारम्परिक तर्क के रूप में फ़ज़ी तर्क का परीक्षण किया था।

तब से टी-नॉर्म फ़ज़ी तर्क की अधिकता प्रस्तुत की गई है और उनके मेटा गणित गुणों की जांच की गई है। एस्टेवा और गोडो (एमटीएल, आईएमटीएल, एसएमटीएल, एनएम, डब्ल्यूएनएम) एस्टेवा, गोडो मोंटागना (प्रस्तावात्मक ŁΠ) और सिंटुला द्वारा 2001 में कुछ सबसे महत्वपूर्ण टी-नॉर्म फ़ज़ी तर्क प्रस्तुत किए गए थे।[6][7]

तार्किक भाषा

प्रस्‍तावित टी-नॉर्म फ़ज़ी तर्क की तार्किक शब्दावली में मानक रूप से निम्नलिखित संयोजक सम्मिलित हैं:

  • निहितार्थ (बाइनरी), टी-नॉर्म-आधारित फ़ज़ी तर्क के अतिरिक्त अन्य के संदर्भ में टी-नॉर्म-आधारित निहितार्थ को कभी-कभी अवशिष्ट निहितार्थ या R निहितार्थ कहा जाता है, क्योंकि इसका मानक शब्दार्थ टी-नॉर्म का अवशेष है, जो प्रबल संयोजन का अनुभव करता है।
  • प्रबल संयोजन (बाइनरी), अवसंरचनात्मक तर्क के संदर्भ में चिन्ह और नाम समूह, निर्माण, गुणक या समानांतर संयोजन प्रायः प्रबल संयोजन के लिए उपयोग किए जाते हैं।
  • दुर्बल संयोजन (बाइनरी), जिसे अवशिष्ट संयोजन भी कहा जाता है क्योंकि इसको सदैव बीजगणितीय शब्दार्थ में सम्मिलित होने के अवशिष्ट संचालन द्वारा प्राप्त किया जाता है। अवसंरचनात्मक तर्क के संदर्भ में योगात्मक विस्तार या तुलनात्मक संयोजन के नाम कभी-कभी अवशिष्ट संयोजन के लिए उपयोग किए जाते हैं। तर्क बीएल और इसके विस्तार में (हालांकि सामान्य रूप से टी-नॉर्म तर्क में नहीं) निहितार्थ और प्रबल संयोजन के संदर्भ में दुर्बल संयोजन निश्चित होते है:
    दो संयुग्मन संयोजकों की उपस्थिति संकुचन-मुक्त अवसंरचनात्मक तर्क की एक सामान्य विशेषता है।
  • निम्नतम , या सामान्य वैकल्पिक संकेत हैं और प्रस्‍तावित नियतांक के लिए सामान्य वैकल्पिक नाम है। जैसे कि अवसंरचनात्मक तर्क के नियतांक नीचे और शून्य टी-नॉर्म फ़ज़ी तर्क के अनुरूप हैं। प्रस्‍तावित असत्यता या निरर्थक का प्रतिनिधित्व करता है और पारम्परिक सत्य मान असत्य के अनुरूप होता है।
  • प्रतिवाद (एकात्मक संक्रियक), जिसे कभी-कभी अवशिष्ट प्रतिवाद कहा जाता है यदि अन्य ऋणात्मक संयोजकों पर विचार किया जाता है, जैसे कि लघुकृत और निरर्थक मान द्वारा अवशिष्ट निहितार्थ से परिभाषित किया गया है:
  • समानता (बाइनरी), के रूप में परिभाषित किया गया है:
    टी-नॉर्म तर्क में परिभाषा के बराबर है।
  • दुर्बल संयोजन (बाइनरी), जिसे अवशिष्ट संयोजन भी कहा जाता है क्योंकि इसको सदैव बीजगणितीय शब्दार्थ में सम्मिलित होने के अवशिष्ट संचालन द्वारा प्राप्त किया जाता है और टी-नॉर्म तर्क में यह अन्य संयोजकों के संदर्भ में निश्चित होता है:
  • शीर्ष (शून्य), जिसे 1 भी कहा जाता है। प्रायः इसको या द्वारा निरूपित किया जाता है। अवसंरचनात्मक तर्क के स्थिरांक शीर्ष और शून्य के रूप में टी-नॉर्म फ़ज़ी तर्क एक दूसरे के अनुरूप होते हैं। प्रस्तावित मान पारम्परिक सत्य मान सत्य के समान है जिसको टी-नॉर्म तर्क में परिभाषित किया जा सकता है:

