परजीवी ड्रैग: Difference between revisions

From Vigyanwiki
No edit summary
Line 8: Line 8:
वस्तु के [[आकार]] के कारण क्रमबद्ध कर्षण उत्पन्न होता है। पिंड का सामान्य आकार और आकारीय [[खींचें समीकरण|कर्षण समीकरण]] रूप में सबसे महत्वपूर्ण कारक हैं; बड़े प्रस्तुत क्रॉस-सेक्शन वाले निकायों में पतले निकायों की तुलना में अधिक कर्षण होगा; समतल (सुव्यवस्थित) वस्तुओं का निचला रूप कर्षण होता है। क्रमबद्ध कर्षण कर्षण समीकरण का अनुसरण करता है, जिसका अर्थ है कि यह वेग के वर्ग के साथ बढ़ता है, और इस प्रकार उच्च गति वाले धरातलीय समतलों के लिए अधिक महत्वपूर्ण हो जाता है।
वस्तु के [[आकार]] के कारण क्रमबद्ध कर्षण उत्पन्न होता है। पिंड का सामान्य आकार और आकारीय [[खींचें समीकरण|कर्षण समीकरण]] रूप में सबसे महत्वपूर्ण कारक हैं; बड़े प्रस्तुत क्रॉस-सेक्शन वाले निकायों में पतले निकायों की तुलना में अधिक कर्षण होगा; समतल (सुव्यवस्थित) वस्तुओं का निचला रूप कर्षण होता है। क्रमबद्ध कर्षण कर्षण समीकरण का अनुसरण करता है, जिसका अर्थ है कि यह वेग के वर्ग के साथ बढ़ता है, और इस प्रकार उच्च गति वाले धरातलीय समतलों के लिए अधिक महत्वपूर्ण हो जाता है।


क्रमबद्ध कर्षण अनुदैर्ध्य खंड पर निर्भर करता है{{what|date=November 2022}} पिंड का। कम कर्षण गुणांक के लिए बॉडी पार्श्व का विवेकपूर्ण विकल्प आवश्यक है। स्ट्रीमलाइन्स, स्ट्रीकलाइन्स, और पाथलाइन्स निरंतर होनी चाहिए, और इसके सहायक [[भंवर]] के साथ प्रवाह अलगाव से बचा जाना चाहिए।
पिंड का क्रमबद्ध कर्षण अनुदैर्ध्य खंड पर निर्भर करता है{{what|date=November 2022}}कम कर्षण गुणांक के लिए निकाय पार्श्व का विवेकपूर्ण विकल्प आवश्यक है। सुव्यवस्थित, और एकपथीय निरंतर होनी चाहिए, और इसके सहायक [[भंवर]] के साथ प्रवाह अलगाव से बचा जाना चाहिए।


क्रमबद्ध कर्षण में इंटरफेरेंस कर्षण सम्मिलित है, जो एयरफ्लो स्ट्रीम के मिश्रण के कारण होता है। उदाहरण के लिए, जहां पंख और धड़ पंख की जड़ में मिलते हैं, दो हवाई धाराएं एक में विलीन हो जाती हैं। इस मिश्रण से भंवर धाराएं, विक्षोभ पैदा हो सकता है या वायु का सहज प्रवाह बाधित हो सकता है। इंटरफेरेंस कर्षण तब अधिक होता है जब दो सतहें लंबवत कोणों पर मिलती हैं, और [[ विमान मेला | धरातलीय समतल मेला]] के उपयोग से इसे कम किया जा सकता है।<ref>{{Cite web|url=https://www.skybrary.aero/index.php/Interference_Drag|title = इंटरफेरेंस ड्रैग - स्काईब्ररी एविएशन सेफ्टी| date=25 May 2021 }}</ref><ref>{{Cite web|url=https://www.boldmethod.com/learn-to-fly/aerodynamics/how-interference-drag-affects-your-airplane-performance-and-decreases-performance/|title=How Interference Drag Affects Your Plane's Performance}}</ref><ref name="PHAK"/>
'''क्रमबद्ध कर्षण में व्यतिकरण कर्षण सम्मिलित है''', जो वायुप्रवाह धारा के मिश्रण के कारण होता है। उदाहरण के लिए, जहां पंख और धड़ पंख की जड़ में मिलते हैं, दो हवाई धाराएं एक में विलीन हो जाती हैं। इस मिश्रण से भंवर धाराएं, विक्षोभ पैदा हो सकता है या वायु का सहज प्रवाह बाधित हो सकता है। व्यतिकरण कर्षण तब अधिक होता है जब दो सतहें लंबवत कोणों पर मिलती हैं, और [[ विमान मेला |धरातलीय समतल मेला]] के उपयोग से इसे कम किया जा सकता है।<ref>{{Cite web|url=https://www.skybrary.aero/index.php/Interference_Drag|title = इंटरफेरेंस ड्रैग - स्काईब्ररी एविएशन सेफ्टी| date=25 May 2021 }}</ref><ref>{{Cite web|url=https://www.boldmethod.com/learn-to-fly/aerodynamics/how-interference-drag-affects-your-airplane-performance-and-decreases-performance/|title=How Interference Drag Affects Your Plane's Performance}}</ref><ref name="PHAK"/>


[[वेव ड्रैग|वेव कर्षण]], जिसे [[ पराध्वनिक ]] वेव कर्षण या कंप्रेसिबिलिटी कर्षण के रूप में भी जाना जाता है, एक धरातलीय समतल के [[ट्रांसोनिक]] और सुपरसोनिक गति से चलने पर उत्पन्न [[ सदमे की लहर | सदमे की लहर]] के कारण होने वाले कर्षण का एक घटक है।<ref name="Anderson"/>{{rp|25, 492, 573}}
[[वेव ड्रैग|वेव कर्षण]], जिसे [[ पराध्वनिक |पराध्वनिक]] वेव कर्षण या कंप्रेसिबिलिटी कर्षण के रूप में भी जाना जाता है, एक धरातलीय समतल के [[ट्रांसोनिक]] और सुपरसोनिक गति से चलने पर उत्पन्न [[ सदमे की लहर |सदमे की लहर]] के कारण होने वाले कर्षण का एक घटक है।<ref name="Anderson"/>{{rp|25, 492, 573}}


क्रमबद्ध कर्षण एक प्रकार का प्रेशर कर्षण है,<ref name="Anderson"/>{{rp|254}} एक शब्द जिसमें उत्थापक-प्रेरित कर्षण भी सम्मिलित है।<ref name="Anderson"/>{{rp|65, 319}} पृथक्करण के कारण क्रमबद्ध कर्षण प्रेशर कर्षण है।<ref name="Anderson" />{{rp|641-642}}<ref name="Anderson Introduction"/>{{rp|256}}
क्रमबद्ध कर्षण एक प्रकार का प्रेशर कर्षण है,<ref name="Anderson"/>{{rp|254}} एक शब्द जिसमें उत्थापक-प्रेरित कर्षण भी सम्मिलित है।<ref name="Anderson"/>{{rp|65, 319}} पृथक्करण के कारण क्रमबद्ध कर्षण प्रेशर कर्षण है।<ref name="Anderson" />{{rp|641-642}}<ref name="Anderson Introduction"/>{{rp|256}}
Line 25: Line 25:
उपरिस्तर घर्षण गुणांक, <math>C_f</math>, द्वारा परिभाषित किया गया है
उपरिस्तर घर्षण गुणांक, <math>C_f</math>, द्वारा परिभाषित किया गया है
:<math>C_f \equiv \frac{\tau_w}{q},</math>
:<math>C_f \equiv \frac{\tau_w}{q},</math>
कहाँ <math>\tau_w</math> स्थानीय [[दीवार कतरनी तनाव]] है, और क्यू फ्री-स्ट्रीम [[गतिशील दबाव]] है।<ref>{{cite web|url=http://www.cfd-online.com/Wiki/Skin_friction_coefficient|title=त्वचा घर्षण गुणांक -- CFD-Wiki, मुक्त CFD संदर्भ|website=www.cfd-online.com|access-date=22 April 2018}}</ref> एक्स दिशा में दबाव ढाल के बिना सीमा परतों के लिए, यह गति की मोटाई से संबंधित है
कहाँ <math>\tau_w</math> स्थानीय [[दीवार कतरनी तनाव]] है, और क्यू फ्री-धारा [[गतिशील दबाव]] है।<ref>{{cite web|url=http://www.cfd-online.com/Wiki/Skin_friction_coefficient|title=त्वचा घर्षण गुणांक -- CFD-Wiki, मुक्त CFD संदर्भ|website=www.cfd-online.com|access-date=22 April 2018}}</ref> एक्स दिशा में दबाव ढाल के बिना सीमा परतों के लिए, यह गति की मोटाई से संबंधित है
:<math>C_f = 2 \frac{d \theta}{d x}.</math>
:<math>C_f = 2 \frac{d \theta}{d x}.</math>
तुलना के लिए, [[अशांत प्रवाह]] अनुभवजन्य संबंध एक-सातवें शक्ति कानून के रूप में जाना जाता है (वॉन कर्मन द्वारा व्युत्पन्न | थियोडोर वॉन कर्मन) है:
तुलना के लिए, [[अशांत प्रवाह]] अनुभवजन्य संबंध एक-सातवें शक्ति कानून के रूप में जाना जाता है (वॉन कर्मन द्वारा व्युत्पन्न | थियोडोर वॉन कर्मन) है:

Revision as of 17:51, 26 May 2023

स्थिर उड़ान में पिंड को उठाने के लिए सही

पराश्रयिक कर्षण, जिसे पार्श्व कर्षण के रूप में भी जाना जाता है,[1]: 254 [2]: 256  यह एक प्रकार का वायुगतिकीय कर्षण (भौतिकी) है जो किसी भी वस्तु पर कार्य करता है जब वस्तु द्रव के माध्यम से चलती है। पराश्रयिक कर्षण क्रमबद्ध कर्षण और उपरिस्तर घर्षण का सम्मिलित रूप है।[3][1]: 641–642 [4]: 19  यह सभी वस्तुओं को प्रभावित करता है चाहे वे उत्थापक (बल) उत्पन्न करने में सक्षम हों या न हो।

किसी धरातलीय समतल पर कुल कर्षण पराश्रयिक कर्षण और उत्थापक-प्रेरित कर्षण से बना होता है। पराश्रयिक कर्षण में उत्थापक-प्रेरित कर्षण को छोड़कर सभी प्रकार के कर्षण सम्मिलित हैं।[5]


क्रमबद्ध कर्षण

वस्तु के आकार के कारण क्रमबद्ध कर्षण उत्पन्न होता है। पिंड का सामान्य आकार और आकारीय कर्षण समीकरण रूप में सबसे महत्वपूर्ण कारक हैं; बड़े प्रस्तुत क्रॉस-सेक्शन वाले निकायों में पतले निकायों की तुलना में अधिक कर्षण होगा; समतल (सुव्यवस्थित) वस्तुओं का निचला रूप कर्षण होता है। क्रमबद्ध कर्षण कर्षण समीकरण का अनुसरण करता है, जिसका अर्थ है कि यह वेग के वर्ग के साथ बढ़ता है, और इस प्रकार उच्च गति वाले धरातलीय समतलों के लिए अधिक महत्वपूर्ण हो जाता है।

पिंड का क्रमबद्ध कर्षण अनुदैर्ध्य खंड पर निर्भर करता है[clarification needed]। कम कर्षण गुणांक के लिए निकाय पार्श्व का विवेकपूर्ण विकल्प आवश्यक है। सुव्यवस्थित, और एकपथीय निरंतर होनी चाहिए, और इसके सहायक भंवर के साथ प्रवाह अलगाव से बचा जाना चाहिए।

क्रमबद्ध कर्षण में व्यतिकरण कर्षण सम्मिलित है, जो वायुप्रवाह धारा के मिश्रण के कारण होता है। उदाहरण के लिए, जहां पंख और धड़ पंख की जड़ में मिलते हैं, दो हवाई धाराएं एक में विलीन हो जाती हैं। इस मिश्रण से भंवर धाराएं, विक्षोभ पैदा हो सकता है या वायु का सहज प्रवाह बाधित हो सकता है। व्यतिकरण कर्षण तब अधिक होता है जब दो सतहें लंबवत कोणों पर मिलती हैं, और धरातलीय समतल मेला के उपयोग से इसे कम किया जा सकता है।[6][7][5]

वेव कर्षण, जिसे पराध्वनिक वेव कर्षण या कंप्रेसिबिलिटी कर्षण के रूप में भी जाना जाता है, एक धरातलीय समतल के ट्रांसोनिक और सुपरसोनिक गति से चलने पर उत्पन्न सदमे की लहर के कारण होने वाले कर्षण का एक घटक है।[1]: 25, 492, 573 

क्रमबद्ध कर्षण एक प्रकार का प्रेशर कर्षण है,[1]: 254  एक शब्द जिसमें उत्थापक-प्रेरित कर्षण भी सम्मिलित है।[1]: 65, 319  पृथक्करण के कारण क्रमबद्ध कर्षण प्रेशर कर्षण है।[1]: 641–642 [2]: 256 

उपरिस्तर घर्षण कर्षण

त्वचा का घर्षण खिंचाव उस वस्तु की त्वचा के विरुद्ध द्रव के घर्षण से उत्पन्न होता है जो इसके माध्यम से चलती है। त्वचा का घर्षण द्रव और पिंड की त्वचा के बीच परस्पर क्रिया से उत्पन्न होता है, और यह सीधे गीली सतह से संबंधित होता है, पिंड की सतह का वह क्षेत्र जो द्रव के संपर्क में होता है। पिंड के संपर्क में आने वाली हवा पिंड की सतह से चिपक जाएगी और वह परत हवा की अगली परत से चिपक जाएगी और वह आगे की परतों में बदल जाएगी, इसलिए पिंड हवा की कुछ मात्रा को अपने साथ खींच रहा है। पिंड के साथ हवा की एक संलग्न परत को खींचने के लिए आवश्यक बल को स्किन फ्रिक्शन कर्षण कहा जाता है। त्वचा का घर्षण खिंचाव हवा के द्रव्यमान को कुछ गति प्रदान करता है क्योंकि यह इसके माध्यम से गुजरता है और यह हवा पिंड पर एक मंदक बल लागू करती है। पराश्रयिक कर्षण के अन्य घटकों के साथ, त्वचा का घर्षण कर्षण समीकरण का अनुसरण करता है और वेग के वर्ग के साथ बढ़ता है।