कुछ प्रस्तावात्मक टी-नॉर्म तर्क उपरोक्त भाषा में और प्रस्तावात्मक संयोजक :को जोड़ते हैं जो प्रायः निम्नलिखित होते हैं:

  • डेल्टा संयोजक , यह एक एकल संयोजक है जो किसी प्रस्ताव के पारम्परिक सत्य पर महत्व देता है, क्योंकि के सूत्र पारम्परिक तर्क के रूप में व्यवहार करते हैं। इसे बाज़ डेल्टा भी कहा जाता है, क्योंकि इसका पहली बार मथियास बाज़ द्वारा गोडेल-डमेट तर्क के लिए उपयोग किया गया था।[8] डेल्टा संयोजन द्वारा टी-नॉर्म तर्क का विस्तार सामान्यतः द्वारा दर्शाया जाता है।
  • सत्य स्थिरांक मानक वास्तविक बहुमान शब्दार्थ में 0 और 1 के बीच विशेष सत्य मानों का प्रतिनिधित्व करने वाले अवशिष्ट संयोजक हैं। वास्तविक संख्या के लिए संबंधित सत्य स्थिरांक को सामान्यतः द्वारा दर्शाया जाता है। अधिकांश सभी परिमेय संख्याओं के लिए सत्य स्थिरांक जोड़े जाते हैं। भाषा में सभी सत्य स्थिरांकों की प्रणाली बहीखाता पद्धति के स्वयंसिद्धों को संतुष्ट करने वाली पद्धति मानी जाती है:[9]
    इसके अतिरिक्त भाषा में परिभाषित किए जा सकने वाले सभी प्रस्तावात्मक संयोजकों और सभी सत्य स्थिरांकों के लिए प्रयुक्त किया जाता है।
  • समावेशी प्रतिवाद (यूनरी) को टी-नॉर्म तर्कों में एक अतिरिक्त प्रतिवाद के रूप में जोड़ा जा सकता है जिसका अवशिष्ट प्रतिवाद स्वयं समावेशी नहीं होता है। अर्थात यदि यह दोहरे प्रतिवाद के नियम का अनुसरण नहीं करता है। एक टी-नॉर्म तर्क समावेशी प्रतिवाद के साथ विस्तारित को सामान्यतः द्वारा निरूपित किया जाता है और इसे समावेश प्रतिवाद के साथ कहा जाता है।
  • प्रबल संयोजन (बाइनरी), अवसंरचनात्मक तर्क के संदर्भ में इसे समूह गुणार्थ, गुणात्मक या समानांतर विच्छेदन भी कहा जाता है। यद्यपि संकुचन-मुक्त अवसंरचनात्मक तर्क में मानक टी-नॉर्म फ़ज़ी तर्क में सामान्यतः इसका उपयोग केवल समावेशी प्रतिवाद की उपस्थिति में किया जाता है, जो इसे प्रबल संयोजन से डी मॉर्गन के नियम द्वारा निश्चित और स्वयंसिद्ध बनाता है:
  • अतिरिक्त टी-नॉर्म संयोजन और अवशिष्ट प्रभाव, कुछ स्पष्ट रूप से प्रबल टी-नॉर्म तर्क, उदाहरण के लिए तर्क (ŁΠ), उनकी भाषा में एक से अधिक प्रबल संयोजन या अवशिष्ट निहितार्थ हैं। मानक वास्तविक बहुमान शब्दार्थ में ऐसे सभी प्रबल संयोजनों को अलग-अलग टी-नॉर्म और उनके अवशिष्ट निहितार्थों द्वारा प्राप्त किया जाता है।

प्रस्तावित टी-नॉर्म तर्कशास्त्र के निर्मित सूत्रों को प्रस्तावात्मक चरों (सामान्यत: गणनीय रूप से अनेक) से उपरोक्त तार्किक संयोजकों द्वारा परिभाषित किया जाता है, जैसे कि सामान्यत: प्रस्तावात्मक तर्कों में होता है। पदानुक्रम को बचाने के लिए वरीयता के निम्नलिखित क्रम का उपयोग करना सामान्य होता है:

  • एकल संयोजक (निकटता से संबद्ध)
  • निहितार्थ और तुल्यता के अतिरिक्त अन्य बाइनरी संयोजक
  • निहितार्थ और तुल्यता (अस्पष्टता से संबद्ध)

टी-नॉर्म तर्क के प्रथम-क्रम के संस्करण उपरोक्त प्रस्तावित संयोजकों और निम्नलिखित परिमाणकों के साथ प्रथम-क्रम तर्क की सामान्य तार्किक भाषा को नियोजित करते हैं:

  • - सामान्य परिमाणक
  • - अस्तित्वगत परिमाणक

एक प्रस्तावित टी-नॉर्म तर्क का प्रथम-क्रम संस्करण सामान्यतः द्वारा दर्शाया जाता है।

शब्दार्थ

बीजगणितीय शब्दार्थ (गणितीय तर्क) मुख्य रूप से प्रस्तावित टी-मानक फ़ज़ी तर्क के लिए उपयोग किया जाता है, जिसमें बीजगणितीय संरचना के तीन मुख्य वर्ग होते हैं, जिसके संबंध में एक टी-नॉर्म फ़ज़ी तर्क पूर्ण होता है:

  • सामान्य शब्दार्थ, सभी बीजगणितीय तर्क से बना होता है - अर्थात, सभी बीजगणितीय तर्क जिसके लिए तर्क सत्य होते हैं।
  • रेखीय शब्दार्थ, सभी रेखीय बीजगणितीय तर्क से बनता है - अर्थात, सभी - बीजगणितीय तर्क जिनका अवशेष अनुक्रम रैखिक होता है।
  • मानक शब्दार्थ, सभी मानक बीजगणितीय तर्क से निर्मित - अर्थात, सभी बीजगणितीय तर्क, जिनकी अवशिष्ट लघुकरण सामान्य क्रम के साथ वास्तविक इकाई अंतराल [0, 1] है। मानक -बीजगणितीय तर्क में, प्रबल संयोजन की व्याख्या बाएं की ओर टी-नॉर्म तर्क है और अधिकांश प्रस्तावात्मक संयोजकों की व्याख्या टी-नॉर्म द्वारा निर्धारित की जाती है। इसलिए नाम टी-मानक-आधारित तर्कशास्त्र और टी-नॉर्म -बीजगणितीय तर्क, जिसका उपयोग अवशिष्ट [0, 1] पर बीजगणितीय तर्क के लिए भी किया जाता है। इसके अतिरिक्त संयोजकों के साथ टी-मानक तर्कों में, हालांकि, अतिरिक्त संयोजकों की वास्तविक बहुमान व्याख्या को आगे की शर्तों द्वारा प्रतिबंधित किया जा सकता है ताकि टी-नॉर्म बीजगणित को मानक कहा जा सके। उदाहरण के लिए मानक में प्रत्यावर्तन के साथ तर्क के बीजगणितीय तर्क के अतिरिक्त समावेशी प्रतिवाद की व्याख्या को अन्य समावेशी के अतिरिक्त मानक प्रत्यावर्तन होना आवश्यक है, जो कि को बीजगणित पर व्याख्या करता है।[10] सामान्यतः मानक टी-नॉर्म बीजगणित की परिभाषा को अतिरिक्त संयोजक के साथ टी-नॉर्म तर्क के लिए स्पष्ट रूप से दिया जा सकता है।

ग्रन्थसूची

  • Esteva F. & Godo L., 2001, "Monoidal टी-नॉर्म based logic: Towards a logic of left-continuous टी-नॉर्मs". Fuzzy Sets and Systems 124: 271–288.
  • Flaminio T. & Marchioni E., 2006, टी-नॉर्म based logics with an independent involutive negation. Fuzzy Sets and Systems 157: 3125–3144.
  • Gottwald S. & Hájek P., 2005, Triangular norm based mathematical fuzzy logic. In E.P. Klement & R. Mesiar (eds.), Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, pp. 275–300. Elsevier, Amsterdam 2005.
  • Hájek P., 1998, Metamathematics of Fuzzy Logic. Dordrecht: Kluwer.ISBN 0-7923-5238-6.

संदर्भ

  1. Esteva & Godo (2001)
  2. Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic). Ruch filozoficzny 5:170–171.
  3. Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28:77–86.
  4. Gödel K., 1932, Zum intuitionistischen Aussagenkalkül, Anzeiger Akademie der Wissenschaften Wien 69: 65–66.
  5. Dummett M., 1959, Propositional calculus with denumerable matrix, Journal of Symbolic Logic 27: 97–106
  6. Esteva F., Godo L., & Montagna F., 2001, The ŁΠ and ŁΠ½ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, Archive for Mathematical Logic 40: 39–67.
  7. Cintula P., 2001, The ŁΠ and ŁΠ½ propositional and predicate logics, Fuzzy Sets and Systems 124: 289–302.
  8. Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics, Springer, Lecture Notes in Logic 6: 23–33
  9. Hájek (1998)
  10. Flaminio & Marchioni (2006)