वस्तु के चारों ओर की सीमा परत में चिपचिपाहट के कारण त्वचा का घर्षण होता है। वस्तु के सामने की सीमा परत आमतौर पर लामिनायर और अपेक्षाकृत पतली होती है, लेकिन पीछे की ओर अशांत और मोटी हो जाती है। लामिनार से अशांत प्रवाह में संक्रमण बिंदु की स्थिति वस्तु के आकार पर निर्भर करती है। घर्षण कर्षण को कम करने के दो तरीके हैं: पहला गतिमान पिंड को आकार देना है ताकि लामिना का प्रवाह संभव हो सके। दूसरी विधि चलती वस्तु की लंबाई को बढ़ाना और उसके अनुप्रस्थ काट को यथासंभव कम करना है। ऐसा करने के लिए, एक डिजाइनर सूक्ष्मता अनुपात पर विचार कर सकता है, जो कि सबसे बड़े बिंदु (एल/डी) पर इसके व्यास से विभाजित धरातलीय समतल की लंबाई है। सबसोनिक प्रवाह के लिए इसे ज्यादातर 6:1 रखा जाता है। लंबाई बढ़ने से रेनॉल्ड्स संख्या में वृद्धि होती है (). साथ उपरिस्तर घर्षण गुणांक के संबंध के लिए भाजक में, जैसे-जैसे इसका मान बढ़ता है (लैमिनार रेंज में), कुल घर्षण कर्षण कम हो जाता है। जबकि क्रॉस-सेक्शनल क्षेत्र में कमी से पिंड पर कर्षण फोर्स कम हो जाता है क्योंकि वायु प्रवाह में गड़बड़ी कम होती है। एक धरातलीय समतल के पंखों के लिए, पंखों की लंबाई (कॉर्ड) में कमी से घर्षण कर्षण नहीं होने पर प्रेरित कर्षण कम हो जाएगा।

उपरिस्तर घर्षण गुणांक, , द्वारा परिभाषित किया गया है

कहाँ स्थानीय दीवार कतरनी तनाव है, और क्यू फ्री-धारा गतिशील दबाव है।[8] एक्स दिशा में दबाव ढाल के बिना सीमा परतों के लिए, यह गति की मोटाई से संबंधित है

तुलना के लिए, अशांत प्रवाह अनुभवजन्य संबंध एक-सातवें शक्ति कानून के रूप में जाना जाता है (वॉन कर्मन द्वारा व्युत्पन्न | थियोडोर वॉन कर्मन) है:

कहाँ रेनॉल्ड्स संख्या है।[2]: Formula 4.101 

एक प्लेट पर लामिना के प्रवाह के लिए, सूत्र का उपयोग करके उपरिस्तर घर्षण गुणांक निर्धारित किया जा सकता है:[9]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Anderson, John D., Jr. (1991). वायुगतिकी के मूल तत्व (2nd ed.). New York: McGraw-Hill. ISBN 0-07-001679-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. 2.0 2.1 2.2 Anderson, John D., Jr. (2016). उड़ान का परिचय (Eighth ed.). New York, NY: McGraw Hill Education. p. 242. ISBN 978-0-07-802767-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Clancy, L.J. (1975). Aerodynamics, Sub-section 5.9. Pitman Publishing. ISBN 0 273 01120 0
  4. Gowree, Erwin Ricky (20 May 2014). फॉर्म ड्रैग पर अटैचमेंट लाइन फ्लो का प्रभाव (doctoral). Retrieved 22 March 2022.
  5. 5.0 5.1 पायलट की हैंडबुक ऑफ एरोनॉटिकल नॉलेज (PDF). FAA. p. Chapter 5, Aerodynamics of flight.
  6. "इंटरफेरेंस ड्रैग - स्काईब्ररी एविएशन सेफ्टी". 25 May 2021.
  7. "How Interference Drag Affects Your Plane's Performance".
  8. "त्वचा घर्षण गुणांक -- CFD-Wiki, मुक्त CFD संदर्भ". www.cfd-online.com. Retrieved 22 April 2018.
  9. tec-science (2020-05-31). "खींचें गुणांक (घर्षण और दबाव खींचें)". tec-science (in English). Retrieved 2020-06-25.